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1. Summary of results
For any group G, we mean by H(G) the ith homology group of G with

integer coefficients. Essential to tihis paper is the fact that if X is a K(G, 1)
space, then H(G) H(X) for every i. A group II will be said to be a
knot group if there exists a tame (polygonal) knot k c S such that
II (S- ]).

Consider a subgroup G of a knot group II I(S k). The asphericity
of knots states that (S k) 0. This famous theorem [8] together
with the fact that there exists a finite 2-dimensional complex K which is a
deformation retract of S ] implies that S -/c is a K(II, 1) space. Let X
be any covering space of a space of the same homotopy type as S ] with
the property that I(X) G. Then X is a K(G, 1) space, and so H(G)
H(X) for every i.

(1.1) PROPOSITION. If G is a subgroup of a knot group II, then H(G) O,
for i >_ 3, and H.(G) is free abelian.

The proof is very simple. Following the above paragraph, we take for the
coveting space X with I(X) G a complex coveting the 2-dimensional
complex K. Then X is also 2-dimensional. Hence, if C(X) is the group
of/-chains, then C(X) 0 for i >_ 3 and, consequently, H(G) H(X) 0
for i >_ 3. The group C2(X) is free abelian (although generally not finitely
generated), and, since every subgroup of a free abelian group is free [6, p. 45],
we conclude that H2(G) H(X) is free.
The next problem is the determination of the rank of H(G). A simple

solution in terms of HI(G) can be given provided G is a subgroup of finite
index.

(1.2) PROPOSITION. If G is a subgroup of a knot group II and if II/G
(the set of right cosets) is finite, then the homology groups of G are finitely gen-
erated and

rank H(G) rank HI(G) 1.

To prove (1.2), let, II vl(S k), let K be a finite 2-complex which is
a deformation retract of S ], and let X be a covering complex of K such
that (X) G. Since II/G is finite, the complex X is also finite and its
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homologv roups are therefore firdtely generated. From Alexander duality
t follows that H(K) H( ) is infinite cyclic and that H(K)
( ) 0. The Euler-Poincar formula therefore implies that

x(K) 1-- 1+0=0.

If eardina]ity(11/) n, then X i8 an -sheeted covering and 8o

x(X) nx(K) 0.

Thus, a second application of the Euler-Poincar formula gives

0 x(X) 1 rank H(X) + rank H(X).

Since H(X) H(G), the proof is complete.
Observe that the above proof contains the known results that

H() II/H’ H(S’ )

is infinite cyclic and that H(II) H,.(S k) 0.
We shall give an explicit computation of H(G) for the subgroups G cor-

responding to the cyclic coverings of knots. Consider a knot group
1I n(S k). The fact that the commutator quotient group H/H’ is
infinite cyclic implies that, for every nonnegative integer n, there exists a
normal subgroup II of II and an exact sequence

(1) 1 -- II --. II. --* g/ng 0

and II is uniquely determined by this sequence. In particular, II is the
commutator subgroup 1I, and II II. Denote by Z[, -] the ring of poly-
nomials in and - with integer coefficients, and consider in this ring the knot
polynomials A(t) of the knot /% as defined in [3] and normalized so that
A(1) 1. We recall that A+(t) A(t) in Z[t, $-] and that, for all i
sufficiently large, A($) is the constant 1. We shall prove

(1.3) THEOREM. If II is a knot group and if II, is the subgroup defined by
the sequence (1), hen

rank H.(II) 0, if n O,

ixbi, if n> O,

where bi is the number of distinct complex nth roots of 1 which are zeros of

The case n 0 will be proved in Section 2. Actually, the fact
that H(II) 0 for every knot group II has been shown by R. G. Swan in
[9, p. 198]. However, the present proof is geometric and very different from



/2 OF SUBGROUPS OF KNOT GROUPS

his. The 1-dimensional group H(II’) is of fundamental importance in knot
theory. From the fact that

HI(H’) Hx(H; Z(H/H’)) Hx(H; Z[t, t-])
it follows that H(II), which as an abelian group is equal to II/II", is also a
Z[t, t-]-module. Specifically, it is the module having the Alexander poly-
nomial z(t) of the knot as generator of its 0*a elementary ideal and having
the matrix V as a relation matrix (V is the Seifert matrix, and V’ is
its transpose). It is known [1, p. 349] that rank HI(IIt) degree
Since the latter is an even integer, we see that the conclusion of Proposition
(1.2) is always false if G II0 IIt.
For n > 0, the group H(IIn) is the first homology group of the n-fold cyclic

(unbranched) covering space of S k. Thisgroup has been studied bymany
knot theorists, most notably by H. Seifert and R. H. Fox. Let X be the
unbranched, and X the branched, n-fold cyclic covering space of S k.
In Section 3 we have given a new proof of Fox’s theorem that

(2) H,(X,) H(X) Z.

Since H(X,,) H(IIn), it follows from (1.2) that

(3) rank H(II) rank H(X,,) 1 rank HI(X).
The expression of - b. which appears in (1.3) is then easily shown to be
the same as in Fox’s formula [4, p. 417] for the rank of H(X).

It is an immediate corollary of (1.1) and (1.3) that

(1.4) If n is a positive integer, then H.(II) 0 if and only if there exists
a complex n root of 1 which is a zero of the Alexander polynomial h(t).

For every knot, we have zx(1) 1 and 1(-1) 1 (mod 2). Hence,
we obtain H(II) H(II) 0 and also H(IL) 0. For the trefoil knot,
however, it is a consequence of (1.1), (3), and [5, p. 156] that

H(II) =ZZ, if n> 0andn 0(rood6),

0, otherwise.

I wish to express my thanks to Hale F. Trotter for valuable assistance in
working on the problems of this paper.

2. Proof of (1.3) for n 0
In this section we give a new proof of Swan’s theorem that H(II’) 0

for an arbitrary knot group II 1(S k). Let S be an orientable span-
ning surface for the knot k. Specifically, S is semi-linearly embedded in
S8, and O(S) k. The genus of S, which we denote by h, need not be
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minimal. We construct an embedding ]’S X [-1, 1] --* S such that
f(s, 0) s, for all s e S, and set

A S f(Int(S) X (-1, 1)).

(2.1) H.(A) O.

Proof. Since A and S S are of the same homotopy type, H(A)
H(S S). By Alexander duality we have H2(S S) . i(S) O.

Let g, b S --* A be the two mappings defined, for every s e S, by g (s)
f(s, 1) and b(s) f(s, -1). Denoting the homomorphisms induced by

and by the same symbols respectively, we have

Hi(S) Hi(A).

It can be shown [10] that there exist bases for Hi(S) and Hi(A) with respect
to which the matrices of g and are the Seifert matrix V and its transpose
V’ respectively. If Al(t) is the Alexander polynomial of k, then Al(t)
det(tV V’). Since 51(1) 1, we have det(V V’) 1 and, therefore,

(2.2) The homomorphism Hi(S) --* Hi(A) is an isomorphism.

SLet {hs --+ S} be a family, indexed by the integers, of homeomorphisms
onto disjoint copies of S. For each integer j e Z, consider the embedding
fs" S X [-1, 1] --+ S defined by f hf, and set A h(A). Let be
the equivalence relation on the disjoint union 0s,z A which identifies f.(s, 1)
with f+l(s, 1), for every s e S and j e Z. The identification is indicated
schematically in Figure 1. We denote the identification space (0,z As)/
by X, ad henceforth shall regard the spaces As as closed subspaces of X.
We define

and inclusion mappings

As< S As+I.
The mappings 0. S --* S and A --. As defined by Os(s) fs(s, -1)
f+l(s, 1) and vs(a) hs(a) are homeomorphisms, and for every j e Z,
the following diagram is commutative.

(4)
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Aj+I

,-I)~ fj+i(,I)
FIGURE 1

It is obvious that X is an infinite cyclic covering space of 8 nbd(),
where nbd() is an open regular neighborhood of the not . Since H/H
i infinRe cyclic, it follows that () H. Hence, (H) () for
every . This construction of the covering space was used by L. euwirth
[] in his study of the structure of the roup H. The proof that (H) 0
is completed by provin that () 0.
For every positive integer , we set u . The basic lemma

is the following"

(2.3) H(B.) O, n 1,2,3,....

Proof. If n 1, the conclusion is a direct corollary of (2.1), since
B AxA. So we assume that n 2. Define

B BnU,zA+x and B BnU,A.
Then, B, B, u B nd B’, n B Sx u u S,_. Moreover,

H,(B’.) H,(B) H,(A) $ H,(A.),

nB.) H(Sx) H(S._x).

Thus, part of the Mayer-Vietoris sequence of the pair consisting of B’. and
B is

H(Ax) H(A) J* 0
H(B.) *

Hx(Sx) Hx(S._x)
i, ,H(Ax)

Since A A, we have H(A) O, from which it follows that 0, is a mono-
morphism. We conclude from the exactness of the above sequence that

H(B.) Image (0,) Kernel (i,).

It therefore only remains to prove that i, is a monomorphism. We have

i,(u u,_J ,(u,) (u)

(u) + (u)

+ (u) (u)

etc.
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The groups Hi(S), HI(Si), Hi(A), and HI(Ai) are all free with rank 2h.
With respect to some choice of bases for Hi(S) and Hi(A), let V and W be
the matrices defining the homomorphisms

if Hi(S) --, Hi(A) and :Hi(S) --. Hi(A),
respectively. As a result of the commutative diagram (4), it follows that
(up to sign) the homomorphism i. is defined by the matrix

1
2
3

n--1

1 2 3 4 n

-W V 0
0 -W V
0 0 -W

0 0 0

0
0 0
V 0

V
Since is an isomorphism, the matrix V W is invertible.
that

(5) rank Mn (n- 1)(2h).

We contend

to the 4th, etc., to obtain the equivalent matrix

-W V-W V-W V-W V-W
0 -W V-W V-W V-
0 0 -W V-W V-
0 0 0 -W V-

Subtract the 2nd row block from the 1st, the 3rd from the 2nd, and the 4th
from the 3rd, to get the equivalent matrix

--W V 0 0 0

0 0 -W V 0 -W V- W
0 0 0 -W V-

Since
rank Kernel (i,) (n 1) (2h) rank M,,,

proving (5) will finish the proof of (2.3). The argument is inductive. For
n 2, we have

M= (-W V),-.(-W V-W),
and the rank of he equivalent righthand matrix is obviously 2h. We shall
give in detail the eduction from n 5 to n 4, and this will convincingly
illustrate the general inductive step from n >_ 3 to n 1.

-W V 0 0 0
0 -W V 0 .0Ms 0 0 -W V
0 0 0 -W

Add the 1st column block to the 2ad, the new 2nd to the third, the new 3rd
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Since rankM 3(2h) by induction and since rank (V W) 2h, it follows
that rank M 4(2h). This completes the proof of equation (5), and also
of Proposition (2.3).
For every nonnegative integer n, we now define

B* =A_u...uAou...uA.

B*Since B*, . B,+, it is a corollary of (2.3) that H() 0, for
n 0, 1, 2, .... But the covering space X is the union of the infinite chain
of subspaces B c B c B .... Since the homology functor commutes
with direct limits, it follows at once that H(X) O, and, as observed above,
this proves that H.(II’) 0.

3. Finite cyclic covering spaces
For n > 0, the unbranched n-fold cyclic covering space X, of S nbd(k)

is obtained from B. by identifying So and S,. Specifically, we consider the
equivalence relation on B. which identifies fl (s, 1) and f, (s, 1), for every
s e S, and we form the identification space X. B,/. Our primary objec-
tive is to give a proof of equation (2) in Section 1, which relates the 1st
homology of the branched and unbranched covering spaces. The equation
is obviously true for n 1, and we shall therefore assume that n _> 2. As a
result, the spaces A1, ..., A, and B,, ..., B_, are embedded in X. and
henceforth will be regarded as subspaces. Thus, we have

B._ u A X. B_ n A S_, u S (andS. So).

The space B_I is a 3-dimensional manifold with a boundary consisting of
the union of an annulus and the two homeomorphic surfaces So and S_1.
The same is true of A,. The union B_I u A X, indicated schematically
in Figure 2, is a 3-dimensional manifold whose boundary is a toms formed
by the union of the two annuli. Let T be a solid toms with interior disjoint
from X, and such that O(T) O(X). The union X u T is the branched
covering space X. In the following mapping diagram the two rows are
corresponding parts of reduced Mayer-Vietoris sequences: one for B,_ and
A,, and the other for B_ u T and A,. The homomorphism is induced

-I

An "outside"
FIGURE 2
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by inclusion, and . is the direct sum of the homomorphisms induced by the
inclusion Bn_l --* Bn-1 u T and by the identity An --* An.

HI(Bn-1 n An) i, HI(Bn-1) H(A,) ..J*.

HI((Bn_I U T) An) * gl(Bn-1 U T) HI(A) *
j, O,

H,(X) o(B- A) 0

* H(X).. O

It follows esily from teory of e homology of orietble 2-mfolds
that is a isomorphism. Siace B,_ is obviously deformtioa retract of
B_ T, we conclude that is lso n isomorphism. Since the relevat
homomorphisms re induced by inclusion, the first squre of the grm is
commutative, i.e., i, ,. Simple diagram chasing rhea shows that

Kerael (,) Kernel (j,;).

Since j is n epimorphism, one directioa of this equality implies that there
exists homomorphism H(X) H(X) such that

The other direction implies that is a monomorphism. Moreover,

Image (b) Image (j) Image (j,l) Image (j,).

Hence, the sequence

0 ----> HI(X) -; H(X) O, o(B- A.) 0

is exact. Since B-I fl An is the disjoint union of S_ and S, it follows that
/0(Bn-1 n An) Z, and we finally obtain the sequence

0 --> HI(Xbn) b Hl(Zn)
0,

>Z-* 0,

which is split exact. This proves equation (2) in Section 1.
The proof of Theorem (1.3) for n > 0 is finished provided it is assured that

the number j-I bj, which appears there, equals the analogous number in
Fox’s formula [4, p. 417] for the rank of HI(X). The only question is
whether or not the jth elementary divisor of his matrix F(t) is equal to the
ratio Aj(t)/+l(t) of he knot polynomials. An affirmative answer is implied
by Fox at the bottom of page 416 in [4], and is also proved on page 698 of [2].
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