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1. It was shown in [8] that for each simple complemented algebra A
there exists a measure space (S, ) and a real-valued positive function k(s)
on S such that A is isomorphic to the set of all measurable functions f(s, t)
on S X S for which the expression ff If(t, s)Ik(s) d(t)d(s) is finite.
In this note we intend to show that there is a certain very natural topology r
on S with respect to which the function k(s) is continuous almost everywhere
and the measure is a Radon measure... Let A be a Banach algebra whose underlying Banach space is a Hilbert
space. Then A is called a complemented algebra [6] if the orthogonal com-
plement of every right (left) ideal of A is again a right (left) ideal. To
exclude the trivial case, when the product of any two members of the algebra
is zero, we assume all algebras in the paper to be semi-simple.
We use .the term Radon measure to refer to a measure on a locally compact

Hausdorff space which corresponds to an integral on the set of all complex-
valued continuous functions with a compact support (in the way it does, for
example, in 6 of Naimark’s book [5]). (An explicit definition of a Radon
measure can be found in [4, page 9].) We assume that the reader is familiar
with 6 of [5] and we are going to use the terminology of this section of Nai-
mark’s book.
Below is an example of a simple complemented algebra (compare with the

example in [8]).

Example. Let (S, r) be a locally compact Hausdorff space and let be
a Radon measure on S. Let k(s) be a measurable real-valued function on
S bounded below by a positive number and finite except on a locally zero set
[5, page 131]. (In particular k(s) may be continuous at each point in S at
which it is finite.) Let A be the set of all complex-valued measurable func-
tions x(t, s) on S X S such that ff Ix(t, s)Jk(s) d(t) d() o. ThenA
is a complemented algebra with respect to the multiplication

(xy) (t, s) f x(t, r)y(r, s) d(r)

and the scalar product (x, y) f f x(t, s)(t, s)k(s) d(s) d(t).
If k(s) is essentially bounded then A is a two-sided H*-algebra.
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3. We intend to show that each simple complemented algebra is of the
type described in the example above. The proof is similar to the proof em-
ployed in [8] but it has certain modifications due mostly to the fact that we are
introducing a topology on the basic space S. Also the author decided to give
more details (he feels that the article [8] was too much condensed).
The lemma below plays an essential part in the proof. It may be of an

interest by itself.

LEMMA. For each bounded normal operator T on a Hilbert space H there
exists a locally compact Hausdorff space S, ), a Radon measure on S and a
bounded continuous complex-valued function h on S such that H is isomorphic
to L( S, ) and T corresponds to the multiplication of members ofL(S, ) with h.

If T is self-.adjoint (positive) then h is real (positive); if T is 1-1 then h(s) 0
locally almost everywhere on S [5, page 131].

Proof. Let B be the closed commutative algebra of operators generated
by T and the identity operator I. By Theorem 64 of [4] (or the proposition
in section 2, 17 of [5]) there exists a family {H} ,r of mutually orthogonal
closed subspaces of H, each invariant under members of B, such that for each
a 1 the set B of restrictions of members of B to H has simple spectrum
[4, page 149] (if we consider B. as a representation of B) and such that
H .,r H.. This means that for each a e 1 there exists e H such that
the set {P P B} is dense in H..
For each a e 1 let us apply the Gelfand theory to the algebra B. (of restric-

tions of members of B to H) (see, for example [2] or 26A in [3]). We obtain
a family {, .} ,r of compact Hausdorff spaces such that each B is iso-
morphic and isometric to the set L() of all continuous complex-valued
functions on !}.. In particular the restriction T of T to H corresponds
to a continuous function h such that h(M) <- II T II for all M .
If T is self-adjoint then each h. is real, also h >_ 0 in the case when T is
positive; if T is one to one then h.(M) 0 almost everywhere on
As in Theorem 61 of [4] we define an integral J on L(.) by setting

J(f) (P], ) where P] is the member of B corresponding to a func-
tion f L() via (inverse) Gelfand mapping ( is defined above).
Now as in [8] we set S (J0r !. (we think about spaces as being

distinct) and then we define a topology on S by the requirement that a
subset 0 of S is open if and only if 0 n !. belongs to ll: for each a e r. Then
(S, ) is a locally compact Hausdorff space such that a complex-valued
function f on S is continuous if and only if each restriction f of f to
is continuous. Note also that each !l is both open and closed (in fact each

is a compact subset of S).
We define an integral J on the set L(S) of all continuous complex-valued
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functions with compact support in S as follows. For each f e L(S) we select
al, as, a e F so that f vanishes outside [J-i !}, and define

J(f)

(f, is the restriction of f to !,).
Now we can apply to J (and L(S) the theory of integration developed by

Naimark in 6 of his book [5]. Let z be the corresponding measure. Let
h be the function defined by the condition that the restriction of h to each
!fit, is h,. Then (S, Z), z and h has the properties specified ia the Lemma.
If T is one to one then the product of h with a non-zero member of L(S, )
is a non-zero member of L(S, ). In this case the set {s S Ih(s) 0}
is a locally zero set.

THEOREM. Each simple complemented algebra A is of the form described in
the example above. More specifically for each simple complemented algebra A
there exists a locally compact Hausdorff space S, ), a Radon measure on S
and a bounded continuous non-negative-valued function h(s) on S, positive lo-
cally almost everywhere, such that A is isomorphic to the algebra of all measurable
complex-valued functions x( t, s) on S X S with the property that

f fix(t, s)]h(s)- dry(t) dry(s)

is finite (note that h (s)- corresponds to s) in the above example).

Proof. As in [8] we use Theorem 3 of [7] which states that there exists a
positive self-adjoint operator a on u Hilbert space H, such that A is isomorphic
to the algebra of all (Hilbert-Schmidt) operators x on H such that xa is of
the Hilbert-Schmidt type. The scalar product (x, y) corresponds to tr(xay)
and the operator a has a bounded inverse , which is also self-adjoint and
positive. Applying the above lemma to the operator t we obtain a locally
compact space (S, 2), a Radon measure t on S and a bounded continuous
uonnegative function h(s) on S (with h(s) > 0 locully almost everywhere)
such that H is isomorphic to L(S, t) and acts on L(S, t) as a multiplica-
tion with h.
But the set (zc) of all Hilbert-Schmidt operators on L(S, ) is iso-

morphic to L(S S, t X ) where the multiplication of members of (ac)
corresponds to the operation (xy) (s, t) f x(s, r)y(r, t) d(r) (see, for ex-
ample, Theorem 4 on page 35 in [9]). Also it can be easily verified that the
products x of a Hilbert-Schmidt operator x and the operator g will cor-
respond to x(s, t)h(t) (if x(s, t) corresponds to x); xa will correspond to
x(s, t)h(t) -.
Thus A can be realized as the set of all members f(s, t) of L(S X S,

z X z) such that f f If(s, t) Ik(s) dz(s) dz(t) < where k(s) 1/h(s) .
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