
ON IMPRIMITIVE SOLVABLE RANK 3 PERMUTATION GROUPS

BY

LARRY DORmOFF
We remind the reader that a permutation group G transitive on a set

is said to be of rank m, if the subgroup G fixing a e 2 has m orbits on 2. Thus,
rank 2 groups are doubly transitive groups. D.A. Foulser and the present
author have independently classified primitive solvable rank 3 groups (Foul-
ser’s paper has appeared in the Transactions of the American Mathematical
Society). Among finite solvable rank 3 groups, many imprimitive groups
occur. This paper is a classification of those imprimitive solvable rank 3 per-
mutation groups G with a regular normal subgroup N.

If G is such a permutation group on a set 2 and a 2, then we have GN G,
G n N 1. By Theorem 11.2 of [6], G is then an automorphism group of
N acting with only two orbits on N* N {1}. Conversely, if N is any
group with a solvable automorphism group A having only two orbits on N,
then the semidirect product G AN is a solvable rank 3 permutation group
with regular normal subgroup N; G will be imprimitive if and only if A fixes
some proper subgroup of N. Thus our problem is to classify those groups N
with a solvable automorphism group having only two orbits on N (such an
N is clearly solvable). Our main theorem is the following.

THEOREM. Let N be a finite group, A a solvable automorphism group of N
acting with only two orbits on N N 1 }. Then we have one of the following"

(i) N is an elementary abelian p-group for some prime p.
(ii) For some prime p, N is a direct product of cyclic groups of order p.
(iii) For primes p and q, the polynomial (Xq 1 )/(X 1 is irreducible

over GF (p ), and N is a Frobenius group of order qp,,(q-l) (m an integer). Here N
has an elementary abelian Frobenius kernel of order p’(q-).

(iv) For some integer n > 2 which is not a power of 2, and some automor-
phism 0 # 1 of GF (2n) of odd order,
N A(n,O)

{(a,)GF(2’) X GF(2)l(a,i’)(f,7) (a + f, + +
Thus N 2’.

(v) For some integer n >- 1,
N B(n)

(a, ’) eGF(2) X GF(2") (a, )(,
(a + , + + a’v + af-)},
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where u GF (22n) has order 2" + 1. Here IN] 28", and N does not depend
on .

(vi) For some odd prime p and integer n

_
1, choose e GF (p’) such that

e + e" O. Then

N C(p, n)

{r(a, )eGF(p’) X GF(p’)I (a, )(, )

(. + , . +, + 1/2 (. ,))}.

Here N p’, and N does not depend on .
(vii) N is an extra special 3-group of order 3 and exponent 3.
(ii) N P (e), where P () 2, is a multiplicative generator in

GF (2 ), and

P(e) {(a, )eGF(2) X GF(2)] (a, )(, )

Furthermore, all these groups except N 2 have such solvable automorphism
groups A; in case (i), one orbit of A can be H, any proper subgroup H of N.

We have thus determined the subdegrees (lengths of orbits of G,) in each
solvable imprimitive ra 3 permutation group G with regular normal sub-
group N. If N is elementary abelian, IN[ p, then all possibilities p 1
p p for 0 < n occur as subdegrees. If N is not elementary abelian,
then N has an obvious unique characteristic proper subgroup K, and the sub-
degrees are K 1, ]N K.
We remark that the groups (iv) and (v) will be identified as among the

Suzuki 2-groups of G. Higman [2]. The proof of our Theorem uses the
methods of [2] quite heavily, and will begin after three number-theoretic
Lemmas.

LEMMA 1. Let p be a prime, n i an integer. Then one of thefollowing holds.
(i) There exists a prime q, q (p 1), q (p 1) for any < n.

(ii) n 2andp 2 l is a Mersenne prime.
(iii) p 2, n 6.

Proof. See[l].

LEMMX 2. Let p be a prime, n 4 an integer. Suppose that integers e,
ca, e a a aa exist, satisfying e 1 and n a a a O, such that
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Then we have one of the
(i) (5’- 1) 4(5
(ii) (3 1

(iiia) (3’-1
(iiib) (3’- 1
(iva) (2 1
(ivb) (2 1
(ivc) (2 1
(ivd) (2 1
(ive) (2 1
(ivf) (2-1

8
)4
)4
)6
)6
)6
)6
)6
)6

following:

(3 "- 3’ -t- 3 + 1).
(3 + 3 -- 3 -- 1 ).
(38- 3*-l-3- 1).
(2 2’ -- 2 -+- 1).
(25- 28- 2-- 1).
(25- 28- 2*-b 1).
(24-{-28- 2-- 1).
(2’-28- 2*-[- 1).
(2’ -l- 2 + 2 1).

Proof. Denote/c (n, p 1). Then. we have an equation

(p" 1 k (pa’ -t- e paS + e8 pa8

_
e4)

for some integer 0 < < k. Therefore -b e4 k 0 (mod paS), which implies
p < 2k. Now set -b e4 k ptl, where we see 0 < tll < k; substituting
into the equation, we get

-pt k (pl + e p* + e8 pa) (mod p").

This implies tl -t- e8 k 0 (mod pa,-8), and therefore p’*-* < 2k. We now
set t - e8 k p*-st,, and see that .0 < t < k; continuing this substitu-
tion process also gives us pl-a* < 2k and p.-al 2k. We have now proved
that p" < 16 (n, p" 1)’. The only solutions of this inequality are
pn 26, 3’, 3s, 5’, 5 or 7’. It is now easy to verify that (i)-(ivf) are the only
cases actually occurring. (Repeat the argument of the proof, with specific
values of p and n.

LEMMA 3. Let p be a prime, n > 2 an integer. If integers i, j, k, >- 0
satisfy the congruence

p-i-p-- p*Wp* (mod (p’- 1)/(n,p’- 1)),

then we have i j .4-(k l) (mod n).

Proof. This congruence is equivalent to the relation

(p" 1)In(p’ -t- p-- p P*).
If some exponent is -> n, then since np* np*-" (p" 1) + pt-" =-
np-’ (mod p" 1), we can replace p* by p*-’. Therefore we may assume
0

_
i,j, k, < n.

If i, j, k, are all different, then inspection of Lemma 2 shows that the
oresent lemma holds. If one of the relations i k, j k, i l, j holds,
the-1 two terms drop out and we are left with a relation (p" 1 n (p 1 ),
some u < n. u 0 means the conclusion of the Lemma holds, so we may
take 0 < u < n. This now contradicts Lemma 1, unless p" 26. The rela-



IMPRIMITIYE SOLYABLE RANK 3 PERMUTATION GROUPS

tion (2 1) 6 (2" 1) is impossible for 0 < u < 6. We conclude that we
may assume i k, j k, i l, j in any counterexample to Lemma 3.

Therefore either i j or k l; by symmetry we may assume that i j,
]c l, in any counterexample to Lemma 3. We thus have

2p’----p--p (mod (p- 1)/(n,p- 1)).

If k < i or < i, we replace p by p+" or p by p+, not destroying the con-
gruence, nd then divide by p. Hence if Lemm 3 hs counterexmple, we
hve relation

(,) (p" 1)In(p - p-- 2), 0 < k < < n.

Lets (n,p"- 1) we have an equation (p" 1) s(p -p- 2),
0 t <s, 2s-t---0 (modp). Thereforep <2s. We set2s-t =pu,
where 0 u s; substituting for in the equation, we get

pu sp - sp (rood p’).

Therefore u s (mod p-), which implies p- s. Setting s u p-v
we see 0 v s; substituting for u in the last congruence mod p, we get
s -t- v --- 0 (mod p’-), implying p’- < 2s. We have proved that
p" 4 (n, p" 1). The only solutions of this inequality are p" 3 or 2,
and we easily see that they provide no example of (,), Q.E.D. for Lemma 3.

Proof of the theorem. Clearly, if a group N has an automorphism group with
only two orbits on N, then N has at most one proper characteristic subgroup
and has nonidentity elements of at most two different orders. If N is abelian,
this means that N is a p-group, either elementary or a direct product of cyclic
groups of order p. If N is nonabelian, N may be either a p-group with (N)

Z (N) N, or N may be a p, q-group for primes p and q. These four
possibilities will be studied separately.

First, let N be elementary abelian of order p’. If NI 2, then
Aut (N) 1, so Aut (N) has only one orbit on N. If N P and p > 2,
then Aut (N) has a subgroup A of order 1/2 (p 1 having only two orbits on
N$. If IN[ p and n > 1, choose a proper subgroup H of N, HI pt.
Automorphisms of N fixing H may be represented by block matrices

whereAistX t, Bis (n- t) X t, 0isat X (n- t)eromatrix, andCis
(n t) X (n t). Such matrices multiply by the rule

Let N H X K for some subgroup K of H, and let G, G be solvable groups of



898 LARRY DORNHOFF

matrices on H and K transitive on H and K, respectively.
always exist, and are classified in [4]). Define

(Such groups

AeG1,CeG,Bany (n- t) X tmatrixt.
Then J is certainly solvable, and transitive on H and N H. This shows
that the group (i) of our theorem exists.
Now suppose N H1 X H X XHm, each H cyclic of order p. Let

T {a e Aut (N) la is trivial on N/((N)}; Then easy counting arguments
show that ITI pm, Aut (Y)! pmlGL(m, P)I. This implies that
Aut (N) has an element of order p 1, by Theorem II.7.3 of [3]. T is
transitive on x((N) for any x e N (I)(N), so we conclude that
solvable automorphism group of N, transitive on N (N) and ( (N). N
is case (ii) of our theorem.
We next suppose that N is nonabelian, and that two primes p and q divide

IN I. Fit (N) is the unique proper characteristic subgroup of N (obviously
N is not nilpotent), so let P Fit (N), an elementary abelian normal Sylow
p-subgroup. N has no element of order pq, so N is a Frobenius group. A
Sylow q-subgroup Q must be an abelian Frobenius complement of exponent q,
so Q[ q by Theorem V.8.7 (a) of [3]. Let A be a solvable automorphism
group of N, transitive on N P and P. AN/P is transitive on P and so
certainly primitive as linear group on P. Q QP/P
direct sum of some number m of isomorphic irreducible Q-modules. Since A is
transitive on N P, it follows that NA (Q) is transitive on Q. It now fol-
lows from Lemma II.3.11 of [3] that the irreducible Q-submodules of P must
have order pq-; this means that PI pro(q-l), NI qp(q-1), and the
polynomial (Xq 1 )/(X 1 is irreducible over GF (p).

Conversely, let p and q be primes such that (Xq 1 )/(X 1 is irreducible
over GF (p), m a positive integer. In the field GF (pro(q--i)), let be a multipli-
cative generator ([ (t) P(-I) 1), and set
may be considered an m (q 1 )-dimensional vector space over GF (p), and
the automorphism a" x tx is transitive on GF (p(q-)). If b" x ---. x’,
then (b}l m(q 1); also, (b, a} Nz.(m(_),)((a}) by Lemma
II.3.11 of [3], with (b) a (a} 1. Let c be the power of a given by. c" x --* hx;
(c} q .n.d (b}

___
N ((.c}). If bc cb, then we see xbc ),x must equa.1

xcb ,*x*, so ), *. By hypothesis GF (p )[] GF (p- ), so
only if (q 1) i. We conclude that (b} C( (c) q 1. If we denote
P GF (p(q-)), then (b, a} has the normal subgroup (c} Q; (b, a} is transi-
tive onP and on (QP/P). The group I of inner automorphisms of N QP
is transitive on xP, any x e N P, so we conclude that (b, a}I is transitive on
N P and P. Therefore the group N satisfies the hypotheses of our
theorem.

There remains the case when N P is a nonabelian p-group. Of course,
since P has a solvable automorphism group A with only two orbits on P, we
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must have Z (P) (P) P’, and P is special. P is nonabelian, so if
p 2 then all elements of P P’ must have order 4. If p is odd, o the other
hand, then the main result of [5] implies that P has exponent p. Denote
p/p, pro, p, p,. By Theorem VI.2.3 of [3], we can find a Hall

p’-subgroup H of A and a Sylow p-subgroup Q of A such that A HQ QH.
Let V be either PIP’ or P’. P VI, so there is a veVsuchthat

Q

_
A,,. Then A HA,, must contain exactly HI.IA,, I/IH n A,,

H’H,,I’IA,,I elements, and we see A’A,,I H’H,,I. Since A is
transitive on V, then, so is H. We have proved that H is transitive on
(P/P’) and P’; of course, by Theorem III.3.18 of [3] we know that H is
faithful on PIP’.
We first consider the case m 2, so that P/P’I p; clearly m 2 im-

plies that n 1, so P is extra special. If P is the quaternion group of order
8, of course Aut (P) is solvable and has only two orbits on P; this is the case
(v), n 1, of our main theorem. If P is odd and

P (x,y, zlx’= y z 1,[x,y] =z, xz=zx, yz =zy},

choose a matrix

of order p 1; such a matrix exists by Theorem II.7.3 of [3]. Then we find
that x xayb, y" xCy, z z- defines an automorphism a of P which is
transitive on (P/P’) and P’. If I is the inner automorphism group of P,
then (a}I is transitive on P P’ and P’, so P is one of the groups of our
theorem. P is the case (vi) of our main theorem, n 1.
We may now assume m > 2. Since H is transitive on (P/P’), we know

by [4] that either H is a subgroup of the group of semilinear transformations
of PIP’, or else P/P’ 34 and H is one of the three specific exceptional
groups described in [4]. In particular, we know HII 27. 5. H is also transi-
tive on P’a and P’I 3, so certainly n 1, 2, or 4. We shall discuss these
three possibilities, and afterward study the general case when H is a subgroup
of the group of semilinear transformations on PIP’.

If PIP’ 34, H is an exceptional group of [4], and n 2 or n 4, denote
N {h e H Ih is trivial on P’}. We see N <:1 H, and H/N is transitive on
P’. By [4], Z (H) 2;let Z (g) (w}. If x, y e P P’ satisfy [x, y] 1,
then (xP’)’ xP’, (yP’)" yP’, so [x, y] Ix, y] [x, y] [x, y]4
[x, y]; this proves that Z (H) is trivial on P’, Z (H)

_
N. We then see that

in the case n 4, H/N cannot be transitive on P’ by [4], so this case does not
occur. In the case n 2, all 5-elements of H are in N, and we see by [4]
that ]H/NI -< 4. Thus H/N cannot be transitive on P’, and this case
n 2 does not occur either.

If P/P’ 34, n 1, H an exceptional group of [4], then P is extra special.
This case does occur, and is case (vii) of the main Theorem. To see this, we
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can use the matrices given by Huppert on page 127 of [4]. Let P be extra
special of order 35 and exponent 3, with generators x, y, u, v, z and relations
(z) Z (P ), xy yx, x vx, yu uy, uv vu, [x, u] [y, v] z. Then
we can define automorphisms A, B, C, D, F, G of P as follows" xa y, y x,

z x y u v z xvu" v, v" u, z; x, y, u, v z; xu,
yV yv, uc xu,vc y,zv z; xz u,yz) v,uz xvz y,zD z;
x, xyuv, y x v u

, v. z xa yOy u yu, y u, z; xu, v, xu,
v y, z z. Denote H (A, B, C, D, F, G), I group of inner auto-
morphisms of P. Then we see from [4] that H is solvable, transitive on
(P/P’) and P’. I is certainly transitive on wP’ for any w P P’, so we
conclude that HI is transitive on P P and P.
Now returning to the general case, we have p P/P’] >. p, where H

is a subgroup of the group of semilinear transformations on PIP’. This
means that H] divides m(p 1), and H has a cyclic normal subgroup
() such that H" ()1 Im. Since H is transitive on (P/P’), we see that
I()1 is divisible by (p 1)/(m, p 1). H is certainly a primitive linear
group on (PIP’). Therefore, by Clifford’s Theorem, P/P is a direct sum of
faithful isomorphic irreducible ()-modules. If P/P is not irreducible as
()-module, then we see that I()1 divides p 1, some k < m. Therefore
HI divides m(p 1), and since H is transitive on (P/P’) we have
(pro 1) m (p 1). By Lemma 1, this is a contradiction, except possibly
when p 2. If p 2, we find that 63 divides 6 (2 1), k < 6; this is
also impossible. We have proved that PIP’ is in all cases an irreducible
()-module.

Let h be an eigenvalue of on P/P’. Then has the m distinct eigenvalues
X, , ..., X and I(h) I()l. Here we see GF(p)[),] GF(p"*).
Following [2], we now choose a conjugate basis u0, u, ..., u_ for
adapted to . This means that u0 u, ..., u_ are a basis for PIP’ @ GF (p"’)
over GF (p’), satisfying u u, and that if (a), a" x -. x, is the Galois
group of GF (p"), then u0" u, u,_. u_,

_
uo.

This implies_that, the elementsf PIP’ in PIP’ (R)x.,_GF(p),._ are precisely the
elements _,.-o a u, a GF (p _. Denote a z.,,-0! a m. We see that

so acts on PIP’ as a multiplication by X.
Let L be the Lie ring of P, L @ GF(p) its extension to GF(p), so that

L (R) GF (p) (PIP’ (R) GF (p)) (P’ (R) GF (p")). The map

]" (PIP’ @ GF(p)) X (PIP’ (R) GF(p)) ---. P’ @ GF(p)

obtained by extending the commutator map is bilinear. We have

[u, u.] [u , u] [x’u, xu] x’+[u, u],

so either [u, u.] 0 or h+i is an eigenvalue of on P’. Of course, for any
i, j we have [u, m] -[u, u.] (which equals [m, u.] if p 2).
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H is transitive on P’, so H is certainly a primitive (not necessarily faithful)
linear group on PP. Hence PP is a direct sum of isomorphic, irreducible (not
necessarily faithful) -modules.

.[u0, u] X+[uo u]; applying , this equation implies that [u, u+]
’a+[u, u+]; here the subscripts are taken modulo m. P is not abelian,
so some [u, u] is not 0, and some [u0, u] 0; we choose r > 0 minimal such
that [u0, u] 0. Thus X+ is an eigenvalue of on PP, and all eigenvalues
of on P’ have form k’+, 0 s < n. Since [u, u0] 0, we can apply
a and see that [u0, u] 0; this proves that m r r, so 0 < r m.

In any case, (X+)- 1, which implies that (p 1)/(m, p 1)
divides (1 W p)(p 1). If p 2, then this asserts that 21 diodes
(1 W2)(2- 1),wherer 1,2or3. Any of these imply T (2- 1),so
n=3orn=6;forn=3, wehaver= lor3. Ifp2,letqbethepme
of Lemma 1; q > m, so q (m, p 1), and we see that q (p 1) or
q (1 +p). Ifq (p- 1),thenmn;since]Hdidesm(p- 1) and
H is transitive on P’, we see that n m.
Now suppose thatp 2 and q] (1 W p). Then q] (p 1), so we must

have m]2r; but r m, so we see 2r m. Coespondg to the three cases
of Lemma 1, we consider the three possibilities for p. If p 2, then m 12,
and we see that 1365 diodes 65(2 1). In particular, 21 (2 1), so
n 6 or n 12. If p p for a Mersenne prime p, then we see
that (p- 1)/4diOdes (p+ 1)- 1). Hdivides4(p- 1)andH
is transitive on P’, so (p 1 4 (p 1). These two relations imply that
n= 2orn=4, orn= lwithp 3. The group withp =3, m=4, n= 1
is unique and has been shown to be case (i) of the theorem, so we can
assume n 2 r or n 4 m. Finally, suppose that a prime q0 divides
p 1, qo 1) for < r. In particular, qo2r, 2r m, and
q0 W 1),sowemusthaveq0 (p- 1). Thereforern, sor nor

We have shown that three cases must be stued" (1) n r m; (2)
m =n; (3)p 2, m= 6, n 3, r 1.

Case 1. Here, the only [u, u] 0 must be [u0, u], [u, u+], ...,
[u_, u_] and their negatives [u, u0], .[u+, u], ..., [u_, u_]. If

(1+r) ( 1)were reducible on P’, then for some < n, Jn, we have X o
1)/(2n, p 1) divides (1 + p) (p 1), or in other words

This relation is impossible if p 2, and so must contradict Lemma 1 unless
n 2. When n 2 we have 1, and the relation implies p 3. Thus,
except for the possibility p 3, n 2, 1, we have irreducible on P’,
We shM1 show that this possibility is not really an exception. If it occurs,

then P/P’] 3, P’J 3, and es two 1-dimensional subspaces of P’.
Here, ]H ()J divides 4. If X is an eigenvalue of on PIP’, then ](X)
() ; X+ X is an eigenvalue of on P’, so X 1, and we see () 20.



00 LARRY DORNHOFF

We must therefore have HI 80, I()1 20, H ()1 4, and trivial on
P’. This forces H/() to be regular on P’, so H/() is cyclic or quaternion.
() 1 Z (H/() ), so (H/() )/ (()/() is cyclic of order 4. We
conclude that H/() is cyclic; this forces H to be cyclic, say H (0). Replac-
ing by o, we see that since P’ is an irreducible (0)-module, P satisfies Case 1
where P’ is an irreducible ()-module.

Returning to the general Case 1, we have seen that hi+v- is an eigenvalue of
on P’. Let v0, vl, , v,_l be a conjugate basis for P’ adapted to , so that

v h(l+v")Vv. [u0, u,] and v0 are both in the one-dimensional subspace

v e P’ @ GF (pm v
so we may choose e e GF (p’) such that [u0, u] ev0. Applying a to this
equation repeatedly, we get equations

pn--1...,
pn+l [U2n--1 Un--1] epn-[u, u0] Vo,

Since [u0, u] -[u,, Uo], we see that 0 (ev" + e)v0. Therefore
vv" + 0, and e must be an element of GF (p") with trace 0 over GF (p’*).
If p 2, such elements are found in GF (p); if p # 2, such elements are
always available outside GF (p’).

If a e GF (p), denote {a} ix v P’.a v We can now compute the
commutator [, ] of any two elements a -0 a u, -0 B u of
P/P’.

[, ] 2n--1 2n--lpipi[Ui-o -o

Let 0" x -- x" be the Galois automorphism of GF (p’*) over GF (p"). We
have shown that [, ] (aO aO)e}.
Assume now, here in Case 1, that p is odd, so that P has exponent p. Let

xl, x, ..., x., generate P, z, ..., z, generate P. We can then choose
o e GF (p"), . GF (p’) such that x .,’-o u, z .--o "We see that {a} is a basis of GF(p’*), {f} a basis of GF (p") as additive vector
spaces over GF (p). Every element of P has a unique expression xx
x"- " where all 0 < i, j < p 1 We can multiply two such ex-2n1 Zn
pressions if we can identify x x,, < k. But x x xz x[x, x], and [x, x]

[a, a] (a a a a)} is well defined in P’, using the basis {f}. This
shows that the isomorphism class of P is given by our knowledge of com-
mutators, and for given e, p, n there is at most one P.
For any odd p, e, and n _> 1, we now claim that P does exist and have such
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an automorphism group. Choose e e GF (p’) with e W e O, let 0 x - x
and define P by

P (a, ) .GF(p) X GF(p) (a, )(, ,)

( + , +, + ( d))}.
One easily verifies that P is a group of exponent p, and satisfies

(,, ), (, ,)] (0, (0 .o)).
Choose X GF) such that (X) P 1. Then XTM X+" GF (p)

has order p" 1. We define ff P P by (a, )ff (Xa, X+o). ff is an
auomorphism of P, because

xTM(. d)e)

It is clear that ff is transitive on (P/P’) and P’.
We see that

which implies that ICe ((a, ))l P for any (a, ) P P’. Therefore
the group I of inner automorphisms of P is transitive on each coset
(a, )P’ # P’. We conclude tha, I($) is a solvable group of automorphisms
of P, transitive on P P’ and P’.
We finally remark that P does not depend on the choice of e. For if

ex, e are ,wo nonzero solutions of the equation X + X 0 in GF (p"), then
we must have e et, where GF (p) and x . Let

P (-. ) (-. r) (. ,) (- + . +, + (-a da)e)}.

P {(a, )](a, )(#, n) (a + B, +
We may choose r GF (p) such that rTM . If we define ff’P P
by (a, )$ (za, ), it is easy to verify that is an isomorphism. The group
P is the group C, n), case (vi) of our theorem.
We still must study p 2 in Case 1. Here we know tha, is irreducible on

P’, and all elements of P P’ have order 4. If u0, ux, ..., u,_x is our on-
jugate basis for P/P’ adap,ed to , we see that [u0,
Therefore v0 [u0, u], v [ux, u+x], v,_x [u,_x, u-x] is n conjugate
basis for P’ adapted to . These bases satisfy u

’- P/P’, I XT ’ P’.We again denote =0 a’ u v Our
calculation of [, # shows that [, ] {a# + ao#}. This relation is not
sucient to provide defining relations for P, since we need to know x for any
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x eP P’. InP, we have the relations (x) (x) and (xy) xy[x, y].
Let ,: P/P --o P be the map , xP’ --o x. , satisfies the relations
(a) (a) and (a + #7) a - t -+- [, 7]. Following [2], we shall
show these relations completely determine . For if PIP’ ---, P’ (R) GF (2)
also satisfies these relations, we see by subtraction that is a -homomor-
phism. By irreducibility of PIP’, this implies that either ( )(PIP’)
is -isomorphic. to PIP’, or else k. -isomorphism is impossible since the
eigenvalues k2.(1-}-2) of on P’ (R) GF (2 are different from the eigenvalues
), of on PIP’. Therefore is unique.
We now claim that is the map a {a+}. Consider any , e GF (2),

and choose a, GF (2’) with af -- af (this must be possible, since
every element in P’ is a commutator). Then

{} [, $] [a, t] [x,

(x) (xa)o + (x) (xa)} x+o}.
For any a, B e GF (2), we now see

(a) {+0} {x,+0+01 (x)+0} () ().
Also

{+} / {f+} + + } + + [, .
We have shown that for any xP’ a e PIP’, we have x aTM} P’.e There-
fore P is completely determined, and for any n, p 2, Case 1 provides at most
one group P.
We do obtain such a group P. For any n 1, choose e GF (2) of order

2 1, and define

P (a, ) e GF(2) GF(2) (, )(, )

( + , + +’ + -)}.
Let’ ,so (2). It is easy to verify that P
s a roup and satisfies the relations

(, ) (0, ), (, ), (, )] (0, ( + )).
Choose e GF (2’) such that () 2" 1; then + satisfies (X+)
2" 1. If we define $ P P by (a, g)$ (a, +), it is easy to verify
that $ is an automorphism of P, transitive on (P/P’) and P’. Just as in
the case p odd, the group I of inner automorphisms of P is transitive on each
coset (a, )P’ # P’. Therefore ()I is a solvable group of automorphisms of
P, transitive on P P’ and P’; P is the group of case (v) in the main theorem.

Case 2. In this case, m n > 2, and the integer r is unknown except for
the relation 0 < r _< 1/2n. Again we know that H] divides n (p" 1),
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H:()I divides n, and () <3 H, where (p 1)/(n, p 1) divides ()i-
ll is transitive on P’, so is certainly a primitive linear group, and P’ is a
direct sum of isomorphic irreducible ()-modules. Let

K {h e H h is trivial on P’}.
P’ P 1, so (p 1 ]H/KI; if P’ were not ()-irreducible, we would

obtain a relation H/KI In (pt 1), < n. This contradicts Lemma 1 if
p 2 and is also impossible when p 26. We conclude that throughout
Case 2, P’ is an irreducible ()-module.

r is the smallest positive integer such that [u0, u] 0. We have relations

If we have 2r n, then X1+" e GF (2r) has only r distinct algebraic conjugates.
But P’ is an irreducible ()-module and must have 2r n distinct conjugate
eigenvalues on P’, so the case 2r n cannot occur, and 0 < r < 1/2n.

For any i, j, suppose that [u, u.] 0. Then

[u, u] x+[u, u],

so X+i must be one of the eigenvalues X,1+, of on P’. We therefore
have a congruence

p’A-p-- p’(1-4-pr) (mod (p"- 1)/(n,p"- 1)).

Lemma 3 now implies that without exception, i j --- =t=r (mod n). The
only [u, u.] which are not 0 are [u0, u,], [ul, u,+], [u,_,_, u,_], [u,._,, u0],
[u,_+, ua], ..., [u,_l, u,_] and their negatives. We denote [u0, u,] vo,
[u, ur+] v, [u_, u_l] v_. {v0, v, .... v_} must be a conju-
gate basis for P adapted to , satisfying v . ),’+"v. The elements of
P’ are denoted, as before, by {’} Z0 3’ v ;let 0 denote the automorphism
t x --. x of GF (p).
We can now compute [a, -], for any pair of elements

of PIP’.

Assume first that p is odd. Then P is completely determined by the given
commutator relation. We know that H is acting on PIP’ as a subgroup of the
group of semilinear transformations on PIP’. For any a e PIP’, we know
that (Xa)-, so acts on PIP’ as a multiplication by X. PIP’ is an ir-
reducible ()-module. We see, as in the proof of Theorem II.3.11 of [3], that
if h e H, then there exist r GF (p) and e Aut (GF (p)) satisfying ah
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(ra)-, all a e PIP’. We can now compute the action of H on P’. For any
element {a a} e P’ and such h e H, we have

{nO- aB}h [, Oh [ah, h] [(ra’)-,

() (’) (-)()} {+( )-}.
This shows that for any {} e P’ and any h e H, {}h has form {r+},

some r e GF (p), some a e Aut (GF (p)). Define

K { e GF(p)(-) 1}.

Then r e GF (p) implies+ e K; therefore, e K implies+ e K. This
means H cannot be transitive on P; we get no group satisfying our main
theorem in Case 2 when p is odd.

Finally, assume p 2. The above methods again show that we get no
group unless + is a primitive (2" 1)-st root of unity. This occurs if
and only if is a primitive (2 1 )-st root of unity, and the automorphism
0 x x has odd order (see [2, p. 82]). We know In, ] {a + al, and
just as in Case I we obtain the square mapping. We find that if xP P/P,
then x aTM} P’.
We have obtained the Suzuki 2-groups P A (n, 0) of [2]. If (h) 2 1

and is the uutomorphism $ (a, ) (a, k+) of [2], then is clearly
transitive on (P/P) and P’. Let

T {a e Aut (P) a is trivial on P’ and PIP’}.

Then the p-group T is transitive on every coset xP’ P. To see this, choose
anyxeP- P’, z e P, and let

P (x x,x, ...,
Then also P ( xz, x, x). The sets {x} and {l satisfy
the same defining relations, so there exists a e T defined by x , all i. We
conclude that the solvable automorphism group T() is transitive on P P’
and P, so P A (n, 0) is case (iv) of our theorem.

Case 3. We still hve this possibility P/P 2, ]P’{ 2a, [u0, u] 0.
H" () divides 6, and P’ is a sum of isomorphic faithful irreducible (.)-modules.

If they were one-dimensional, would be trivial on P’, an impossibility; there-
fore is irreducible on P. Let h be an eigenvalue of on P/P. Then k is
an eigenvalue of on P, so (ha) 1, and irreducibility of on P shows
that indeed ]()] () 21. The eigenvalues of on P’ must be a,
() , and (k) k. Using the fact u u,we see that the only
[u, u] 0 are [u0, u], [u, u], [u, ua], [u, u], [u, u] and [u0, u] (here
[u, u] [u, u]).
Let {v0, v, v} be a conjugate basis for P’ adapted to , so that v (h)’v,

and choose e e GF (2) such that [u0, u] ev0. Applying the automorphism
v [u u]a x x of GF (2) repeatedly, we find that [u, u] e ,
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[u, u] v0, [u, u] v, [u, Uo] vs. We can now compute
[, ], for any a, e PIP’.

[a, 1 [-o ’ u]

If we let 0 denote the utomorphism 0 x x of GF (2), nd {} the element
v of P’, then this means

[a, ] {( +) + ( + )}.
Just s in Cse I, we cn show that the squre mpping PIP’ P’ is the
unique mpping stisfying () () nd ( + ) + + [, ],
ll a, e PIP’. If we define a + nd use the fcts a (Xa)-,
{} X}, nd (Xs) X, we find that xP’ implies x {ae + 8}.
The group P is now completely determined by now]edge of the squre mp;

for ech e there is t most one group P. P does exist; if we define

P() {(,)V() VF(2) (,r)(,,)

( + , + + 2 + )},
we see that P (v) is group nd stisfies the reltions

(, r) (0, + ), [(, r), (,

(0, ( +) + ( + )).
If I, then we cn choose e GF (2) with . We then hve
+ + 0 (since e GF (2)). Thus some elements of

P () P (v)’ hve order 2, eliminating this cse 82 1. Also, suppose
0 e GF (2). We cn then choose r GF (26) such that r , nd see
that the mp P (v) P () given by (,) (r, ) is n isomorphism.
Therefore the remaining e GF (2) such that 1 cn e replced by some, ])[ 63. We my ssume henceforth that ])[ 63.
When ) 63, define the mppings

" P (e) --. P (e) and " P(e)--P(e)

by (a, ),, (,a, ,8), (a, ) (ea4, ), where is any element of GF (26)
with I()l 21. We find that

{(, r)(, )} {(, t)}{ (., )}

and

{(, t)(, ,)} {(, t)}{ (, ,)},
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so and are automorphisms, obviously inducing a subgroup of the group of
semilinear transformations on P/P’. (Abbreviate P P (e).) On P/P’,
the orbits of the map a --, ha induced by b are

{1, es, e6, ...}, {e,e4,e7, ...} and [e2,e5,e8, ...}.
Since the map a --. ea induced by ) sends 1 --, e, e -- e5, we see that (, ) is
transitive on (P/P’). () is in fact transitive on P’.

(1, 0) e P P’, and

C((1, 0)) {(, ) P ( -{- 2)e - (f + 2)e 0}

{(, v) e P ( + )ee Gf(2s)}.
By looking at GF(26), there are 2 possibilities for . Therefore
ICe((1, 0))1 26 (, ) is transitive on (P/P’), so for any a 0,
ICe (a, i’) 26. This means that the inner automorphism group I of P is
indeed transitive on any (a, )P’ P’. We conclude that (, )I is transitive
on P P’ and P’; P P (e) is the group of cuse (viii) in our theorem.

This completes the proof of our main Theorem.

Remark. We shall finally show that the group B (n) ia case (v) of our main
theorem is isomorphic to certain of the Suzuki 2-groups in [2]. We refer to
the groups B (n, 1, e), for certain e, in [2]. Choose an element : e GF (2’)

2n--1such that {()1 22 1, and set ), x+1, x Then e GF (2").
The automorphism 0 x -- x2 of GF (22") satisfies 0 so + e GF (2");
let e - -1. Then e -t- 1, so X W eX 1 0 is the irreducible
polynomial for over GF (2"). If e were equal to -t- r

-1 for some r GF (2"),
we would have re r - 1, contradicting the irreducibility of the polynomial.

-1 any r, and B (n, 1, e) exists.Therefore e r - r

It is shown in [2] that if we find linear transformations
a" GF(2")--.GF(2) and " GE(2") X GE(2)--GF(2) X GF(2")

satisfying the condition (u)(2) u(2)a, then P = B (n, 1, e) will have an auto-
morphism inducing on PIP’ and a on P’. Here (2) is the square mapping
and satisfies (a, (2) a. + ea -[- 2. We define a by
To define , we identify (a, ) GF (2") X GF (2") with a -’t- . GE (2")

and define (a, f) --, X (a, fl). We see that

(a, ) x (a + ) xa + x

Therefore (a, ) (, ha + e),). We find that

((a, ))() x + x(xa + x) +

Therefore the automorphism inducing on P/P’ and a on P’ exists. Since
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(t) 2 1 and (),) 2 1, is transitive on (P/P’) and P’*.
Suppose now that (a, t, ) e P P’. Then (% , 7) Cp ((a, t, )) if and
only if a, W e W ,a W et W t, which holds if and only if a t.
Since a 0 or 0, this holds if and only if for some

rt. Therefore Cp (a, , ) 2, which forces the inner automorphism
group I of P to be transitive on (a, t, )P’.
We conclude that the solvable group (b)I is transitive on P P’ and P’.

This forces B (n, 1, e) to be one of the groups of our main Theorem; at least
forn 3 the only possibility is the group B(n) in case (v), so B(n, 1,
B(n).
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