ON IMPRIMITIVE SOLVABLE RANK 3 PERMUTATION GROUPS

BY
LARRY DORNHOFF"

We remind the reader that a permutation group G transitive on a set @
is said to be of rank m, if the subgroup @, fixing o ¢ @ hasm orbits on Q. Thus,
rank 2 groups are doubly transitive groups. D. A. Foulser and the present
author have independently classified primitive solvable rank 3 groups (Foul-
ser’s paper has appeared in the Transactions of the American Mathematical
Society). Among finite solvable rank 3 groups, many imprimitive groups
occur. This paper is a classification of those imprimitive solvable rank 3 per-
mutation groups @ with a regular normal subgroup N.

If Gis such a permutation group on a set @ and « € 2, then we have G, N = G,
G,n N = 1. By Theorem 11.2 of [6], G, is then an automorphism group of
N acting with only two orbits on N¥ = N — {1}. Conversely, if N is any
group with a solvable automorphism group A having only two orbits on N*,
then the semidirect product G = AN is a solvable rank 3 permutation group
with regular normal subgroup N; G will be imprimitive if and only if 4 fixes
some proper subgroup of N. Thus our problem is to classify those groups N
with a solvable automorphism group having only two orbits on N* (such an
N is clearly solvable). Our main theorem is the following.

TreorEM. Let N be a finite group, A a solvable automorphism group of N
acting with only two orbits on N¥ = N — {1}. Then we have one of the following:
(1) N s an elementary abelian p-group for some prime p.
(i) For some prime p, N is a direct product of cyclic groups of order p.
(iii) For primes p and q, the polynomial (X? — 1)/(X — 1) is drreducible
over GF (p), and N is a Frobenius group of order qp™ @™ (m an integer). Here N
has an elementary abelian Frobenius kernel of order p™ ™.
(iv) For some integer n > 2 which is not a power of 2, and some automor-
phism 0 # 1 of GF (2") of odd order,
N = AM®,0)
= {(@ ) eGF @) X GF2")| (& £)B 1) = (@ + B8, ¢ + 0+ o)}
Thus |N | = 2™,
(v) For some integer n = 1,
N = B(n)
= ({2 ) GF @) X GF2")| (o ) (8, 7)
=(@+ B¢+ 1+ o + "8},
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where u e GF (2) has order 2" + 1. Here |N | = 2, and N does not depend
on u.

(vi) For some odd prime p and integer n = 1, choose € ¢ GF (p™) such that
e + & = 0. Then

C(p,n)
{r(a, £) eGF (™) X GF (") | (e, £) (B, 1)
= (@a+ 8¢+ 1+ 3@ — oBe)}.

N

Here |N | = p™, and N does not depend on ¢.

(vil) N s an extra special 3-group of order 3° and exponent 3.

(viii) N = P(c), where |P(e)| = 2°, € is a multiplicative generator in
GF (2%), and

P(e) = {(a, ) eGF(2") X GF(2)| (& £)(8, 1)
= (a+ B, ¢ + n + ofe + o’6%")}.

Furthermore, all these groups except | N | = 2 have such solvable automorphism
groups A; in case (i), one orbit of A can be H*, any proper subgroup H of N.

We have thus determined the subdegrees (lengths of orbits of G,) in each
solvable imprimitive rank 3 permutation group G with regular normal sub-
group N. If N is elementary abelian, | N | = p", then all possibilities p* — 1
p" — p'for 0 < ¢t < n occur as subdegrees. If N is not elementary abelian,
then N has an obvious unique characteristic proper subgroup K, and the sub-
degrees are | K| — 1, |[N| — |K|.

We remark that the groups (iv) and (v) will be identified as among the
Suzuki 2-groups of G. Higman [2]. The proof of our Theorem uses the
methods of [2] quite heavily, and will begin after three number-theoretic
Lemmas.

LemMa 1. Let p be a prime,n > 1 an integer. Then one of the following holds.
(i) There exists a prime q, ¢| (p" — 1),q £ (p' — 1) for any t < n.

(i) n=2andp = 2° — 14is a Mersenne prime.

(i) p=2n=6.

Proof. See [1].

Lemma 2. Let p be a prime, n = 4 an integer. Suppose that integers e,
es, ey, a1, Gz, 23 exist, satisfying e; = £l andn > a1 > as > az > 0, such that

(@" — 1) | n(@™ + e2p™ + esp™ + e).
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Then we have one of the following:

@) (5‘: — 1[4 +5 +5+1).

@) (3 —1)[8@ 43"+ 38" +1).
(iia) 3 —1)]|4@ +3+3+1).
(ib) (3* —1)]4@3* — 3" +3 —1).
(va) (2°—1)|6(2° — 2!+ 2 +1).
Gvb) (2*—1)|6@Q" —2° -2 —1).
Give) (2°—1)]6(2° —2° — 2 4+ 1).
vd) @ —1)]6@" +2°—2-1).
(ive) (2°—1)|6(2" +2° -2+ 1).
Gvf) @ —1)]6Q" +22+2~—1).

Proof. Denote & = (n, p" — 1). Then we have an equation
ti" — 1) = k(" + ep™ + ep™ + &)
for some integer 0 < ¢ < k. Therefore { + esk = 0 (mod p**), which implies

p® < 2k. Nowsett + esk = p™4, where we see 0 < | 4| < k; substituting
into the equation, we get

—p%h = k(™ + e:p™ + esp™) (mod p").

This implies ¢ + esk = 0 (mod p™™*), and therefore p**™* < 2k. We now
set &y + esk = p™ “ty, and see that 0 < |&| < k; continuing this substitu-
tion process also gives us p”'™* < 2k and p" ™ < 2k. We have now proved
that p* < 16 (n, p" — 1)*. The only solutions of this inequality are
p" = 2% 3% 38 5 5 or 7*. It is now easy to verify that (i)-(ivf) are the only
cases actually occurring. (Repeat the argument of the proof, with specific
values of p and ».)

Lemma 3. Let p be a prime, n > 2 an integer. If integers ¢, j, k, 1 = 0
satisfy the congruence

P+ =p"+p' (mod @ - 1)/(n,p" — 1)),

then we have 1 — j = £ (k — 1) (mod n).

Proof. This congruence is equivalent to the relation

@ = 1) |n@ + 9 —p" —p").

If some exponent ¢ is = n, then since np’ = np' ™" (" — 1) + p'™ =
np” " (mod p™ — 1), we can replace p‘ by p*™. Therefore we may assume
0=1474kl<mn.

If 4, j, k, I are all different, then inspection of Lemma 2 shows that the
present lemma holds. If one of the relations 7z = k,j = k, 7 = [,j = [ holds,
then two terms drop out and we are left with a relation (p" — 1) [n(p" — 1),

some 4 < n. % = 0 means the conclusion of the Lemma holds, so we may
take 0 < w < n. This now contradicts Lemma 1, unless p” = 2°. The rela-
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tion (2° — 1)]6(2* — 1) is impossible for 0 < u < 6. We conclude that we
may assume ¢ = k,j £ k, 1 # [, j % | in any counterexample to Lemma 3.

Therefore either ¢ = j or k = [; by symmetry we may assume that 7 = 7,
k # I, in any counterexample to Lemma 3. We thus have

2" =p"+p' (mod (" — 1)/(n, p" — 1)).

If k < 2orl < i, we replace p’“ by p**" or p* by p'*", not destroying the con-
gruence, and then divide by p°. Hence if Lemma 3 has a counterexample, we
have a relation

(*) @" - 1)|[n@" + p' - 2), 0<k<l<n.

Let s = (n, p" — 1); we have an equation t(p” — 1) = s(@* + p' — 2),
0<t<s2 —t=0 (modp*). Thereforep* < 2s. Weset2s — ¢t = p‘u,
where 0 < u < s; substituting for ¢ in the equation, we get

p*u = sp* + sp’ (mod p").

Therefore v = s (mod p*™), which implies p"™* < s. Setting s — u = p"™
we see 0 < v < s; substituting for » in the last congruence mod p", we get
s + v = 0 (mod p""), implying p*~* < 2s. We have proved that
p" < 4(n, p* — 1)). The only solutions of this inequality are p” = 3* or 2%,
and we easily see that they provide no example of (x), Q.E.D. for Lemma 3.

Proof of the theorem. Clearly, if a group N has an automorphism group with
only two orbits on N¥, then N has at most one proper characteristic subgroup
and has nonidentity elements of at most two different orders. If N is abelian,
this means that N is a p-group, either elementary or a direct product of cyclic
groups of order p®. If N is nonabelian, N may be either a p-group with & (N)
= Z(N) = N’, or N may be a p, ¢g-group for primes p and g. These four
possibilities will be studied separately.

First, let N be elementary abelian of order p". If |[N| = 2, then
| Aut (N) | = 1,80 Aut (V) has only one orbit on N*. If [N | =pandp > 2,
then Aut (N) has a subgroup A of order 4 (p — 1) having only two orbits on
N* If |[N| = p"andn > 1, choose a proper subgroup H of N, |H| = p".
Automorphisms of N fixing H may be represented by block matrices

(5 o)

where Aist X t,Bis (n — t) X t,0isat X (n — t) zero matrix, and C is
(m —t) X (n — t). Such matrices multiply by the rule

(A O)DO)_( AD 0)
B C/J\E F) \BD+CE CF)’

Let N = H X K for some subgroup K of H, and let G, G: be solvable groups of
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matrices on H and K transitive on H* and K¥, respectively. (Such groups
always exist, and are classified in [4]). Define

7-{G ?)

Then J is certainly solvable, and transitive on H* and N — H. This shows
that the group (i) of our theorem exists.

Now suppose N = Hy X Hy X -+ X Hpn, each H; cyclic of order p*>. Let
T = {aeAut (N)|ais trivial on N/®(N)}. Then easy counting arguments
show that |T| = p™, |Aut V)| = p™|GL(m, p)|. This implies that
Aut (N) has an element ¢ of order p™ — 1, by Theorem II1.7.3 of [3]. T is
transitive on x®(N) for any e N — ®(N ), so we conclude that T() is a
solvable automorphism group of N, transitive on N — ®(N) and ®(N)*. N
is case (ii) of our theorem.

We next suppose that N is nonabelian, and that two primes p and ¢ divide
|N|. TFit () is the unique proper characteristic subgroup of N (obviously
N is not nilpotent ), so let P = Fit (), an elementary abelian normal Sylow
p-subgroup. N has no element of order pg, so N is a Frobenius group. A
Sylow g-subgroup @ must be an abelian Frobenius complement of exponent g,
s0 | Q| = q by Theorem V.8.7(a) of [3]. Let A be a solvable automorphism
group of N, transitive on N — P and P¥. AN/P is transitive on P¥ and so
certainly primitive as linear group on P¥, Q = QP/P <{ AN/P, s0o P is a
direct sum of some number m of isomorphic irreducible @-modules. Since A4 is
transitive on N — P, it follows that N, (Q) is transitive on Q*. It now fol-
lows from Lemma 11.3.11 of [3] that the irreducible @-submodules of P must
have order p®; this means that |P| = p™“ ™, |[N| = ¢p™“, and the
polynomial (X? — 1)/(X — 1) is irreducible over GF (p).

Conversely, let p and ¢ be primes such that (X? — 1)/(X — 1) isirreducible
over GF (p), m a positive integer. In the field GF (p™@™), let u be a multipli-
cative generator (| ()| = p™ @ — 1), and set Ne (), |\ | = ¢. GF (™)
may be considered an m (¢ — 1)-dimensional vector space over GF (p), and
the automorphism @ : & — pz is transitive on GF (p"“)¥, If b:z — a?,
then | (b)| = m(g — 1); also, ¢, @ = Nermenw»({a)) by Lemma
I1.3.11 of [3], with (b)) n (@) = 1. Let c be the power of a given by ¢ : £ — \z;
[(¢)| = gand (b) C N ({c)). Ifb'c = cb’, then we see zb’c = 2" must equal
xch’ = 'z, s0 A = N, By hypothesis GF (p)[\] = GF (p*), sox = \**
only if (¢ — 1) |Z. We conclude that | (o) : Cy(c) | = ¢ — 1. If we denote
P = QF (p™®™), then (b, a) has the normal subgroup {(¢) = @; (b, a) is transi-
tive on P¥ and on (QP/P)*. The group I of inner automorphisms of N = QP
is transitive on 2P, any x ¢ N — P, so we conclude that (b, a)I is transitive on
N — P and P*. Therefore the group N satisfies the hypotheses of our
theorem.

There remains the case when N = P is a nonabelian p-group. Of course,
since P has a solvable automorphism group 4 with only two orbits on P¥, we

AeG,CeGy,Bany (n —t) xtmatrix}.
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must have Z(P) = ®(P) = P/, and P is special. P is nonabelian. so if
p = 2 then all elements of P — P’ must have order 4. If pisodd, on the other
hand, then the main result of [5] implies that P has exponent p. Denote
|P/P'| = p™, |P'| = p". By Theorem VI.2.3 of [3], we can find a Hall
p’-subgroup H of A and a Sylow p-subgroup @ of A such that A = HQ = QH.

Let V be either P/P’ or P’. p { | V¥|, so there is a ve V¥ such that
Q € A,. Then A = HA, must contain exactly |H|-|4,|/|H n 4,| =
|H:H,|-|A,| elements, and we see |A:4,| = |H:H,|. Since 4 is
transitive on V¥, then, so is H. We have proved that H is transitive on
(P/P")¥ and P'*; of course, by Theorem II1.3.18 of [3] we know that H is
faithful on P/P’.

We first consider the case m = 2, so that | P/P’| = p’; clearly m = 2 im-
plies that » = 1, so P is extra special. If P is the quaternion group of order
8, of course Aut (P) is solvable and has only two orbits on P¥; this is the case
(v), n = 1, of our main theorem. If P is odd and

P:(x’y’zlxp=yp=zp= 1,[x7y] =z7xz=zx?yz=zy>’

(ff fl) ¢ GL(2, p)

of order p*> — 1; such a matrix exists by Theorem II.7.3 of [3]. Then we find
that 2* = 2%, y* = 2%%, 2% = 2°* defines an automorphism « of P which is
transitive on (P/P’)* and P'*. 1If I is the inner automorphism group of P,
then (a)I is transitive on P — P’ and P’¥, so P is one of the groups of our
theorem. P is the case (vi) of our main theorem,n = 1.

We may now assume m > 2. Since H is transitive on (P/P’)*, we know
by [4] that either H is a subgroup of the group of semilinear transformations
of P/P’, or else | P/P’'| = 3* and H is one of the three specific exceptional
groups described in [4]. In particular, we know | H || 2"-5. H is also transi-
tive on P’* and | P’ | = 3", so certainly n = 1,2, or4. We shall discuss these
three possibilities, and afterward study the general case when H is a subgroup
of the group of semilinear transformations on P/P’.

1f | P/P'| = 3, H is an exceptional group of [4], and n = 2 or n = 4, denote
N = {heH|histrivial on P’*}. We see N <1 H, and H/N is transitive on
P* Byl |ZH)|=2;let Z(H) = (w). Ifx,yeP — P’ satisfy [z, y] # 1,
then (@P')” = 2°P', yP')" = y’P', 50 [z, y]" = [¢°, "] = [", 4] = [, y]' =
[z, y]; this proves that Z (H) is trivial on P/, Z(H) € N. We then see that
in the case n = 4, H/N cannot be transitive on P’ by [4], so this case does not
occur. In the case n = 2, all 5-elements of H are in N, and we see by [4]
that |H/N| < 4. Thus H/N cannot be transitive on P'*, and this case
n = 2 does not occur either.

If | P/P’| = 3*,n = 1, H an exceptional group of [4], then P is extra special.
This case does occur, and is case (vii) of the main Theorem. To see this, we

choose a matrix



698 LARRY DORNHOFF

can use the matrices given by Huppert on page 127 of [4]. Let P be extra
special of order 3° and exponent 3, with generators z, y, , v, z and relations
() = Z(P),xy = yx, 20 = vx, yu = uy, uv = vu, [x, u] = [y, v] = 2. Then
we can define automorphisms 4, B, C, D, F, G of P as follows: z* = y, y“ =2,
w=vv=u =2 =29y = u’ =u 0" =0, =2;2° = au,
¥l =y, u’ = au’ v’ = 2% = 252" = o} y® =0 uP = 2,0° =y, 2" = 2;
z" = Py, y" = ayud, u" = yu,v" = ylu, 2" = 2;2% = au,y® =} u® = x2u,
v =4 2°=2 Denote H=(4,B,C,D,F,G),I = group of inner auto-
morphisms of P. Then we see from [4] that H is solvable, transitive on
(P/P")* and P'®, [ is certainly transitive on wP’ for any w e P — P, so we
conclude that HI is transitive on P — P’ and P'¥,

Now returning to the general case, we have p™ = |P/P'| > p®, where H
is a subgroup of the group of semilinear transformations on P/P’. This
means that | H | divides m (p™ — 1), and H has a cyclic normal subgroup
(&) such that |H :(£)||m. Since H is transitive on (P/P’)¥, we see that
[ (&) | is d1v181b1e by (™ — 1)/(m,p™ — 1). H is certainly a primitive linear
group on (P/P"). Therefore, by Clifford’s Theorem, P/P’ is a direct sum of
faithful isomorphic irreducible (¢)-modules. If P/P’ is not irreducible as a
(¢)-module, then we see that | (£)| divides p* — 1, some k < m. Therefore
|H| divides m(p* — 1), and since H is transitive on (P/P’)¥ we have
(@™ — 1) |m@* — 1). By Lemma 1, this is a contradiction, except possibly
when p™ = 2°. If p™ = 2° we find that 63 divides 6 (2" — 1), k < 6; this is
also impossible. We have proved that P/P’ is in all cases an irreducible
(¢)-module.

Let A be an elgenvalue of £on P/P’. Then £ has the m distinct eigenvalues
NN, e, M s and [ (Y] = (€. Here we see GF(p)[\] = GF (™).
Followmg [2], we now choose a conjugate basis 4o, w1, ***, %n for P/P’
adapted to £, This means thatw,u1, - -+ , Um— are a basisfor P/P’ ® GF (p™)
over GF (p™), satisfying u; £ = N'u; ; and that if (¢), ¢ : & — 2, is the Galois
group of GF (p™), then uy” = U1, *++ , Um—z = Um—1, Um—a = Ug.

This implies that the elements of P/P’in P/P' ® GF (p ) are precisely the
elements > res o u;, a e GF (p™). Denote a = ,-o|a ‘u;. We see that

at = (X0 o™ )t = 0o o™ Nus = 05 (@0 = Aa,
0 £ acts on P/P’ as a multiplication by .

Let L be the Lie ring of P, L ® GF (p™) its extension to GF (p™), so that
L®GF(®") = (P/P" ® GF(")) ® (P’ ® GF(p™)). The map

[, 1:(®/P"®GF(@")) X (P/P'® GF (")) — P’ ® GF (p")
obtained by extending the commutator map is bilinear. We have
(i, wile = [uck, wigl = DNug, Nl = N, u,

so either [u;, u;] = 0 or \* 27 5 an eigenvalue of £ on P’. Of course, for any
1, 7 we have [u;, ] = —[u;, u;] (which equals [u:, u;]if p = 2).

U
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H is transitive on P’¥, so H is certainly a primitive (not necessarily faithful )
linear group on P’. Hence P’ is a direct sum of isomorphic, irreducible (not
necessarily faithful) (¢)-modules.

Uo , UrJE = N[uo, u,]; applying o*, this equation implies that [u;, wi.lé =
NP0y wiy,]; here the subseripts are taken modulo m. P is not abelian,
80 some [u, , u;] is not 0, and some [uo, u,] ¥ 0; we choose » > 0 minimal such
that [uo, u,] # 0. Thus N'™*" is an eigenvalue of £ on P’, and all eigenvalues
of £ on P’ have form N %" 0 < s < n. Since [u,, ug] % 0, we can apply
""" and see that [uo, Um-.] # O; this provesthatm — r > r,800 < r < 3m.

In any case, (\'"?")®"™ = 1, which implies that (™ — 1)/(m, p™ — 1)
divides (1 + p")(p* — 1). If p™ = 2° then this asserts that 21 divides
14+ 27)@" — 1), wherer = 1,2 0r3. Any of these imply 7| (2" — 1), so
n=3o0rn = 6;forn = 3, wehaver = lor3. If p” s 2°, let ¢ be the prime
of Lemma 1; ¢ > m, so ¢ { (m, p" — 1), and we see that ¢| (p" — 1) or
g| X+ p"). Ifg| (" — 1), then m|n; since | H | divides m (p™ — 1) and
H is transitive on P'* we see that n = m.

Now suppose that p™ = 2°and ¢| (1 + p"). Thenq| (p™ — 1), so we must
have m | 2r; but r < $m, so we see 2r = m. Corresponding to the three cases
of Lemma 1, we consider the three possibilities forp”. If p” = 2°,thenm = 12,
and we see that 1365 divides 65(2" — 1). In particular, 21| (2" — 1), so
m=6orn = 12. If p = p’ for a Mersenne prime p, then we see
that (p* — 1)/4 divides (p* + 1) (p" — 1). |H| divides 4(p* — 1) and H
is transitive on P’*¥ so (" — 1) |4(®* — 1). These two relations imply that
n=2o0rn =4,orn = 1withp = 3. The group withp =3, m =4,n =1
is unique and has been shown to be case (vii) of the theorem, so we can
assume n = 2 = rorn = 4 = m. Finally, suppose that a prime ¢ divides
p— 1, @4 (" — 1) for t < r. In particular, go £ 2r, 2r = m, and
@ 4 @ + 1), so we must have ¢o| (p" — 1). Therefore r |n, 807 = n or
n = m.

We have shown that three cases must be studied: (1) n = » = im; (2)
m=n;B)p=2,m=6,n=3,r=1

Case 1. Here, the only [u:, u;] # 0 must be [uo, Ual, [U1, Unyd), -,
[#n—1, U2s—] and their negatives [t , o], [Uns1, %], *+ , [Uzn— ) un‘_ﬂ. If ¢
were reducible on P’, then for some ¢ < n, ¢|n, we have A\*?7®*D = ¢

@™ — 1)/(@2n, p™ — 1) divides (1 + p") (p* — 1), or in other words
®@" —1)| @n,p™ — 1) (' — 1).

This relation is impossible if p” = 2°, and so must contradict Lemma 1 unless
n = 2. Whenn = 2 we have ¢{ = 1, and the relation implies p = 3. Thus,
except for the possibility p = 3, n = 2,¢ = 1, we have £ irreducible on P,
We shall show that this possibility is not really an exception. If it occurs,
then | P/P'| = 8*, | P'| = 3, and £ fixes two 1-dimensional subspaces of P’
Here, | H : (¢)| divides 4. If \ is an eigenvalue of £ on P/P’, then |(\)| =
[ (€ |; N = " is an eigenvalue of £ on P’, so N = =1, and we see | (¢) | | 20.
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We must therefore have | H | = 80, | (¢)| = 20, | H : (¢)| = 4, and £ trivial on
P’.  This forces H/{£’) to be regular on P'¥ so H/(£") is cyclic or quaternion.
KE) = —1eZ(H/E)), so H/E))/ (B/E)) is ecyclic of order 4. We
conclude that H /(£ is eyclic; this forces H to be cyclic, say H = (&). Replac-
ing £ by & , we see that since P’ is an irreducible (&)-module, P satisfies Case 1
where P’ is an irreducible (£)-module.

Returning to the general Case 1, we have seen that N'*?" is an eigenvalue of
gonP'. Letwvy,vi, -, v, be a conjugate basis for P’ adapted to £, so that
v & = APV, [uo, ua] and vy are both in the one-dimensional subspace

{ve P’ ® GF (™) |vE = N1},

so we may choose ¢ e GF (p*") such that [uo, ua] = evo. Applying o to this
equation repeatedly, we get equations

n—1

[ul ) un+l] = epvly ety [un—l ’ u2n—1] =¢ Un—1,
+1 2n—1
fun, ul = €00, [Untr, wl = € 01, *+, [Uone1, Un-a] = € n1.
Since [, Un] = —[tn, %], we see that 0 = (¢ + &)vo. Therefore

& 4+ & = 0, and € must be an element of GF (p**) with trace 0 over GF (p").
If p = 2, such elements are found in GF (p™); if p = 2, such elements are
always available outside GF (p™).

If aeGF (p"), denote {a} = D i= o'v;e P'. We can now compute the
commutator [, 8] of any two elements & = D120 o ui, B = D2t g% u; of
P/P".

[a Bl = Xim' Ximt o6 [ws, wj
= Zn_l ptlspnﬂ (i, Unyi] + Zn_l Nﬂﬁp’[uﬁn » Ug)
= Z?:Ol ptﬁpnh - pnhﬁp')[un Unti]
= I (@ — o) = (8™ — o”B)e} € P

Let 6: z — 2" be the Galois automorphism of GF (p*") over GF (p"). We
have shown that [&, 8] = { (a8’ — &’B)e}.

Assume now, here in Case 1, that p is odd, so that P has exponent p. Let
T, X2, **, Ton generate P, 2z, -+, 2, generate P’. We can then choose
ai e GF (™), Bi ¢ GF (p") such that z; = 3 ifo al’u;, 2 = Dora B2
We see that {e} is a basis of GF (p™), {8:} a basis of GF (p™) as additive vector
spaces over GF (p). Every element of P has a unique expression n'xs? -
w2 where all 0 < 4,7, < p — 1. We can multiply two such ex-
pressions if we can identify xy 2:,1 < k. But a1 = @[z, 2], and [z, 2]
= [a, 3] = { (ax &) — azap)} is well defined in P’, using the basis {8;}. This
shows that the isomorphism class of P is given by our knowledge of com-
mutators, and for given ¢, p, n there is at most one P.

For any odd p, ¢, and n > 1, we now claim that P does exist and have such
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an automorphism group. Choose € ¢ GF (p™*) with e + " = 0, let 6 : 2 — 2",
and define P by

P ={(a,{)eGF (™) X GF®™)| (&, £) B, 1)
= (a+B,¢+ 1+ 2f — dB)e)).

One easily verifies that P is a group of exponent p, and satisfies

[(a) {)7 (B: 77)] = (0’ (aﬁe - aeﬁ)e)'
Choose \ ¢ GF (p™) such that | (\) | = p™ — 1. Then N’ = N'*7" ¢ GF (p™)

has order p” — 1. Wedefiney : P —> Pby (o, {)¥ = (a, N7%). ¢isan
automorphism of P, because

(@B = (@a+8,¢+n+ 3@ — Be)y
(e + M, N + Ny + I (a8 — oB)e)
(e, N0 (N8, NHo0) = { (e, E W (B, n)¥}-

It is clear that ¥ is transitive on (P/P’)¥ and P’¥.
We see that

Ce((e, £)) = (B, m)|af’ — o8 = 0} = {(8 n)|af ¢ GF ")},

which implies that | Cr((e, §))| = p™ for any (a, {) e P — P’. Therefore
the group I of inner automorphisms of P is transitive on each coset
(o, )P # P'. We conclude that I{y) is a solvable group of automorphisms
of P, transitive on P — P’ and P'*,

We finally remark that P does not depend on the choice of ¢. For if
€1, & are two nonzero solutions of the equation X** + X = 0in GF (p**), then
we must have &, = ye;, where vy ¢ GF (p”) and v’ = v. Let

Pi={(a, )| (@ ¢)Bn) = (@+B,¢ + 0+ 38 — a'Bes)},

Po={(a, ) (@ &)Byn) = (@ + B, ¢ + 1+ 3B — oB)ver)}.

We may choose 7 e GF (p™) such that ™ = 4. If we define ¢ : P, — P,
by (e, &)W = (7, {), it is easy to verify that ¥ is an isomorphism. The group
P is the group C (p, n), case (vi) of our theorem.

We still must study p = 2in Case 1. Here we know that £ is irreducible on
P’, and all elements of P — P’ have order 4. If ug, %1, -+, Usa— is our con-
jugate basis for P/P’ adapted to &, we see that [uo, ua]” = [Un, %] = [uo , Un].

I

Therefore vo = [ty , Un], ¥1 = [Us, Unyal, *** 5 Vne1 = [Un—1, Usn—a] i8 & conjugate
basis for P’ adapted to £ These bases satisfy ui ¢ = N uq, v;& = A%y,
We again denote & = D ime a” uie P/P’, {y} = D i=d¥*v;eP’. Our

calculation of [a, ] shows that [a, B] = {8’ + o’8}. This relation is not
sufficient to provide defining relations for P, since we need to know z* for any
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zeP — P'. In P, we have the relations (z£)’ = (2*)tand (zy)’ = 2%z, y.
Let ¢ : P/P' — P’ be the map ¢ : aP’ — a’. ¢ satisfies the relations
(ap)t = (at)p and (@ + B)e = ap + Pe + [a, B]. Following [2], we shall
show these relations completely determine . Forify : P/P’ — P’ ® GF (2*")
also satisfies these relations, we see by subtraction that ¢ — ¥ is a £&-homomor-
phism. By irreducibility of P/P’, this implies that either (¢ — ¢)(P/P’)
is ¢-isomorphic to P/P’, or else ¢ = ¢. ¢-isomorphism is impossible since the
eigenvalues X 4" of £ on P’ ® GF (2™") are different from the eigenvalues
A* of £ on P/P’. Therefore ¢ is unique.

We now claim that ¢ is the map ap = {o'*’}. Consider any v ¢ GF (2"),
and choose a, 8 ¢ GF (2°") with o8’ + o8 = v (this must be possible, since
every element in P’ is a commutator). Then

{7}t = (3 BlE = [a&, Bl = Do, M]
= {(a)(A8) + (@)’ (M)} = (N},
For any a, 8 € GF (2*), we now see
@)t = {a™E = (NP = ()™} = (a)e = (ab)e.
Also
@+ B = (@+8)¢ = {(a+ B} = {ad’ + of’ + '8 + 56’}
= {a™} + {87} + {af’ + B} = ap + Be + [a, Al.

We have shown that for any P’ = & ¢ P/P’, we have z* = {o'*} ¢ P’. There-
fore P is completely determined, and for any n, p = 2, Case 1 provides at most
one group P.

We do obtain such a group P. For any n > 1, choose u ¢ GF (2°*) of order
2" 4+ 1, and define

P=1{(¢)eGFQ™) X GF2")| (& ¢) (B, )
= (@+8,¢ + 1+ afu 4+ ")}
Let6:z—2",sop+u" = u+u’ = ceGF(2"). Ttiseasy to verify that P
is a group and satisfies the relations
(@) = (0,ad’), [l ), B, )] = 0, (a8 + o'B)e).

Choose \ ¢ GF (2™) such that | (A\)| = 2*" — 1; then \'*’ satisfies | (\'*) | =
2" — 1. Ifwedefiney : P—Pby (o, {)¥ = (A, N¢), it is easy to verify
that ¢ is an automorphism of P, transitive on (P/P’)¥ and P’¥. Just as in
the case p odd, the group I of inner automorphisms of P is transitive on each
coset (a, £)P’ % P'. 'Therefore ($)I is a solvable group of automorphisms of
P, transitive on P — P’ and P'¥; P is the group of case (v) in the main theorem.

Case 2. 1In this case, m = n > 2, and the integer r is unknown except for
the relation 0 < r < 3n. Again we know that | H | divides n(p" — 1),
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| H: ()| divides n, and (¢§) <| H, where (p" — 1)/(n, p" — 1) divides | (£)].
H is transitive on P'*, so is certainly a primitive linear group, and P’ is a
direct sum of isomorphic irreducible {£)-modules. Let

K = {h e H | his trivial on P’}.

|P#*| = p" — 1,50 (" — 1) || H/K |;if P’ were not (£)-irreducible, we would
obtain a relation | H/K | | n(p' — 1), ¢ < n. This contradicts Lemma 1 if
p" # 2° and is also impossible when p” = 2%, We conclude that throughout
Case 2, P’ is an irreducible (¢£)-module.

r is the smallest positive integer such that [uo, u.] ¢ 0. We have relations

[V = 1], wiE=Nu, [uo,wlt =N, ul.

If we have 2r = n, then \'**" ¢ GF (2") has only r distinct algebraic conjugates.
But P’ is an irreducible (£)-module and £ must have 2r = n distinet conjugate
eigenvalues on P’, so the case 2r = n cannot occur, and 0 < r < in.

For any ¢, j, suppose that [u:, u;j] # 0. Then

= )\Ptp

[ui ) uj] [ui ’ ui]’

so " must be one of the eigenvalues \*"“**” of £ on P’. We therefore
have a congruence

p'+p =p'A+9p) (mod " — 1)/(n,p" — 1)).

Lemma 3 now implies that without exception, ¢ — j = =r (mod n). The
only [u;, u;] which are not 0 are [uo , Un], [Ur, Urstl, « * * 5 [Un—re1, Un—], [Un-r , Ud],
[Un—ri1, W], ***, [Un-1, Ura] and their negatives. We denote [uy, u] = v,
[wa, Urga] = 01, o« [ne1, Ur—a] = Vax. {00, 01, +:+, Va} must be a conju-
gate basis for P’ adapted to £, satisfying v; £ = \” “**7p;. The elements of
P’ are denoted, as before, by {y} = 2. i=¢ ¥* v; ;let § denote the automorphism
0:z— a” of GF (p").
We can now compute [&, 8], for any pair of elements

a = ZI’:J a"'u,-, E = Z?:Ol B”'u,-
of P/P".
- — n=1 n—1 pt pi
[@, B] = 2 im0 2_i=0 o B” [u:, u]
- :,:g apini+rvi _ ;,-—01 a,,i"'rﬁpivj
= Zf:ol (aﬂo — aaﬁ)?’.v; = {aﬂo - aoﬁ}.

Assume first that p is odd. Then P is completely determined by the given
commutator relation. We know that H is acting on P/P’ as a subgroup of the
group of semilinear transformations on P/P’. For any & ¢ P/P’, we know
that at¢ = (A\a)7, so £ acts on P/P’ as a multiplication by \. P/P’ is an ir-
reducible (§)-module. We see, as in the proof of Theorem II.3.11 of [3], that
if h e H, then there exist 7 ¢ GF (p") and o ¢ Aut (GF (p")) satisfying ah =
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(ra’)",alla e P/P’. We can now compute the action of H on P’. For any
element {8’ — o8} ¢ P’ and such % ¢ H, we have

{af’ — o'Blh = la, Blh = [ah, BR] = [(ra"), (=67)7]
= {() (@) — @) (")} = (71 (a8' — o'B)7).

This shows that for any {y} ¢ P’ and any h ¢ H, {y}k has form {r'*'y°},
some 7 ¢ GF (p"), some o ¢ Aut (GF (p")). Define

K = {'Y ¢ GF(pn) l 7(11"—1)/2 — 1}.

Then 7 ¢ GF (p") implies 7*?" ¢ K; therefore, v ¢ K implies 7'y ¢ K. This
means H cannot be transitive on P’¥; we get no group satisfying our main
theorem in Case 2 when p is odd.

Finally, assume p = 2. The above methods again show that we get no
group unless N'**" is a primitive (2" — 1)-st root of unity. This occurs if
and only if N is a primitive (2° — 1)-st root of unity, and the automorphism
6 : x — 2” has odd order (see [2, p. 82]). We know [&, f] = {a8’ + '8}, and
just asin Case 1 we obtain the square mapping. We find thatif xP’' = aeP/P’,
then 2* = {a'*’} ¢ P'.

We have obtained the Suzuki 2-groups P = A (n,60) of [2]. If|(\)|=2"—1
and ¢ is the automorphism ¥ : (a, ) = (o, N'V%) of [2], then ¢ is clearly
transitive on (P/P’)* and P'*. Let

T = {aeAut (P) | ais trivial on P’ and P/P'}.

Then the p-group 7 is transitive on every coset P’ £ P’. To see this, choose
any x e P — P’, z ¢ P’, and let

P={(@&=2x,%, , 2.

Then also P = (&1 = 22, 3o = X2, «** , &n = &n). The sets {x;} and {Z,} satisfy
the same defining relations, so there exists a ¢ T defined by z; = &;, allz. We
conclude that the solvable automorphism group T{y) is transitive on P — P’
and P'* so P = A(n, 6) is case (iv) of our theorem.

Case 3. We still have this possibility | P/P’ | = 2°, | P"| = 2°, [uo, ] 5 O.
| H:{¢) | divides 6, and P’ is a sum of isomorphic faithful irreducible (£)-modules.
If they were one-dimensional, £ would be trivial on P’, an impossibility ; there-
fore £ is irreducible on P’. Let \ be an eigenvalue of £ on P/P’. Then A\’ is
an eigenvalue of £ on P/, so (\*)" = A = 1, and irreducibility of £ on P’ shows
that indeed |(¢)| = |(\)| = 21. The eigenvalues of £ on P’ must be )},
8?2 =\ and (\*)* = \®. Using the fact u; £ = \* u,, we see that the only
[ui, u;] > 0 are [uo, wil, [ur, ua], [uz, us], [us, ud], [us, us] and [uo, us] (here
[wi, ui] = [u;, ui). .

Let {vo, v1, 12} be a conjugate basis for P’ adapted to £, so thatv; £ = (\*)*v;,
and choose ¢ ¢ GF (2°) such that [uo, w1] = evy. Applying the automorphism
a1z — z° of GF (2°) repeatedly, we find that [u1, us] = €01, [us, us] = €'vs,
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[us, us] = €%, [us, us) = €%, [us, u] = €. We can now compute
[@, B, for any &, B ¢ P/P"'.

& B = [Dfe0 0®ui, i 62us]
= (of’c + « Be + o®8"® + o8 vy
+ (a 6482 + 6282 + 16682 16 + 32616 16 )v
+ (%" + o'f' + o'B'e* + a8 .

If we let 9 denote the automorphism 6 : z — a° of GF (2°), and {v} the element
> 07" vi of P’, then this means

[a, Bl = { (8" + o’8)e + (af” + o'8)"¢'}.
Just as in Case 1, we can show that the square mapping ¢ : P/P’ — P’ is the
unique mapping satisfying (@)t = (at)e and (& + B)e = ¢ + e + [a, B],
all @, B e P/P'. 1f we define ap = o’c + o”¢’, and use the facts at = (\a)”,
(v}t = (\%}, and (\*)’ = \°, we find that 2P’ = a implies &’ = {o’c + o™¢’}.
The group P is now completely determined by knowledge of the square map;
for each ¢ there is at most one group P. P does exist; if we define

Pe) = {(a, §) eGF (2°) X GF (2) | (&, 8) (8, )
= (a+ B, ¢ + 1+ ofe + BY)},

we see that P (¢) is a group and satisfies the relations
(ay §_)2 (07 ase + a80€0), [(ay g‘)’ (B, ’7)]
= (0, (o8’ + a'B)e + (o + 'B)').

If & =1, then we can choose a ¢ GF (2°) with o® = ¢*. We then have
e + % = & + ¥ = 0 (since € ¢ GF(2®)). Thus some elements of
P(e) — P(e) have order 2, eliminating this case €& = 1. Also, suppose
0 = v ¢ GF(2°). We can then choose 7 ¢ GF (2°) such that 7* = v, and see
that the mapy : P(ey) — P(e) given by (o, { )Y = (7, ¢) is an isomorphism.
Therefore the remaining ¢ ¢ GF (2°) such that € = 1 can be replaced by some
&y, | {ev)| = 63. We may assume henceforth that | (e) | =

When | {¢) | = 63, define the mappings

Y:P(e)—>P(e) and ®: P(e) —» P(e)

by (a, ¢ = (o, \%), (a, )@ = (o, ¢*), where ) is any element of GF (2°)
with | (\)| = 21. We find that

{(, £) B )Y = { (o EWH (B, n)Y}
and

{ (Ot, 3‘)(,3, ﬂ)}@ = { (O(, g')@}{ (B} ?7)‘1’},
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so ¢ and ® are automorphisms, obviously inducing a subgroup of the group of
semilinear transformations on P/P’. (Abbreviate P = P(¢).) On P/P/,
the orbits of the map o — A induced by ¢ are

{1,88,86’.”}, {8;84;£7a"'} and {82’85’88""}-

Since the map a — ea* induced by ® sends 1 — ¢, ¢ — ¢, we see that (B, ¢) is
transitive on (P/P’)¥. (y) is in fact transitive on P’¥,
(1,0) e P — P/, and

Cr((1,0)) ={B,n)eP| B+ e+ B+ 8) =0}
={(B, 1) eP| B+ 8)eeGF ).

By looking at GF(2%), there are 2° possibilities for B. Therefore

[Ce((1, 0))]| = 2°. (@, ¢) is transitive on (P/P’)¥, so for any o = 0,

|Cp((a, ¢)) | = 2°. This means that the inner automorphism group I of P is

indeed transitive on any (a, { )P’ = P’. We conclude that (®, ¢)I is transitive

on P — P’ and P’*; P = P(e) is the group of case (viii) in our theorem.
This completes the proof of our main Theorem.

Remark. We shall finally show that the group B (n) in case (v) of our main
theorem is isomorphic to certain of the Suzuki 2-groups in [2]. We refer to
the groups B(n, 1, &), for certain ¢, in [2]. Choose an element x ¢ GF (2**)
such that | (x)| = 2" — 1, and set A = "™, u = ¥, Then \ ¢ GF (2").
The automorphism 8 : 2 — 2" of GF (2™") satisfies u’ = p ™", sou + u " ¢ GF (2");
lete =p+p". Theneu = u* 4+ 1,50 X® + eX 4+ 1 = 0 is the irreducible
polynomial for u over GF (2"). If & were equal to 7 + 7 for some 7 ¢ GF (2"),
we would have re = 7° + 1, contradicting the irreducibility of the polynomial.
Therefore ¢ = r 4+ 7, any , and B(n, 1, €) exists.

It is shown in [2] that if we find linear transformations

c:GF(2") > GF(2") and ,:GF(2") X GF(2") — GF (2") X GF (2")
satisfying the condition (up)® = u®, then P = B(n, 1, ¢) will have an auto-
morphism £ inducing p on P/P’ and ¢ on P’. Here ® is the square mapping
and satisfies (a, 8)® = o + eaf + F. Wedefineo by o : ¢ — \%.

To define p, we identify (o, B8) e GF (2") X GF (2") with a + Bu ¢ GF (2™")
and define p : (o, 8) — Mu(e, 8). We see that

(e, 8)p = Mu(a + Bu) = hap + N3’
= Map + M1 + eu) = M8+ (Aa + eN8)u.
Therefore (o, 8)p = (A8, Ao + eN3). We find that
(@, 8)0)® = N'6* + eN8 (A + eN8) + Na® + N6
=N+ eaf + ) = ((, 8)®)o.

Therefore the automorphism £ inducing o on P/P’ and ¢ on P’ exists. Since
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[Ow)| = 2" — 1and |(\D)| = 2" — 1, ¢ is transitive on (P/P’)* and P'*.
Suppose now that (a, 8, ¢) e P — P’. Then (v, 8, 1) € Cp((a, B, ¢)) if and
only if ay + ead + 86 = va + eyB + 88, which holds if and only if ad = By.
Since a # 0 or 8 5 0, this holds if and only if for some 7 ¢ GF (2"), v = ra,
8 = 8. Therefore | Cr((a, B,¢)) | = 2*, which forces the inner automorphism
group I of P to be transitive on (e, 3, {)P’.

We conclude that the solvable group ($)I is transitive on P — P’ and P’¥,
This forces B(n, 1, ¢) to be one of the groups of our main Theorem; at least
for n #= 3 the only possibility is the group B (n) in case (v), so B(n, 1, &) =
B(n).
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