STIELTJES-VOLTERRA INTEGRAL EQUATIONS

BY
Carr W. Birzer

This paper extends the work of D. B. Hinton [1] who contributed to an inte-
gral equation theory developed by J.S. Mac Nerney [2] and [3] and H. S. Wall
[4]. In each case a unique reversible function & is established which maps a
class of functions & onto a class of functions G in such a manner that each
member F of F together with its image & (F) satisfies a certain linear integral
equation. I have extended Hinton’s theory by changing the underlying space
S from a number interval to a non-degenerate set with any linear ordering and
by relaxing the axioms used to define the class F of functions. The last is best
illustrated by thinking of S as a number interval and defining a neighborhood
of the diagonal of S X S to be the union of any finite collection of squares which
cover the diagonal. Then each function in the class investigated in this paper
will agree with a function in Hinton’s class on some neighborhood of the diag-
onal but may be different outside of the neighborhood.

The theory presented in this paper is in fact a generalization of the study of
the existence and the properties of functions U which satisfy equations of the
form U () = K + (L) fﬁ dF[t,I1-U. A discussion of this may be found at the
end of Section 5.

I am deeply indebted to Professor J. S. Mac Nerney for his many suggestions
and for his encouragement.

1. Left and right integrals

Throughout this paper S will denote a non-degenerate set which is linearly
ordered by < with < having its usual meaning and (N, +, -, | - |) will de-
note a complete normed ring with unity 1. The letter “I”’ will denote the
identity function whose range of definition will be clear from the context. To
a large extent, definitions and theorems which are analogous to those of Hinton
[1] are stated with the same letters and wording which Hinton used. It is
hoped that this will facilitate the reading of both papers.

The statement that [a, b] is an interval of S means that a and barein S, a < b,
and [a, b] is the set to which & belongs only in case ¢ < x < b. Suppose
(M, +, -, |- |)is a normed ring and g is a function mapping S into M. The
function ¢ is said to be uniformly quasi-continuous on an interval of S only in
case it is the uniform limit of step functions on that interval. If [a, b] is an
interval of S and ¢ is of bounded variation on [a, b] then either [ |dg| or
% | dg | will denote the total variation of g on [a, b], and if ¢is in S then feldg|
is the number 0. Suppose (K, @, O, | - [|) is a normed ring and fis a function
mapping S into K. The statement that sis an (f — ¢ — ¢) chain means that
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€ is a positive number, there is a positive integer n such that s is a monotone
sequence from the integers in [0, 2n] to S, if p is an integer and 8, < < Sp11
then

[T nasn<em,

and if p is an integer and s3p11 < ¢ < ¥ < S2p42 then

lg@) —g@)| <e

If ¢ is a positive number and [a, b] is an interval of S such that f is of bounded
variation on [a, b] and ¢ is uniformly quasi-continuous on [a, b] then it can be
shown that there are (f — g — &) chains {s}¢"” and {r}5" such that s = 72, = a
and s, = 79 = b. Since g is uniformly quasi-continuous on [a, b], there is an
increasing sequence {t}o such that &, = a, t, = b, and if p is a non-negative
integer less thann and ¢, < z < y < tpathen |g(z) — g(y) | < &. For each
integer p in [0, n] define 2, to be ¢ . For each non-negative integer p less than
n define sz,11 to be 2 member y of S such that 82, < y < sypeandif s, <z <y
then [%| df|| < e/n. Thesequence r may be defined in an analogous manner.
This result will help to establish the existence of certain integrals which are
defined next.

Suppose (a,b) isin 8 X S; {s}¢ is a subdivision of (a, b), that is, a monotone
sequence whose final set is a subset of S such that s, = a and s, = b; and each
of f and ¢ is a function mapping S into N. (L) D_. df- g is defined by

220 [f(8p) — F(8p1)]-9 (8p1).
The integral (L) [ ® df g, when it exists, is the member of N which is approxi-
mated by sums of the form (L) D, df-g in the manner of successive refine-
ments of subdivisions. Each of (L) [2 g-df, (R) [5 df-g, and (R) [& g-df is
defined in a similar way with

R) 2o df-g = 220 [f(sp) — F(sp2)]-9(s5)-

TaeoreM 1.1. If each of f and g s a function from S to N, [a, b] is an interval
of S such that | g | s bounded by K on [a, b] and f s of bounded variation on [a, b],
sisan (f — g — &) chain which is a subdivision of either (a, b) or (b, a), and ¢
refines s then each of

| @) Xedfrg — (L) Xedf-g| and | (L) 2 g-df — (L) 2 g-df|
is less than (2K + [%|df |}e.
Each term of (L) 2., df-g can be expressed in the form
2= [ftp) — F(tp-1)1- ().

By observing that the first term of the sum is the same as the corresponding
term of (L) X df-g, the required inequality is readily obtained. Similar re-
marks hold for (L) 3 . g-df and (L) X, g-df.
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CororrAryY 1.1. If each of f and g s a function from S to N and [a, b] is an
interval of S such that g s uniformly quasi-continuous on [a, b} and f 7s of bounded
variation on [a, b] then each of the following integrals exists:

W [ao @[ oa @ [ae @[ oa

TuroreM 1.2. If a and b are in S and each of f and g 1s o function from S to N
then (L) [% df-g exists only in case (R) fﬁ f-dg exists, in which case

b b
(@) [ g+ (R) [ 1dg = 1(0)-9(b) = f(a)-g(a).

The theorem becomes clear upon considering approximating sums for the
integrals with respect to a common subdivision.

Tueorem 1.3. If [a, b] ¢s an interval of S, h 18 a non-decreasing function from
[a, b] to the non-negative numbers, and n is a positive integer then, for each x in
[a, b],

(@) [ Hdh < (@) = B/ (n -+ 1),

With respect to a subdivision s of (a, b), A" (z) — A" (a) can be written
as a sum of terms of the form A"*'(s,) — A" (s,—1). By factoring
h(sp) — h(sp-1) from each term the desired result may be obtained for approxi-
mating sums for (L) [5 A"-dh.

TuvoreEM 14. If [a, b] is an interval of S, each of h and m is a function from
[a, b] to the numbers such that h is non-decreasing and m ts bounded above, and K is
a non-negative number such that

m(z) < K + (L) fnm-dh

for each x in [a, b] then

m(z) < K-exp (h(z) — h(a))
for each x in [a, b].

Without loss of generality it may be assumed that A (a) is 0. By repeated
application of the inequality in the hypothesis and the one in the preceding
theorem, a series expansion for K-exp [h] is obtained which bounds m.

It is evident that the statements of the preceding two theorems are true if h
is non-increasing instead of non-decreasing and the limits of the integrals are
from b to « instead of from a to . These alternatives as well as the theorems
themselves will be useful.

2. The class § of functions

DerintTion 2.1, Suppose {s}¢ is an increasing sequence with final set a sub-
set of S and n is a positive integer. The statement that r is a triple refinement
of s means that
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(i) ris a sequence from the integers in [0, 3n] to S,
(ii) rsp = s, for each integer p in [0, n],
(@iii) if p is an integer in [0, »] and there is no member of S between s, and
8py1 then r3p1 = 8, and 542 = Sppa, and
@iv) if p is a non-negative integer less than n and there is a member of S
between s, and 8,41 then s, < r3p11 < Topre < Sppa

If r is a triple refinement of s then A (r) will denote the set to which ¢ belongs
only in case there is an integer p such that either ¢t = s, or rsp1 < £ < 73p42.

DeriniTION 2.2. The statement that s is an [a, 2, b] F-chain means that F
maps S8 X Sinto N, [a, b] is an interval of S such that ¢ < < b, and s is the
minimal increasing subdivision ¢ of (a, b) with z in its final set such that if cis a
positive number and r is a triple refinement of ¢ then there is a y less than z—
if z is not the first member of S—and a 2z greater than x—if x is not the last
member of S—such that if wisin A (r) and eithery Su <v <zorz <u <
v < 2 then [%|dF[w, I1| < c.

Derintrion 2.3. The statement that r is an s-complete [a, z, b] F-chain
means that F maps S X Sinto N, [a, b] is an interval of S such that e < 2 < b,
r is an increasing subdivision of [a, b], s is a subsequence of , there is an [a, z, b]
F-chain which is a subsequence of 7, if ¥ is in the final set of rand a < y < =
then there is an [a, y, y] F-chain which is a subsequence of r, and if y is in the
final set of r such that + < y < b then there is a [y, y, b] F-chain which is a
subsequence of 7.

DerinmTioN 2.4. The statement that ¢ is a super function for F on [a, b]
means that F maps S8 X Sinto N, [a, b] is an interval of S, g is a non-decreasing
function from [a, b] to the numbers, and there is an increasing subdivision
{s}o of (a, b) such that if p is a non-negative integer less than n and each of
(x,u) and (z,v) isin [sp, sp41] X [8p, $p41] then

|F(x,u) — F(z,v)| < |gu) —g@)|.

TaeorEM 2.1. Suppose F is a function from S X 8 to N such that, for each
interval [a, b] of S and each x in [a, b], there is an [a, x, b] F-chain. If thereisa
super function g for F on [a, b], x 8 in [a, b], and s s a non-decreasing finite
sequence with final set a subset of [a, b] then there is an s-complete [a, x, b] F-chain.

Proof. LetF,|a,b], z, g, and s be as in the hypothesis of the theorem. Sup-
pose £ < b. Let ¢ be an increasing subdivision of (x, b) such that if p is an
integer and each of (y, ) and (y, v) is in

[tp—l ’ tp] X [tp—-la tp]
then
|F(y,w) — Fy,v)| < [g@) —g@)|.
Define the sequence R as follows: R, is the increasing sequence whose final set
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is the subset of [z, b] to which y belongs only in case y is in the final set of
either s or ¢ or the [z, z, b] F-chain. If p is a non-negative integer then R,
is the increasing sequence whose final set is the set to which y belongs only in
case ¥ is in the final set of R, or there is a 2 in the final set of R, such that y is
in the final set of the [z, 2, b] F-chain. By observing that if {, 3 < z < ¢, and
r is the [z, 2, b] F-chain then ¢, < 7, an inductive argument may be used to
demonstrate that if y is in the final set of Ryy1 and y is in [ty , £541] then y is in
the final set of R,. Therefore, if m is an integer not less than »n then R, is
R, . Ifa < zthen asubdivision analogous to R, may be constructed for (z, a).
Combining these results one obtains an s-complete [a, z, b] F-chain.

In the definition which follows, F[I, & +] is the function f from S-to N such
that f () is the limit of F (¢, h) as h approaches « from the right. The analogous
definition of F[I, x—] is evident.

DeriniTION 2.5.  § denotes the set to which the function F from 8 X Sto N
belongs only in case
(i) ifzxisin S then F(z,z) = 1,

(ii) ifxisin S and [a, b]is an interval of S then each of F[I, z] and F[I, z+]
—if z is not the last member of S—and F[I, x —]—if 2 is not the first member
of S—is uniformly quasi-continuous on [a, b],

(iii) if [a, b] is an interval of S then there is a number K such that if z is
in [a, b] then [5|dF[z, I1| < K,

(iv) if [a, b] is an interval of S then there is a super function for F on [a, b],
and

(v) if [a, b] is an interval of S and «z is in [a, b] then there is an [a, x, b]
F-chain.,

Tarorem 2.2. If F isin &, [a, b] s an interval of S, Q is a function from [a, b]
to N which is uniformly quasi-continuous, x is a or £ 1s b, X 7s L or X is R, and
the function P from [a, b] to N is defined by P (t) = (X) [LdF[t, I]-Q then P s
uniformly quast-continuous.

Proof. The conclusion is true if @ is a step function. Since @ is the uniform
limit of a sequence of step functions and [ | dF[t, I]] is uniformly bounded for
t in [a, b], P is the uniform limit of a sequence of uniformly quasi-continuous
functions. Consequently, P is uniformly quasi-continuous.

3. The mapping 3¢

TaeoreM 3.1. If F is in & then there is only one function M from S X Sto N
such that
(i) M s bounded on each square of S X S and
() M@ z) =14 (L) [sdF[t, I)-M [I, %] for each (¢, x) in S X S.
Moreover, if x is in S then M[I, x] is uniformly quasi-continuous on each interval
of S.

Proof. Let [a, b] be an interval of S. Define the sequence G each value of
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which is a function from [a, b] X [a, b] to N as follows: Gy = 1 and if p is a
non-negative integer then

Grialty ) = (L) [ dF 1t,11-G,l1, .

Let g be a super function for F on [a, b] such that g(a) > 1, and let {s}¢ be a
subdivision of (a, b) such that if p is a positive integer not greater than n and
(z, u) and (z, v) are in

[8p-1, 8p] X [8p-1, 85

|F(z,u) — F(z,v)| < |gu) —g@)].

Let K be a number such that 1 + [%|dF[z, I]| < K for each z in |a, b).
Suppose p is a positive integer not greater than n. Define the function k
from [s,-1 , b] to the numbers as follows: (i) if y isin [s,-1, 8p] then k(y) = ¢ (y);
(ii) if ¢ is an integer such that p < ¢ < nand s, < y < 8441 then

k(y) = k(sg) + K-exp (k(sq) + g(8:41) — 9(s0)).

By observing that if y is a number not less than one and m is a positive integer
then 4™/ (m — 1)! < exp (y)™/m! and by employing an induction argument
involving both ¢ and m one may ascertain that if m is a positive integer,

then

2Lt 1S 2L 8,and s, 1 L8 St et
then
|Gutyz) | < (K™ (@) — K" (x))/m L.

Since a similar result holds for ¢ < , the sequence Y G converges to P uni-
formly on [a, b] X [a, b]. For each non-negative integer p and each z in [a, b],
G, is bounded and G,[I, z] is uniformly quasi-continuous on [a, b]. There-
fore, P is bounded and P[I, z] is uniformly quasi-continuous on [a, b] for each
z in [a, b).

Suppose @ is a bounded function from [a, b] X [a, b] to N such that, for each
(¢, x) in [a, b] X [a, 1],

Q2) = 1+ (1) [ aF 1,110l 2l

Suppose s,-1 < z < s, and the function m from [a, b] to the non-negative num-
bers is defined by m(t) = | P(t, ) — Q(¢, ) |. By using an inductive argu-
ment one can show that if ¢ is an integer and z < ¢t < s, then

m(t) < (L) f.dg-m.

Consequently, m = 0 on [z, b]. By employing similar methods it is evident
thatifa <t < zthenm() = 0. Hencem =Oonfa,bland P = Q. If M
denotes the union of all such functions P then M is the desired function.

DEeriNmTION 3.1. 3¢ will denote the function to which the ordered pair
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(F, M) belongs only in case F is in & and M is the function from 8 X Sto N
which is bounded on each square of 8 X S and such that, for each (¢, ) in
S X8,

M(t,w) =1+ (L) ft dF It, I)- MII, 2.

Treorem 3.2. If (F, M) is in 3C and [a, b] 78 an interval of S then there is a
super function for M on [a, b].

Proof. Let g and s be as in the proof of the preceding theorem and suppose
that s, 1 S u<v<sp,. Ifv <t < spthen

| M(t,u) — M(¢,0) | < ‘ (L) f’ dF [t, I1- M1, u]

+]<L) f daF [, 1 (ML, ] — MIL, o} .

Let K denote an upper bound for | M | on [a, b] X [a,b]. Ifv =t = s, then
| M(t,u) — M(t,v| < K-(g(v) — g(u)). Suppose v < s, and m denotes the
function from [v, s,] to the non-negative numbers defined by m (¢) = | M (¢, u)
— M (t,v)|. Foreachtin [v, s,],

m(t) < K-(g(v) — o) + (1) [ dg-m,

hencem (t) < K- (g(v) — g(u)) exp (9(¢t) — g()) < K-exp (g(®) —g(a))-
(g@) — g@)).
A similar result holds when s, < ¢t < w.

Define the function % from [a, b] to the numbers by

h(t) = K-exp (g(d) — g(a))-g ().

Suppose ¢ is a positive integer not greater than n, (¢, u) and (¢, v) are in
[8g-1, 8g] X [S¢—1, 8g], and 4 < v. If either ¢ < u or v < ¢ then

I M@ u) — M@ v)| < h@®) — huw).
Ifu <t <vthen

[ M@ u) — MEo)| < |ME w) — MG t)| + |[ME t) — M@ v)|
Sh(@) — k) +Rh@) - h(E)
= h@®) — h(u).

Therefore A is a super function for M on [a, b].

Turorem 3.3. If (F, M) is in 3C and [a, b] s an interval of S then there is a
number R such that if x s in [a, b] then [o|dM][z, I]| < R.
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Proof. Let K’ be an upper bound for | M | on [a, b] X [a, b] and let K be a
number such that, for each z in [a, b],

b
K21+K + [ |1,

Let g denote a super function for F and M on [a, b]. Let {s}o be an increasing
subdivision of (a, b) such that if p is a positive integer not greater than n and
(¢, u) and (¢, v) are in [sp—1, 8p] X [sp-1, sy then

|F@tu) = F@v)| < |g) —g@)],
M@ u)—MEo)| < |gw) —g)]

Define the non-decreasing number sequence {L}; as follows: L, = 0,
Ly = g(s1) — g(s), and if ¢ is a positive integer less than n then

Lo = (g9(sen1) — g(8g) + K* 4+ KLg)-exp (g(ser1) — 9(s)).
If sp < ¢t < s and 7 is a subdivision of [a, ¢] then
>oeldMit, 11| < L.

Suppose ¢ is a positive integer less than n such that if p is a positive integer
not greater than g, s, < ¢ < s,, and r is a subdivision of [a, ] then

dldM, 1| < L.

Suppose s, < ¢ < 8441 and 7 is a subdivision of (g, ¢) for which {s}§ is a sub-
sequence. Define the function m from [a, {] to the non-negative numbers as
follows:

() ifa <z < rthenm(z) = 0;

(ii) if m < z < tand kis the largest integer p such that r, < z then

m(x) = Z’{IM(CI?, rﬂ) - M (z, rp—l)l + IM(‘”7 x) - M(x’ rk)l-

Note that m < L, on [a, s;]. Let e be an integer such that r. = s,. Suppose
z is in [sg, . If f is the function from [a, ] to the non-negative numbers
defined by f(y) = [4|dFle, I]| then

m(@) < glsen) = 0(s0) + 3| MCa,7,) = M, 1) |

< gl = 9s) + 3 l @ [ dFlz, 11-MII, rp-d]

+ 2
=1

() [ aFle, 11-(MIL, 1] — ML, r,-2)

+ 2.
p=1

(L) fj dFl», I1-(M[I,r,) — MII, rp-ﬂ)‘
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< g(8g41) — g(s) + K*

+3 2@ [ ap| ML, r) = M, )|

=1 {=p

+ @) [ dg 1M 7) — ML,y |

< g(sens) — 9(s) + K
=1

+ 22 (L) f'; daf :_/_:,1 | MII, vl — MII, rp— |
+(@) [ ma
< gloan) = g(o0) + K+ () [ dpom + () [ dgm

< (gsens) = 0(s0) + K* + KLg) + (L) [ medy

Therefore, for each z in [s,, &,
m(@) < (G(ser) — g(se) + K* + KL,) exp (9(=) — ()
S Lq+1 S Ln .

In a similar manner it can be shown that if ¢ is in [a, b] then
f:ldM[t,I]I < L.
Therefore, 2L, is a number such that, for each ¢ in [a, b],
fab | dMlt, 11| < 2L,.
TurvoreEM 3.4. If (F, M) is in 3C, [c, b] 7s an interval of S, and a is in [c, b]

then there is a [c, a, b] M-chain.

Proof. Suppose [a, b] is an interval of S. Let K’ denote an upper bound for
|F| 4+ | M| on[a,b] X [a,b] and let K be a number such that

+f:

for each z in [a, b]. Let g be a super function for F and M on [a, b, and let s’
be a subdivision of (a, b) such that if (z, ) and (x, v) are in
[s9-1, 851 X -1, 85] then

|F (@, u) — F(z,0)| < [glw) — g@)|,
| M (@, u) — M@ 0)| < [g@) —g@)].

dFlz, I

K_>_1+K’+f:

dMzx, I ‘
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Let {s}o be an s’-complete [a, a, b] F-chain. If r is a non-decreasing finite
sequence with final set a subset of [a, b] then m, will denote the function from
[a, b] to the non-negative numbers defined by m, (x) = >, |dM[z, I]|.

Let £ be a positive number. Suppose ¢ is a non-negative integer less than
n — 1 such that if ¢ is a triple refinement of {s}&** then there is a y in S such
that ¢ < y < & and such that if 7 is a non-decreasing finite sequence with
final set a subset of (a, y] then m, < ¢ on A(¢). Evidently 0 is such an
integer if n 5 1. Suppose ¢’ is a triple refinement of {s}§™. Let ¢ be a triple
refinement of {s}§* such that A (') is a subset of A (), g (fsgqa) — g (tagrs+) <&,
and

Zq:{j:w ldF[w,I]|+f

»=0

l dF[z, I] l} <e
t3p+e
for each z in [f3g4, fsees]. Note that in the preceding ¢ ({3,143 + ) and the in-
tegrals of the form [%. and [% denote the usual limits. Let y be a member of
S such that

(i) e<y=<as,
(ll) fg+|dM[sq+2’I” < €,
(iii) if r is a non-decreasing finite sequence with final set a subset of (a, y]
then m, < ¢/(g + 1) on A({t}5*"),
Giv) g@) —gl+) <g
) 247 [irldMlt, —, 11| < &,
(vi) [Y |dFz, I1| < e for each z in A (¢).

Suppose {r}; is a non-decreasing finite sequence with final set a subset of
(a, ] and x is in [fsg44, f3e4s]. In order to abbreviate what follows, H (2)
will denote

dF[z, I1- (M[I, rs] — MII, r:4]).

Observe that

me(z) < Z{’ (L) f P, 11-MI, recd
+|w ["ae +|<L> [ e+ [ w6}
+sz{ @ [ at)
+l@ H(z)l-l—‘ [ ‘+ H(i)‘}.

Since z is in A (t),

-1f | dFlz, 11| < e
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and hence
2D [ dFte,11-MU, 7o) | < oK.
= ri-1

Since g(y) — g(a+) < e,
i | M, ] — M, rea]| < e

on [r1, #5] and hence

< Ke.

Ifpisa positive integer not greater than ¢ then

<mlt) [

tap+1

H(z)

dFlz, 1] l +K ft :’:’ ldF[:c, 1 ‘

t3p

< K{e/(q +1)+ f ": | dFls, 1) |}

and hence

@ [ 1)

tgp

>3

=1 =1

< 2Ke.

Ifpisa positive integer not greater than g then

typ+3—
"H@) | <K ’dF[w, 1
t3p+2 t3p+3
tap+ s
+ dF[x, 0|2 | M(tspys —, 1)
tap+2 =1
— M(tsp—s —, 145-1) l
< K{f“"“- dFs, 1] ’ + f” ’dM[t 1 [}
- tsp+s P at R
and hence
PR YR " HG)| < 2Ke.
!D+2
Since m, < € on A ({£}§¢*),
['} tap+2
>3 f HG) [<ed [© dF[x,I]I < K.
=1 =1 tap+1 =1 Yigp41

Since g(taq+4) — g(lsgys +) < &,

Z

@ [ 5G)

t3g+3

< my(lass) f | dPle, 11| + K f | dFls, 11|

< eK + K(g(tsm) — g(tages +)) < 2K£.
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Finally, ,
> l @ [ HG)

3g+4

Sf dg-ms .

tgg+4

Therefore,

me(z) < 9Ke + (L) dg -m,

t3g+4

for each x in [t344, tse+s] and hence

my < 9Ke exp (g (fag+s) — 9 (tagra))
on [fsg44, tsgrs]. Therefore,

m, < 9Keexp (g(b) — g(a))

on A[{#}57"®) and hence on A ({#}57"®). Consequently, if ¢ is a positive
number and ¢’ is a triple refinement of s then there is a y in S such that ¢ < y
andifa <u <v<yandzisin A (') then [ | dM[z, I]] < e.

In a similar manner it may be shown that if ¢ is a positive number, #’ is a
triple refinement of s, and a is not the first member of S then there is a2z in S
suchthatz < aandifz <u <v < gandzisin A (') then [% | dMIz,I]| < e.
Therefore there is an [a, a, b] M-chain. If ¢ < a then the same techniques
establish the existence of a [c, a, a] M-chain. Consequently there is a [c, a, b]
M-chain.

Taeorem 3.5. If each of F and G + 1 is in & and H 1is the function from
S X 8 to N defined by

H(,2) = (L) f " aFl, 161, o]
then H + 114sin &.

Proof. Suppose [a, b] is an interval of S, the funtion @ from [a, b] to N is
uniformly quasi-continuous on [a, b], and P is the function from [a, b] X [a, b]
to N defined by

Pw,2) = (1) [ dFlw, 11-Q

when ¢ < w and P (w, ) = 0 otherwise. If Q is a simple step function whose
only values are 0 and 1 then one can readily ascertain that P[I, a-] is uni-
formly quasi-continuous on [a, b]. Since every step function is a linear com-
bination of simple step functions whose only values are 0 and 1, a similar re-
sult is obtained if @ is a step function. Since @ is the uniform limit of a
sequence of step functions, P[I, a-+] is uniformly quasi-continuous on [a, b].
Suppose Q is G[I, a+]. By employing the fact that if s is a subdivision of
(a, b) and w is in [a, b] then there is a triple refinement ¢ of s such that w is in
A (t), one can conclude that H[I, a+] = P[I, a-+] on (a, b]. Consequently,
HJ[I, a+] is uniformly quasi-continuous on [a, b]. The other cases H[I, a—],



446 CARL W. BITZER

H[I, b—], and H[I, b+] can be handled in a similar manner. Since G is in &
one can use techniques which are analogous, but simpler in nature, to those
used in proving some of the preceding theorems in order to show that H 4 1
satisfies the remaining requirements for membership in &.

TrEOREM 3.6. If (F, M) is in 3C then M s in &.

By the preceding theorem one observes that each value of the sequence of
partial sums used to define M in the proof of Theorem 3.1 is the restriction to a
square of some member of &. Since the convergence is uniform, M is in &.

TarEOREM 3.7. If P s in &F; [a, b] 7s an inierval of S; and each of Q, K, D,
and E is a function from [a, b] to N such that Q is of bounded variation, K s
uniformly quasi-continuous on [a, b, D is defined by

b
() = (1) [ de-Plz, 4,
and E is defined by .
E() = (R) [ Plt, 114K
then (L) [2dQ-E = (R) [3D-dK.

The statement of the theorem can be established for the case where K is a
simple step function whose only values are 0 and 1 and hence for the case where
K is a step function. The proof can then be completed by observing that K
is the uniform limit of a sequence of step functions.

Tueorem 3.8. If (F, M) s in 3C then (M, F) isin 3C. Hence 3C is a rever-
sible function from & onto &.

Proof. For each (¢, ) in 8§ X 8,

L+ (D) [ aM 11FIE, o] = 1+ F4 ) — M(4)

t
~ () [ M, 0-dFl, .
Define the function H from S X S to N by
t
H(t,z) = 1~ (R) [ MU, I)-dFlL, ol

Using Theorem 3.5 observe that H is in ¥. With the aid of the preceding
theorem one can show that, for each (¢, ) in 8§ X S,

H(t,2) = 1+ () [ " aFlt, 1) HII, 2.

Consequently H is M and by the first equation (M, F) is in 3C.
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4. The non-homogeneous case

In this section N’ will denote the complete normed ring of 2 X 2 matrices
over N with norm || - || defined by

Al = max 354 ]4y], 1<i<L2

With N’ replacing N, & and 3¢’ are defined in a manner analogous to that of
§ and JC respectively. The next two observations will be needed and are
stated without proof. If F is in & and the function @ from S X S to N is
defined by G(t, ) = F(t, 2)u, G, z) = F@, x)n, G, z) = F(t, )2 + 1,
orG(t,z) = F(t, x)n + Lthen Gisin&. If {F}; is a sequence with final set a
subset of & then the function G from 8 X S to N’ defined by

_ Fo(t,x) Fg(t, w) - Fa(t; x)
G(t’x) - F4(t,:c) _ Fs(t,x) Fl(tym)
is in &',
Tareorem 4.1.  If each of (F, M) and (E, J) is in 3C then there is only one

function P from S X S to N, bounded on each square of S X 8, such that, for
each (¢, ) m S8 X 8,

P(4,3) = E(t,z) + (L) ft dFlt, 1)- PII, al.

Moreover, P is in & and, for each (¢, x) in S8 X S,
(i) PG ) = E@ z) — (L) [.dM[t, I]-BII, 2]
() M¢zx)=J@¢z) — (L) [idPlt, I1-JI, z].

Proor. Let F’ denote the member of 5 defined by

F(t,z) F@,2) — E(t,2)
0 1

and let M’ denote 3¢’ (F’). Then there is a P in ¥ such that, for each (¢, z)
in8 X8,

F'(t,z) =

M(t,z) = IM(t,:z) P(t,z) — 1‘_
0 1
If (¢, x)isin S X S then
t
M'(ta) =1+ (L) [ aF'l, 1-Ml, 5],
where 1 is the multiplicative identity of N’; hence

P(a) =1 = (D) [ aFl,11-(PIL, 1 = 1) + (L) [ d(FL, 71 - Bl 1))

= @) [ P, 0P 4] — 1+ Bt ).
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Uniqueness can be established by using Theorem 1.4. Since (M’, F’) isin 3¢/,
Fhs) =1+ @) [ "M, 1Pl <

and therefore

F(t2) = E(,2) = (L) [ aMle, 11-(FUL, o) — BIL, ) + (D) [ aPi1)

= F(40) — (L) [ Ml 1)-BIL, 2} — PG, o),

for each (¢, z)in S X 8.
Let each of A and B be the member of &' defined by

) J(t, x) 0
(i) At @) = M(t, ) — J(t, x) 1‘
. _ E(t, x) 0

Using the foregoing results, observe that (4, B) is in 3¢’; consequently, (B, 4)

isin 3¢’. Proceeding as before, one can deduce that, for each (¢, z) in 8 X S,

Mt a) — It 2) = — (L) [ " aPlt, 1171, 4.

Turorem 4.2. If each of (F, M) and (E, J) s in 3C then there is only one
Sunction P from S8 X S to N, bounded on each square of S X 8, such that, for
each (¢, ) in S X 8,

P(42) = E(4,2) — (R) [ " Plt, 11-dFI, 4.

Moreover, P is in & and, for each (¢, z) in S X S,

() P¢ z) = EQt =) + (R) [LE[t, Il-dM[I, |
() M@ =2) =J¢e)+ R)[JI I-dP[I, X].

The result becomes evident upon substituting (J, E) for (F, M) and (M, F)
for (E, J) in the preceding theorem.

5. Invariants of 3¢

If [a, b] is an interval of S and f is a function from [a, b] to N then the state-
ment that f is uniformly continuous means that if ¢ is a positive number then
there is a subdivision s of (@, b) such that if s, < v < v < s, then
|f(w) — f(»)| < e. Observe that if F is in & and F[I, z] is continuous on an
interval [a, b] of S then F[I, z] is uniformly continuous on [a, b] since F[I, x]
is uniformly quasi-continuous on each interval of S. If each of [a, b] and [c, d]
is an interval of S and f is a function from [a, b] X [¢, d] to N then the state-
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ment that f is uniformly continuous means that if € is a positive number then
there is a subdivision s of (a, b) and a subdivision ¢ of (¢, d) such that if
(u,v) and (2, y) arein [s,1, 8p] X [te1, & then | f(u, v) — f(z,y) | <e.

The next two theorems are stated without proofs. They may be verified by
making rather natural arguments involving approximating sums.

Taeorem 5.1. Suppose F is in &, each of [a, b] and [c, d] is an interval of S,
Q <s a uniformly continuous function from [c, d] X [c, d] to N, and P is a func-
tion from [a, b] X [c, d] to N defined by either
() PG =) = (L) [2dFl, 11-QI, 4] or
() P@ =)= (L)[2dFlt, 11-Q[I, =].
If F s uniformly continuous on [a, b] X [c, d] then so is P.

TaEOREM 5.2. Suppose F is in F, each of [a, b] and [c, d] <s an interval of S,
Q 18 a uniformly continuous function from [c. d] to N, and P s a function from
[a, b] to N defined by either

G) P@) = (L) J:dFlt, 11-Q or

() P@) = (L) [idFlt, 1]-Q
If for each y in [c, d], F[I, y] ©s continuous on [a, b] then P is uniformly con-
tinuous.

Taeorem 5.3. Suppose F is in F; [c, d] 18 an interval of S; [a, b] is a subin-
terval of [c, d); Q is a uniformly continuous function from [a, b] X [c, d] to N;
g s a non-decreasing function from [a, b] to the numbers such that if each of u, v,
and w s in [a, b] then

|7 @, ) = Fw,0)] < g@) = ¢0)|;
and P 1is the function from [a, b] X [c, d] to N defined by
P(t,2) = (L) [ art, 11-Ql,
if () 48 in [, b X [o, )

P(t,) = (L) [ dFlt, QI
if z < a, and

P(,2) = (L) [ dFl 11-QU, o

if a < z. If F 1s uniformly continuous on [a, b] X [c, d] then so is P.

Two preliminary observations are in order. (i) Suppose {s}i* is a non-
decreasing (f — h — ¢) chain and {¢}5 is a non-decreasing sequence whose final
set is a subset of [sy, S2»] which contains every member of the final set of s
which lies between ¢ and ¢,,. Then thereis an (f — A — ¢) chain » which is a
subdivision of (%, .) such that

(L) 2o0df-h = (L) 22, df-h;
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hence, if K is an upper bound for 4 on [ty , ¢n] then
tm tm
} @) ["aph— (L) T arh s{f |df | + 2K} :.
to t to

@ii) If ¢is a positive number then there is a subdivision s’ of (@, b) such that
if zisin [c, d] then ¢’ is a (9 — Q[I, ] — ¢€) chain. This is a consequence of
the uniform continuity of @ on [a, b] X [c¢, d]. Therefore, for each (u, x) in
[a, b] X [c, d], &' is an (F[u, I — Q[I, ] — ¢) chain.

Let {s'}2" and ¢ be as in part (i) of the foregoing. Let s be a subdivision of
(¢, d) such that &' is a subsequence of s and if (u, ) and (v, y¥) are in
[8p—1, 8p] X [8¢-1, 8], for some integer pair (p, ¢), then

@, ) — Q@, y)| < ¢ and |F(u, z) — F(, y)| < &/2n.

With respect to the partitioning of [a, b] X [c¢, d] determined by s, the argu-
ment may be completed by examining the approximating sums for
| P(u, x) — P (v, y)| which are derived from s in a natural way.

The next theorem can be proven in an analogous manner.

TaEOREM 5.4. Suppose F is in F, [a, b] is an interval of S, Q 18 a uniformly
continuous function from [a, b] to N, and P s a function from [a, b] to N defined
by either

() P@) = (L) [adF[t,1]-Q or

@) P@) = (L) [3dFlt, I1-Q.

If, for each y in [a, b], F[I, y] 18 continuous on [a, b] and there is a super function
g for F on [a, b] such that if each of u, v, and w 18 in [a, b] then

|F(w,u) — F(w,v)| < [g(w) — g@)|;
then P is uniformly continuous.

The next two theorems are obtained by applying Theorems 5.3 and 5.4
to the by now familiar sequence whose sequence of partial sums converges
uniformly on each square of 8 X S to 3¢ (F).

Tueorem 5.5. If (F, M) is in 3¢ and F s uniformly continuous on each
square of S X 8 then M 1is uniformly continuous on each square of S X 8.

Tuaeorem 5.6. If (F, M) is in 3 and F is continuous with respect to its first
place then M s continuous with respect to its first place.

A proof of the next theorem may be obtained by using Theorems 5.5 and
5.6 applied to the ordered pair (F’, M") in the proof of Theorem 4.1.

TuroreEM 5.7. Suppose each of F and E is in § and P is the member of F
such that, for each (¢, z) in S X S,

P(t2) = B(4,%) + (1) [ art,11-PIL, 21
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@) If each of F and E is uniformly continuous on each square of S X 8 then
P is uniformly continuous on each square of S X 8.

(ii) If each of F and E s continuous with respect to its first place then P 1s
continuous with respect to its first place.

It is the purpose of the next two theorems to place the theory presented in
this paper in a more familiar setting. In the context of the foregoing develop-
ment the proofs are easy to come by and are therefore omitted.

TueoreMm 5.8. If Fisin &, cisin S, and K 78 in N then there is only one
function U from 8 to N, bounded on each interval of S, such that

Ut = K + (L) f: dFlt, I-U

for each t in S. Moreover, if M = 3¢ (F) then U = M]I, c]-K.

Note that U is uniformly quasi-continuous on each interval of S and that if
F is continuous with respect to its first place then U is continuous.

TaEOREM 5.9. IfF isin &, cisin S, and H s a function from S to N which
18 uniformly quasi-continuous on each interval of S then there is only one function
V from S to N, bounded on each interval of S, such that

v = B + @) [ a0y
Joreachtin S. Moreover, if M = 3C(F) then, for each t in S,
V() = H(t) — (L) f " auMi, 1.

Observe that V is uniformly quasi-continuous on each interval of S and that
if H is continuous and F is continuous with respect to its first place then V is
continuous.
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