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I. Introduction
DEFINITION. Let X be a Banach space and let k _> 1. X is a x space

(resp. dual x space) iff there is a net S d e D; _<} of linear projections on
X such that

(1) each S has finite-dimensional range;
(2) lima S(x) x, for each x e X;
(3) S -< k, for each d eD;
(4) S,S S, for e >_ d (resp. SS, S, for e >_ d).

{S d D} is called a x (resp. dual x) decomposition for X.

The concepts of rx and dual vx spaces are dual in the sense that if {S} is a
x (resp. dual x) decomposition for X, then S*} satisfies the definition of dual
x (resp. x) decomposition for X* except that the convergence in (2) is
weak * convergence. In case S} is a dual x decomposition for X, it is easy
to prove that {S*} is a rx decomposition for the Banach
space clz.( [J,D Range (S*)). We note that if {S} is either a x or dual x
decomposition for X, then [JD Range (S) is dense in X.

Interesting results concerning x and spaces (Section III) have been
obtained by Lindenstrauss, [2], and Michael and Peiczynski, [3] and [4]. The
proof of Lemma 3.1 in [2] can be modified to show that a dual rx space is a

va space for any > k, so that many of these results apply to dual vx spaces
as well.
The main results of Section II relate the concepts of dual v and vl decom-

positions to basis theory:

THEOREM 1. A separable Banach space, X, ha8 afinite-dimensional Schauder
decomposition iff X is a dual x space, for some >_ 1.

THEOR 2. A separable Banach space, X, has a finite-dimensional mono-
tone Schauder decomposition iffX is a n space.

Recall that {P, M}- is a Schauder decomposition for X iff each P is a
continuous linear projection of X onto M PP, O, for n m; and for
eachxeX, x= ,_P,(x) If{P,M,} ._ is a Schauder decomposition
for X, define the partial sum operators, S,, by S, ’- P. {S,}:_ is
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pointwise convergent to the identity operator, hence {S} -1 is uniformly
bounded when X is a Banach space. We denote by G({M,}) the number
sups-l.2.3.... S i], and call G({M}) the Grynblum constant of the decom-
position. If G({M}) 1, the Schauder decomposition is said to be mono-
tone. If each P, (and hence each S) has finite-dimensional range,
{P, M}

_
is called a finite-dimensional Schauder decomposition.

It is easy to prove (and essentially known--see [5]) that a sequence {S}
of operators on X is a rx-dual rx decomposition for X iff S}-1 is the sequence
of partial sum operators associated with a finite-dimensional Schauder de-
composition for X with Grynblum constant no larger than . In particular,
the "only if" parts of Theorems 1 and 2 are immediate.

In Section III we prove that every C(K) space is a dual r space. The
Michael and Peiczynski result [4] that C(K) is a r space when K is compact
metric is an immediate consequence of Theorem 4.

If P is a linear operator, we denote by R(P) the range of P, and by ker(P),
the null space of P. For a > 0, let B(a) {x 11 x II <- a}. I denotes the
identity operator. C(K) is the Banach space of scalar (i.e., real or complex)
valued continuous functions on the compact Hausdorff space K, endowed with
the sup norm. If A is a subset of a linear space, sp A denotes the linear span
of A.

Ih The basis theorems
LEMMA 1. Let X be a normed space and Y a separable subspace of X. Sup-

pose S d D; <_ is an equicontinuous net of linear operators offinite range on
X which converges pointwise to I. Let M and a be positive numbers. Then
there is {d <_ d,. <_ d3 <_ D such that lim S(x) x, for each x Y,
and S,+ moves each point of B(M) sp [J% R(S) a distance less than a/2’*.

Proof. Let {x}_l be dense in Y. Choose dD such that
II x S(x) !! < a. Suppose that d _< d2 _< _< d. have been chosen.
Choose d.+ D such that d _< d+ and for each

x A {x} -+: u [B(M) n sp (J- R(S,)],

This choice is possible because {S" d e D} converges pointwise to I and is
equicontinuous, so that the convergence is uniform on compact sets. A is
closed, bounded, and finite dimensional, hence is compact. Now for each i,
lim, S(x) x. Since {x}-i is dense in Y and {S} :.1 is equicon-
tinuous, {Sen} ..1 converges pointwise on Y to I.

Proof of Theorem 1. Suppose that X is a dual rx space. Let M > X.
We show that X has a finite-dimensional Schauder decomposition with Gryn-
blum constant no larger than M.
By Lemma 1, we can assume that X has a dual x decomposition {S}.

such that for each n and each x B(M) sp (J- R(S),
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(1) II x S,,+(x) < (M h)/2".

Forj>_n, letT SS_...S,,. Now ifj>n,
j--1(2) II r < [,- (M X)/2’] + h < M.

Ifj n + 1, (2) follows from the fact that S, E h, (1), and the inequality

T+l(x) ll + (x) (x) !I + () II.
In general, if (2) holds for j, then for x e B(1)

11 T$(z) II +, T(x) T(x) I! + T(x) II
i--1

so that (2) also holds if j + 1 is substituted for j. Note that this argument
also shows that for x e B(1) and j > i n,

(3) Ti(x) T()II i: (M- x)/2.
Thus the Cauchy criterion guarantees that limy T (x) exists for each x X
and n 1, 2, 3, .... Let T, limy T. Clearly each T, is finear and

Now forn mandjm,

TT S... Slim.S... S,

limSy...SS...S,

lim S S T.
Thus for n m, T T, T. Similarly, for j m n,

T T S S lim S S,

lim S S S S.

S S S_ S. T.
Thus for m n, T T, T,. That is, T T T(,.).
We next show that {T}:_ pointwise converges to I. Since U:_ R(S,)

is dense in X and T}:_ is equicontinuous, it is sufficient to show that for each
x e U:_ R(S), lim T,(x) x. Let x :_ R(S), say x R(S), and
thout loss of generality assume that x e B(1). If j > n > i, we have from
(3) and (1) that _

(M x)/2] + (M x)/’-.-Passing to the fimit on j, we get that for n > i,

T.() II Z%-, (M x)/2.
Passing to the limit on n, we have that lim, T(x) x 0.
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Now for each n,

(4) S,T, S, and T,S T,,
so that ker(T) ker(S), and thus R(T) and R(S) have the same dimem
sion. Therefore Tn} ..1 is a rM-dual decomposition for X, and the remarks
in the introduction complete the proof.

Remar 1. Using the notation of Theorem 1, we have from (4) that T is
an isomorphism from R(S,) onto R(T) with inverse S. Thus for each
n, d(R(T), R(S)) <_ M, where

d(A, B) inf T T-1 T is an isomorphism from A onto B}.

If each S is of norm 1, then each T is of norm 1, so that R(T) and R(S)
are isometric. Of course, in this case the generated Schauder decomposition
is monotone.

COROLLARY 1. Let X be a dual space and let Y be a separable subspace of
X. Then there is a separable subspace Z of X such that Y c Z and Z has a
rdual ’1 decomposition.

Proof. Let S d e D} be a dual decomposition for X. Using Lemma 1,
we can find {d _< d _< d3 <_ c D such that lim. S(x) x, for each
x e Y, and S+ moves each point of sp [Jl R(S) B(1) a distance less
than LetZ /xeX’limS(x) x}. ClearlyZis a separable
(closed) subspace of X and Y Z. Now {S}: is a dual vl decomposition
for Z because each R(S) is a subset of Z. Thus by Theorem 1 and Remark
1, Z has a -dual decomposition.
The referee has noted that the proof of Proposition 6.1 in [4] can be gen-

eralized to give an easy proof of Theorem 2. Alternatively, Theorem 2
follows immediately from Lemma 1 and the following"

THEORE 3. Le X be a Banach space and le {S} .. be a x decomposition
for X. Suppose tha here is a sequence {Pn}: such hat for each n, P,, is a
linear projection from R(S,,+) onto R( S,), and that I:- P, tc < .
Then X has a finite-dimensional Schauder decomposition with Grynblum con-
stant no larger than .

Sketch of proof. For n > j, let T P. P.+ P_ S.. For each j,
let T lim T. (This pointwise limit exists because T -< ]c, and
for each m, {T/:-+I is eventually constant on R(S).) It follows by an
argument similar to that used in Theorem 1 that {T}

_
is a x-dual x

decomposition for X. The remarks in the introduction then complete the
proof.
We conclude this section with an unsolved problem:

Problem 1. Does every separable vx space have a finite-dimensional
Schauder decomposition?
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III. Dual r decompositions in C(K) spaces
A r (resp. dual a) decomposition {S’d e D} is a (resp. dual )

decomposition iff each R(Sd) is isometric to an l,d) space. It is known [2]
that every C(K) space "almost" has a r* decomposition, {S d e D}, in the
sense that each R(S) is almost isometric to l:), and that if K is compact
metric, C(K) is a r space [3]. It is not known whether every C(K) space is
a r space. However, Theorem 4 shows that every C(K) space is a dual
space.

Recall that {f} -1 c C(K) is a peaked partition of unity iff each f is non-
negatively real-valued, ’-lf is the constant 1 function, and f 1.
Sp({f}’-l) is then called a peaked partition subspace, and is isometric to
(cf., e.g., [3]).

THEOREM 4. Let K be compact Hausdorff. Then C(K) has a dual
decomposition S d e D} such that each R( Sd) is a peaked partition subspace.

Proof. Let D be the collection of all ordered pairs ({U}-, {xs} -) such
that {U} ’-1 is a minimal open cover of K and x U 13; U. Partially
order D by

iff
V}- refines {U}",-, and {x,},- {y}-.

It is straightforward to verify that D is directed by _<. For each
({ U}’-, {x}’-) e D, pick a peaked partition of unity {]}’- such that f
vanishes outside U (hence f(x) ). For each d ({ Us} -1, {x} -) in
D, define the projection S by S(f) f(xs)f, where {fs}- is the peaked
partition of unity associated with d. If d ({U}-, {x} -) is in D, then
clearly

ker (&) {f ec(g) f(x) f(x2) f(x,) 0}.

Thus if d _< e, ker (S,) c ker (Sd), and hence Sa S, Sd. Obviously
I! S 1, for all d D. To complete the proof we must show that the net
{S’d,D; _<} pointwise converges to I. Let feC(K) and let e > 0.
Choose a minimal open cover {V}’-I of K such that if [x, y} V., then

U.If(x) f(Y) I< e. Supposed ({ ,{xs}-)isinDsuchthat{U}-
refines {V.}.-. Then for all x e K,

< -/(x,)

where {f}- is the peaked partition of unity associated with d. Now if
x . U, If(x) f(x) < , since {Us}- refines {V.}-I. If x Us, then
f(x) O. Hence k < -f(x) . This completes the proof.
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Remark 2. The proof of Corollary 1 shows that a separable subspace of a
dual space, X, is contained in a separable -dual subspace of X. Thus
by Theorem 4, every separable subspace of C(K) is contained in a separable
v’ subspace of C(K). In particular, when K is compact metric, we have the
result of Michael and Peiczynski [4], that C(K) is a v space.

Recall that a Hausdorff space K is a Boolean space iff the compact-open
subsets of K form a base for the topology. In [1], Dyer notes that Theorem 4
can be improved for Boolean spaces:

THEORE 5. If K is a compact Boolean space, then C(K) has a v-dual r
decomposition S d D} such that for each d D, R(S) is spanned the charac-
teristic functions of the elements of a pairwise disjoint compact-open cover of K.

REFERENCES

1. J. A. DER, Integra 5ases in inear topoogica spaces, Illinois J. Math., vol. 14 (1970),
pp. 468-477.

2. J. LND.NSTRXUSS, Extensions of compact operators, Mem. Amer. Math. Soc. no. 48,
1964.

3. E. MICHXE aND A. PCZSKI, Peaked partition subspaces of C(X), Illinois J. Math.,
vol. 11 (1967), pp. 555-62.

4. Separable Banach spaces which admit l-approximations, Israel J. Math.
vol. 4 (1966), pp. 189-98.

5. W. H. RUCKIE, The infinite sum of closed subspaces of an F-space, Duke Math. J.,
vol. 31 (1964), pp. 543-54.

IowA. STATE UNIVERSITY
AMES IOW

UNIVERSITY OF HOUSTON
I-IousToN TEXAS


