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1. Introduction
In [2], Dean has shown that m does not admit a Schauder basis of subspaces.

More generally he has shown that no Px space; cf. [1, p. 94], for a definition of
Px space; admits a Schauder basis of subspaces. The purpose of this paper is
to consider a basis structure, based upon integration rather than summation,
which exists in every P1 space, and in fact in every Px space which is isomor-
phic to a P1 space. The existence of these integral bases is not limited to Px
spaces. It is shown for example that any linear topological space which
admits a summation basis also admits an integral basis.
The integral bases considered here differ from the integral bases constructed

by Edwards in [3] in two major ways. First, the vector-valued set functions
used in the construction of integrals in this paper need not be countably addi-
tive. Secondly, the basis structure in this paper is based upon an integral of
Hellinger type. There is one big advantage to using a Hellinger type integral
in constructing integral bases. The approximating sums for such an integral
allow a net of projection operators to be associated with the basis in a natural
way which is analogous to the sequence of partial sum operators associated
with a summation basis or basis of subspaces. Because of this it is possible to
show very simply that there are theorems for the integral basis which are
analogous to the Bessaga-Pelcynski weak basis theorem and the theorem of
Banach-Newns-Arsove which asserts that a summation basis for a complete
metric space is a Schauder basis.

In addition to the topics previously mentioned, this paper also considers
relations between integral bases and a type of biorthogonality condition in-
troduced by Kaplan in [6].

2. Preliminary results
Throughout.this paper all linear vector spaces are assumed, unless otherwise

stated, to be infinite dimensional spaces over the real or complex number field.
If V is a linear vector space N will denote the null vector for V. For the pur-
poses of this paper, linear Hausdorff space means a linear topological space
which is a Hausdorff space in its vector topology. Finally, if V is a linear
Hausdorff space, a sequence {b} of elements Of V will be said to be a summa-
tion basis for V if there exists a unique sequence {ll of linear functionals
on V such that if y is in V then y -l(y)b. If each l is continuous
{b}- will be said to be a Schauder basis for V.
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In order to define the integral used in this paper a few preliminary results
are needed.

DEFINITION 1. Suppose X is a non-void set. The statement that a col-
lection of subsets of X, (P, is a proto-ring means that if A and B are in (e then
there exist finite disjoint collections, {E}L and {F.}=, in (P such that
An B ’u=E and A B u=/ If (P contains a finite disjoint col-
lection {G}= such that X u=G then (P will be said to be a proto-algebra.

It is an immediate consequence of this definition that 0 belongs to every
proto-ring.

If ( is a non-void collection of subsets of a set X and D {D} ’= is a finite
disjoint collection of non-void elements of such that X [3’=D then D
will be said to be a (P-subdivision of X. If E is a (P-subdivision of X, E
will be said to refine D if each element of E is contained in some element of D.
If (e is a proto-algebra, the collection of all (P-subdivisions of X will
be denoted by D. It is an immediate consequence of Definition 1 that fl0 is
directed by refinement. It also follows from Definition 1 that if (P is a proto-
algebra and E is in (P then there exists a (P-subdivision of X to which E be-
longs. These two properties in fact characterize proto-algebras.

LEMMA 1. Suppose X is a non-void set and d is a collection of subsets of X
such that

(1) some subcollection of ( subdivides X;
(2) the collection of all 5)-subdivisions of X is directed by refinement;
(3) if E e (e there exists a (-subdivision of X to which E belongs.

Then (P u {0} is a proto-algebra.

The proof of this lemma is omitted since it is an immediate consequence of
the definitions of subdivision and of refinement. A more detailed discussion
of the properties of proto-rings including a complete proof of Lemma 1 will
be found in [8].

If (P is a proto-ring, a finitely-additive function on (P into a linear Hausdorff
space will be said to be a p-volume.

DEFINITION 2. Suppose X is a non-void set, (e is a proto-algebra of sub-
sets of X, 9 is a choice function on (P {0} and is a p-volume on (P into a
linear Hausdorff space (V, r). A function f on X into the scalar field for V
is said to be 9-integrable with respect to if and only if the net

r-converges. The limit of this net will be denoted by 9 ffdv.
For the mos prt only very simple properties of the integrM introduced in

Definition 2 will be used in the remMnder of this pper. These properties will
be introduced s needed. A less obvious property of the 9 integral which will
be needed lter is given in
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LEMMA 2. Suppose X is a non-void set, 5 a proto-algebra of subsets of X,
a choice function on {01 and a p-volume on 5 into a linear Hausdorff

space. Let X denote the range of . Then n X is a proto-algebra of subsets
of X and there exists a p-volume on 5 n X, with the range of
equal to the range of, and a choice function q on 5 X with rangeX such that
q fxf d exists if and only if q fxfd exists. Furthermore both integrals
have the same value.

Proof. Let F denote the mapping of (P onto (P X defined by F (E)
E X, WE e . Since no non-void subset of (P is contained in X it follows
that F is one to one from which it follows that ( n X is a proto-algebra, that

toF- is a p-volume on ( X, and that q o F- is a choice function
on ( X {0}. F also defines in a natural way a one to one isotone corre-
spondence between the @-subdivisions of X and the 5 X-subdivisions of X.
The conclusion of the lemma follows from this observation and Definition 2.

3. Integral bases
The work of Fichtenholtz and Kantorovich [4] and of Hildebrandt [5]

on integral representations of continuous linear functionals on spaces of
bounded measurable functions strongly suggests that it should be possible to
define a type of basis in spaces such as m if one is willing to use some sort of
integral-like process in the construction of the basis. If in addition one wishes
to construct a basis which has the property that a summation basis for a space
generates an integral basis for that space one is led to a definition such as the
following.

DEFINITION 3. Suppose V is a linear Hausdorff space and B is a subset
of V which does not contain N. The statement that B is an/-basis for V means
that there exists a non-void set X, a proto-algebra (P of subsets of X, a p-vol-
ume on X with range B u NI, a choice function on (P {01 and a unique
scalar-valued map on V X such that if y is in V then y fx (y, d
and the net

{_.,l(y, ,(D))(D,) D
is bounded.

Suppose now that V is a linear Hausdorff space and that B is an/-basis for
V. It is an immediate consequence of Definition 2 that for each x in X,
(-, x) is a linear functional on V. This functional will be said to be the

x-coordinate functional. The uniqueness requirement of Definition 3 to-
gether with Definition 2 implies that the range of is X and that for each x in
X and each (-subdivision D there exists a refinement E of D such that for
some E, in E, (E,) is x. This in turn implies that if E is in ( then ( (E), )
is x and that is one to one.

If D {D,}- is a (-subdivision of X then

,f- l(-, q(D,) )(D)
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defines a linear transformation of V into itself. This transformation will be
denoted by :f. These 3 transformations are a direct analogue to the partial
sum operators of summation basis theory. There are however some dif-
ferences in behavior between the 3 operators and partial sum operators.
One of these differences which is of some consequence is that if D and E are
(P-subdivisions of X then 3 is not in general equal to even if E refines D.
It is however easily shown to be true that 3 if E refines D. Because
of this last relation several of the major theorems in summation basis theory
also hold for/-bases with only small changes in the proof.

LEMMA 3. Suppose (V, r) is a locally convex Hausdorff space, B is a (V, V*)
I-basis for V, and "a U} is a local base for consisting of closed convex
balanced neighborhoods of N. Then

(a) q’ {U,’. o3[U] i e } is a local base for a separated locally
convex topology for V, and r

(b) {3:D e} is an equi-continuous collection of maps from (V, r’) to
(V, );

(e) if (V, ) is metrizable so is (V, r’);
(d) if (V, r) is complete so is (V, -’).

Proof. This lemma is an analogue of Lemma 2 in [7]. The proofs of parts
(a) and (e) are almost identical to the proofs given by MeArthur in [7].
Part (b) is a trivial consequence of part (a) and is somewhat weaker than the
corresponding part of MeArthur’s lemma. The stronger form would hold in
the/-basis setting if B were a basis with the property that :i :i when
E refines D.

Suppose now that lYe" J e 09} is a r’-Cauchy net in V. It follows from part
(b) that for each D in :D, {y j e g} is a r-Cauchy net and that in fact this
is true uniformly in D. Suppose that x is an element of X. Let E be an
element of ( such that o (E) x and let D (E) {E}- be a (P-subdivision

of X to which E belongs. It is easily shown that { (E)}- is a Hamel basis
for the range of :t() and therefore since {5)y’j e $} is a Cauchy net it
follows that {l(y, x):j e g} is a Cauchy net of scalars. Let denote the
scalar valued function on X which is the pointwise limit of the net {1 (y,
j } on X. Suppose now that D {D},q. is a (-subdivision of X and that
U is a r-neighborhood of N. Let V be a r-neighborhood of N such that
[V is contained in U. There exists an element ] of g such that if j
follows ] then

[/(y., (D)) O( (D ) )]t (D ) , V, VD

and therefore

_o(,,(D,))(D,) U.

Hence the net {5 y :j e } r-converges to ._t O(9(Di))#(Di). A straight-
forward argument now shows that 0 is (y, -), where y is the r-limit of the



net {y" j e q}. A similar argument then shows that this net also r’-converges
to y. This completes the proof.

LEMMA 4. Suppose (V, r) is a barrelled space and B is a (r (V, V*) I-basis
for V with continuous coordinate functionals. Then B is a rI-basis for V.

Proof. Since the net {5" D e} is by hypothesis weakly pointwise
bounded and since 5 5D 5. if E refines D a standard proof (cf. [7, Lemma
1]) from Schauder basis theory may be used to prove the lemma.

Lemmas 3 and 4 then yield an analogue for/-bases to the Bessaga-Pelcynski
weak basis theorem for summation bases.

TEo. 1. Suppose (V, r) is a Frechet space and B is a r (V, V*) I-basis
for V. Then B is a r I-basis for V with continuous coordinate functionals.
Lemma 2 remains valid if the words "locally convex", "a(V, V*)", and

"convex" are deleted from its statement. This observation yields

THEOREm 2. Suppose V is a complete linear metric space and B is an I-basis
for V. Then the coordinate functionals for B are continuous.

The preceding group of theorems show that the theory of/-bases parallels
very closely the theory of summation bases. There is however an even closer
relation; every summation basis generates an/-basis.

THEOREM 3. Suppose V is a linear Hausdorff space and that B’ {b}l
is a summation basis for V. Then B {b}1 u {b b+}- is an I-basis
for V.

Proof. Let X be the set of all positive integers and let ( be

{0} u {{p}}_, u {Fq {r eZ’r >_ ql}q-.
Define # by

N,
bq

b b+,

E Fq,q 1,2,3,’"

E {p},p 1,2,3,.."
and by

(E) p, E {p},p 1,2,3,..-

q, E Fq,q 1,2,3,....

Finally, let be the scalar-valued function defined by

Vy e V, Vj e X.

The above function is well defined since a given j in X belongs to only finitely
many of the F sets. If D is a (p-subdivision of X then it follows from the
definition of that there exists an integer q such that D is 1 }, ..., q 1 },
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Fq}. Therefore there is a one to one mapping of X onto , and the mapping
is in fact order-preserving. If D {{1}, ..., In 1/, F} is an arbitrary
(-subdivision of X then a straightforward computation yields,

3D y 1l(y)b, y e V.

The conclusion of the theorem now follows.
Since the proof of Theorem 3 gives a one to one correspondence between

the collection of operators {3D} generated by B and the partial sum operators
for B’ it follows that B’ is a Schauder basis if and only if the coordinate func-
tionals for B are continuous.

There exist many Banach spaces whose elements are functions on a set X
which have the property that their norm is equivalent to the sup norm and
which contain a fundamental set whose elements are the characteristic func-
tions of the sets of a proto-algebra of subsets of X. The most obvious ex-
ample of a space of this type is the space of all functions on a set X which are
bounded and measurable with respect to a given z-algebra of subsets of X.
A second example of such a space, and one which is of some analytical interest,
is the space of quasi-continuous functions on a number interval [a, b]. Here
the collection of characteristic functions of open subintervals of [a, b] and
singleton sets is fundamental. All such Banach spaces admit/-bases.

Example 1. Suppose X is a non-void set and is a proto-algebra of subsets
of X. Let Q (X, () denote the space of scalar (i.e. real or complex) valued
functions on X which are uniformly approximatable by linear combinations of
characteristic functions of sets in (. Suppose further that Q (X, () is given
the sup norm topology. Q (X, () is clearly a Banach space with this topology.
It follows from Definition 1 by a straightforward argument that a function f
is in Q (X, ) if and only if for each positive number s there exists a (-sub-
division D of X such that if {E} ._1 refines D and p and q are in E,, i 1, 2,

r, then If(P) f(q)! " . This observation together with Definition
2 implies that if is the p-volume defined by (E) x, WE e (, and is an
arbitrary choice function on ( {0} then f q fxf dt, ff . Q(X, (f’). it
may be shown by an elementary transfinite induction argument that there
exists a choice function on ( {0} having the property that if E and F
are in ( {}, E c F, and (F) is in E n F then (F) (E). It will be
assumed in the remainder of this discussion that such a choice function has
been selected. Suppose now that g is a scalar valued function on X such that
q fx g d N. Then if is a positive number, there exists a (-subdivision D
of Z such that if E {E}- refines D then 1] ’-g((E,))x, I! < .
If x is in the range of it follows from the properties of a proto-ring and the
properties of that there exists a (-subdivision {E,}- which refines D and
has the property that for some , 1

_ _
p, (E) x. Thus ]g(x) .< e

and since e and x are arbitrary, g must be identically zero on the range of .
Thus it follows from Lemma 2 that if X1, , and 1 are defined as in Lemma



2 then the function defined by (f, x) f(x), f e Q (X, @), ’x e X1, is the
only scalar valued function on X1 Q (X, ) such that

f dz ,

Since the D operators associated with this integral each have norm one it
follows that B {xB E e @ {0}} is an/-basis for Q (X, ). Because of
the special character of the choice function , the/-basis just constructed
has one additional property of interest, namely GD GB D if E refines D.
To obtain another example of a Q (X, () space, let X be a compact Haus-

dorf space which is Boolean; i.e. the family of compact open subsets of X is a
base for the topology on X; and let @ be the algebra of open closed subsets of
X. Since the characteristic function of an open closed subset of X is con-
tinuous it follows that in this cse Q (X, ) is contained in C (X). It then
follows immediately from the Stone-Weierstrass theorem that Q (X, ) is
c(z).

It is a straightforward consequence of Definition 3 that if V is a linear
Hausdorff space which admits an/-basis B with continuous co-ordinate func-
tionls and there exists a linear homeomorphism of V onto a linear Haus-
dorf space W then [B] is an/-basis for W. Since it is known (cf. [1, theorem
3, p. 94]) that every P space is isometrically isomorphic to a space of con-
tinuous functions on an extremely disconnected compact Hausdorff space it
follows from Example 1 and the remarks of the previous paragraph that every
P space admits an/-basis; in fact every Px space which is isomorphic to a P
space admits an/-basis.

4. /-bases and biorthogonality
In the previous section of this paper the similarities betweea summation

bases and/-bases have been pointed out and exploited. There are however
also maor differences between the two concepts. For example, it is clear from
Theorem 3 that an/:basis need not be a linearly independent set. In fact a
necessary and sufficient condition for an/-basis to be linearly independent is
that the associated proto-ring hve the property that no finite disioint union
of non-void elements of the proto-ring is n element of the proto-ring, nd this
condition is not satisfied by any of the concrete examples of Q (X, ) spaces
considered in Section 2. Related to this lack of linear independence is another
property which is well illustrated by Q (X, () spaces. It is easily seen from
definition 1 (cf. [8]) that if @ is a proto-algebra of subsets of a set X then
Q (X, @) Q (X, R (@)), where R (() is the algebra generated by . It
therefore follows from Example 1 that one/-basis for a space may be a proper
subset of another/-basis for the space.

In view of the preceding remarks one would not expect the concept of bi-
orthogonality to be of much importance in the study of/-bases. There is
however an extension of the concept of biorthogonality introduced by Kaplan
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in [6] which plays much the same role in the study of/-bases as that which
biorthogonality plays in the study of summation bases. For convenience some
of the definitions in Kaplan’s paper are reproduced here.

DEFINITION 4. Suppose V is a linear topological space and B {b}
and T {/},x are subsets of V and V* respectively. The pair (B, T) will
be said to be biorthogonal in the wide sense (abbreviated as bows) if it satisfies
the following two conditions.

I. (a) If b e B and fx T then f (b) is zero or one;
(b) No fx is zero at every be, and for each b in B there is some f in T

such that f (b) is one.
A finite subset b} -1 of B will be called a T-orthogonal set if no f in T has

value one at more than one bj, j 1, 2, ..., k.
II. The T-orthogonal subsets of B form a direct set under the ordering

-< defined by
{b.} j_l c sp {b}_.

In [6], Definition 4 is stated only for real Banach spaces but it is clear that
the definition is quite meaningful in a general context. Furthermore, those
theorems in [6] which are needed in this paper clearly hold in a general setting
and will be used without further comment. In addition to the terminology
introduced in [6] the following terminology is useful here.

DEFNTO 5. Suppose V is a linear topological space and (B c V,
T V*) is bows. A T-orthogonal subset {b.}

_
of B will be said to be a full

T-orthogonal subset if every element of T has value one at some b, j 1, 2,
ko

Suppose now that V is a linear Hausdorff space and B {b}, is an/-basis
for V with continuous co-ordinate functionals. Denote the collection of
co-ordinate functionals for B, (--, x) ,x, by T. Since (b, x) is x-() (x)
the pair (B, T) satisfies condition I of Definition 4. It follows from the
definition of T that if {b}

_
is a disjoint

_
is T-orthogonal then {- (b.)}

collection of non-void sets of (. Conversely if {E}_ is a disjoin collection
of non-void sets of then {(E)}_ is a T-orthogonal subset of B. Fuher-
more if {D} is a -subdivision of O_E which refines {E}_ then
{(E)}_ is contained in sp {(D)}_. It therefore follows that (B,
satisfies condition II of Definition 4 and so is bows. so if {D}_ is a
-subdision of X then {(D)}_ is a full T-orthogonal subset of B. There
is a paial converse to this reset.

THEORE 4. Suppose V is a linear Hausdorff space which is either barrelled
or has the t-property, B {b}, is a fundamental collection of distinct elements
of V, T {f}, is a subset of V*, and (B, T) is bows. If B contains a full
T-orthogonal subset and there exists a function F on B onto X such that



(a ) for each x X and each full T-orthogonal suSset B1 of B there exists a full
T-orthogonal subset B. of B with BI .< B. and F (b) x for some 5 B

(b) _f;)(y)b. {b.} -. a full T-orthogonal subset of B} is bounded
for each y in V;
then B is an I-basis with continuous coordinate functionals for V.

Proof. For each b let E be {x e X f(b) 1} and denote {E, b e B}
by (’. Since singleton subsets of B are T-orthogonal it follows from Propo-
sition 3 [6] that E E if and only if b b.. The definition of T-orthog-
onality implies that {b.}= is T-orthogonal if and only if {E}= is disjoint
collection. Therefore, since B contains a full T-orthogonal subset there exists
a (V-subdivision of X. It is an immediate consequence of proposition 3 [6]
that if {b} =x is a full T-orthogonal set, {bl i’= is T-orthogonal and {b}
{b} i=x then {bz} i= isa full T-orthogonal set. Moreover, if {bz} f=x is T-orthog-
onal set then {b.}=x < {bz} i’= if and only if {E} ’=x refines {E}i=. There-
fore condition n of Definition 4 implies that the ,’-subdivisions of X are
directed by refinement. A similar argument shows *hat if E is in ,P then there
is a ,’-subdivision of X to which E belongs. Therefore, by lemma 1,
(e p’ u {0} is a proto-Mgebra. It is clear that the function defined by

(E,) b,, E, ,’, v(0) N

is a p-volume on (P, and the function 9 on (P defined by F.o is a choice
function on (’. If a function on V X is defined by

l(y, x) f(y), ty V, x X

then condition (b) and the Banach-Steinhaus theorem imply that

Y fx l(y, --) d, Xfy e V,

since this relation holds for all y in sp B. The uniqueness of this representa-
tion is an immediate consequence of condition (a) and Definition 2. This
completes the proof.

It should be noted that if the pointwise boundedness hypothesis of condition
(b) in theorem 4 is replaced by an equi-continuity condition then it need not
be assumed that V is barrelled or has the t-property.

Finally, if (B, T) is a biorthogonal collection then B contains a full T-orthog-
onal set only if it is finite. Thus a necessary condition that an/-basis B be
biorthogonal to the associated co-ordinate functionals is that B be finite.
It is easy to show that this condition is also sufficient.
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