FINITE-DIMENSIONAL SCHAUDER DECOMPOSITIONS IN
AND DUAL ), SPACES

BY
WirLiam B. Jornson!

I. Introduction

DgeriniTioN. Let X be a Banach space and let A > 1. X is a m, space
(resp. dual m\ space) iff there is a net {S; : d ¢ D; <} of linear projections on
X such that

(1) each 8; has finite-dimensional range;

(2) limg Si(z) = z, for each x ¢ X;

(3) || Sa]l <, for each d e D;

(4) 8e8: = Sa,fore > d (resp. SaS, = Sy, fore > d).

{Sa : d e D} is called a m (resp. dual m\) decomposition for X.

The concepts of m and dual m, spaces are dual in the sense that if {S4} is a
m (resp. dual m,) decomposition for X, then {S;"} satisfies the definition of dual
m (resp. m) decomposition for X* except that the convergence in (2) is
weak * convergence. In case {Ss} is a dual m decomposition for X, it is easy
to prove that {S}} is a m decomposition for the Banach
space clys(Uszp Range (S))). We note that if {S;} is either a m\ or dual m
decomposition for X, then Usp Range (Sa) is dense in X.

Interesting results concerning m\ and =7 spaces (Section III) have been
obtained by Lindenstrauss, [2], and Michael and Pelezynski, [3] and [4]. The
proof of Lemma 3.1 in [2] can be modified to show that a dual =\ space is a
mg space for any 8 > A, so that many of these results apply to dual =, spaces
as well.

The main results of Section II relate the concepts of dual m and =, decom-
positions to basis theory:

TueoreM 1. A separable Banach space, X, has a finite-dimensional Schauder
decomposition iff X is a dual m\ space, for some X > 1.

TaEOREM 2. A separable Banach space, X, has a finite-dimensional mono-
tone Schauder decomposition iff X is a m space.

Recall that {P, , M,} 7= is a Schauder decomposition for X iff each P, is a
continuous linear projection of X onto M, ; P,P, = 0, for n # m; and for
each z e X, ¢ = D nwi Pu(x). If {P,, M,}nu is a Schauder decomposition
for X, define the partial sum operators, S,, by Sp = D r=1 Pi. {Sn}ne is
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pointwise convergent to the identity operator, hence {S,}n=1 is uniformly
bounded when X is a Banach space. We denote by G({M,}) the number
SUDn=1,2,3,-- || Sa ||, and call G({M,}) the Grynblum constant of the decom-
position. If G({M,}) = 1, the Schauder decomposition is said to be mono-
tone. If each P, (and hence each S,) has finite-dimensional range,
{Pn, M} is called a finite-dimensional Schauder decomposition.

It is easy to prove (and essentially known—see [5]) that a sequence {S,} ne1
of operators on X is a m-dual m decomposition for X iff {S,} »= is the sequence
of partial sum operators associated with a finite-dimensional Schauder de-
composition for X with Grynblum constant no larger than A. In particular,
the “only if”’ parts of Theorems 1 and 2 are immediate.

In Section III we prove that every C(K) space is a dual w1 space. The
Michael and Pelezynski result [4] that C(K) is a =1 space when K is compact
metric is an immediate consequence of Theorem 4.

If P is a linear operator, we denote by R(P) the range of P, and by ker(P),
the null space of P. Fora > 0,let B(a) = {z: ||z | < a}. I denotes the
identity operator. C(K) is the Banach space of scalar (i.e., real or complex)
valued continuous functions on the compact Hausdorff space K, endowed with
the sup norm. If A is a subset of a linear space, sp A denotes the linear span
of 4.

Il. The basis theorems

LemMma 1. Let X be a normed space and Y a separable subspace of X. Sup-
pose {Sq : d € D; <} 18 an equicontinuous net of linear operators of finite range on
X which converges pointwise to I. Let M and a be positive numbers. Then
there is {dy < dp < ds < ---} € D such that lim,. Sa,(x) = z, foreachz e Y,
and Sa,,, moves each point of B(M) n sp Ui= R(8a4,) a distance less than a/2".

Proof. Let {xdi=y be dense in Y. Choose djeD such that
| 21 — Say(21) || < @. Suppose that dy < dp < -+ < dn have been chosen.
Choose dn41 € D such that d, < d,;1 and for each

®eA = {x}iZ u [B(M) nsp Uim R(Sa)],
” z = Sdﬂ-‘l-l(x) ” < a/2".

This choice is possible because {S; : d € D} converges pointwise to I and is
equicontinuous, so that the convergence is uniform on compact sets. A is
closed, bounded, and finite dimensional, hence is compact. Now for each 7,
limp.e Sa,(2;) = x;. Since {x;}im is dense in ¥ and {Ss,}n-1 is equicon-
tinuous, {,Sa,} »=1 converges pointwise on ¥ to I.

Proof of Theorem 1. Suppose that X is a dual = space. Let M > X\,
We show that X has a finite-dimensional Schauder decomposition with Gryn-
blum constant no larger than M.

By Lemma 1, we can assume that X has a dual m decomposition {S,} =1
such that for each n and each x ¢ B(M) n sp Ui= R(S:),
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(1) | £ — Sppa(®) || < (M —N)/2%
Forj > n,let T% = 8;8;4 - Sn. Nowifj > n,
(2) | T3l <[220 (M =N /20 + A < M.

Ifj = n + 1, (2) follows from the fact that || S, || < A, (1), and the inequality
[ 727 (@) | < || Sasr Sa(e) — Sa(@) || + || Sale) .
In general, if (2? holds for 7, then for z ¢ B(1)
| 737 (@) || < || 851 Ta(z) — Th@) || + || Tale) |l
< (M —N)/2 + [ 202 (M = N /2 + N,

so that (2) also holds if 7 4+ 1 is substituted for j. Note that this argument
also shows that for z ¢ B(1) andj > ¢ > n,

(3) | 7o) — Ta(a) || < 2005 (M — ) /2%

Thus the Cauchy criterion guarantees that lim . T (%) exists for each z ¢ X
andn =1,2,8,---. Let T, = lim;,, T%». Clearly each T, is linear and
I Tull < M.

Now forn > m and j = m,

TnTw = 8; - SpliMise Si -+ Sa
= limiew S; -+ SmSi-e+ Sn
= liMive S +++ S = T4

Thus forn > m, T, T = T\ . Similarly, forj > m 2> n,

TiT, = ;- S litise Si v+ Sa
= limpeS; - SuSi-++- 8,
= Sj""SmSm-—l"°°Sn = Ti.

Thus form > n, Ty, Tn = Tn. Thatis, Tw Th = Twmint,m) -

We next show that {T',}a-1 pointwise converges to I. Since Ur_; R(S,)
is dense in X and { T',} n-1 is equicontinuous, it is sufficient to show that for each
z e Unoi R(8y), limpaw Tw(z) = 2. Let 2 e Upoi R(S,), say « € R(S,), and
without loss of generality assume that « ¢ B(1). Ifj > n > 4, we have from
(3) and (1) that

| Ti(z) — 2| < | Th(z) — Sa(@) || + || Salz) — x|
< 224 (M = N/27 4+ (M = N /27
Passing to the limit on j, we get that for n > 4,
| Ta(@) — @ || < 2oiens (M — N) /2"
Passing to the limit on n, we have that lima., || Tw(z) — z || = 0.
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Now for each n,
(4) Sn Tn = Sn and Tn Sn = Tn ,

so that ker(T,) = ker(S,), and thus R(T,) and R(S.) have the same dimen-
sion. Therefore { Ty} n—1 is a 7 »-dual = » decomposition for X, and the remarks
in the introduction complete the proof.

Remark 1. Using the notation of Theorem 1, we have from (4) that 7', is
an isomorphism from R(S,) onto R(T,) with inverse S,. Thus for each
n, d(R(T»), R(S,)) < M)\, where

d(A,B) = inf{||T| - || T7" || : T is an isomorphism from A onto B}.

If each S, is of norm 1, then each T, is of norm 1, so that R(T,) and R(S,)
are isometric. Of course, in this case the generated Schauder decomposition
is monotone.

CoroLLARY 1. Let X be a dual w; space and let Y be a separable subspace of
X. Then there is a separable subspace Z of X such that Y C Z and Z has a
mi-dual w1 decomposition.

Proof. Let{Sa: d e D} be a dual 7, decomposition for X. Using Lemma 1,
we can find {dy < d» < d3 < --++} € D such that lim., Sq,(x) = , for each
zeY, and Sa,,, moves each point of sp Ui= R(Ss;) n B(1) a distance less
than 3". Let Z = {z € X : limu,o Sq,(z) = «}. Clearly Z is a separable
(closed) subspace of X and Y < Z. Now {Ss,} n=1is a dual =, decomposition
for Z because each R(Sg4,) is a subset of Z. Thus by Theorem 1 and Remark
1, Z has a m-dual =, decomposition.

The referee has noted that the proof of Proposition 6.1 in [4] can be gen-
eralized to give an easy proof of Theorem 2. Alternatively, Theorem 2
follows immediately from Lemma 1 and the following:

TueorEM 3. Let X be a Banach space and let { Sy} ne be a m decomposition
for X. Suppose that there is a sequence {Py}n=1 such that for each n, P is a
linear projection from R(Sn11) onto R(S,), and that [[nm || Pal = k < oo.
Then X has a fintte-dimensional Schauder decomposition with Grynblum con-
stant no larger than Nk.

Sketch of proof. Forn > j,let T} = P;Pjy -+« PnyS.. For each j,
let T; = limg.. T7. (This pointwise limit exists because || 77 || < M, and
for each m, {T}}%=js1 is eventually constant on R(S,).) It follows by an
argument similar to that used in Theorem 1 that {T,}n— is a mu-dual my
decomposition for X. The remarks in the introduction then complete the
proof.

We conclude this section with an unsolved problem:

Problem 1. Does every separable m, space have a finite-dimensional
Schauder decomposition?
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lll. Dual 77 decompositions in C(K) spaces

A m (resp. dual =) decomposition {S;: d e D} is a =7 (resp. dual 1)
decomposition iff each R(S;) is isometric to an l,q space. It is known [2]
that every C(K) space “almost” has a =1 decomposition, {S; : d e D}, in the
sense that each R(S;) is almost isometric to I , and that if K is compact
metric, C(K) is a =1 space [3]. It is not known whether every C(K) space is
a m space. However, Theorem 4 shows that every C(K) space is a dual =1
space.

Recall that {fi}i=1 € C(K) is a peaked partition of unity iff each f; is non-
negatively real-valued, D~ fi is the constant 1 function, and || f;|| = 1.
Sp({fi} i=1) is then called a peaked partition subspace, and is isometric to I
(cf., e.g., [3]).

TueoreM 4. Let K be compact Hausdorff. Then C(K) has a dual w1
decomposition {Sa : d € D} such that each R(Ss) is a peaked partition subspace.

Proof. Let D be the collection of all ordered pairs ({Us} =i, {#:}i=1) such
that {U.} 7= is a minimal open cover of K and z; ¢ U; — U< U;. Partially
order D by

({Udim, {2dim) < ({Viim, tydi=)
iff
{Vii=r refines {Uji= and {z}i= C {y}7=1.
It is straightforward to verify that D is directed by <. For each

({U}i=1, {xi}i=1) € D, pick a peaked partition of unity {f}i=1 such that f;
vanishes outside U; (hence fi(x;) = 8;;). Foreachd = ({Ug}i=1, {®}i=1) in
D, define the projection Sa by Sa(f) = 2 f= f(#:)fi , where {f i is the peaked
partition of unity associated with d. If d = ({Uj}i=1, {}i=1) is in D, then
clearly

ker (83) = {feC(K) : f(m1) = f(w) = -+ = f(xx) = O}.

Thus if d < e, ker (8S.) < ker (8Si), and hence S; 8. = Ss. Obviously
| Sa]l = 1, foralldeD. To complete the proof we must show that the net
{Ss:deD; <} pointwise converges to I. Let feC(K) and let ¢ > 0.
Choose a minimal open cover {V}j= of K such that if {x, y} < V;, then
|f(x) — f(y) | < e. Supposed = ({Ugfm, {%}7=1) is in D such that {U}7m=
refines {Vj}j=1. Then for all z ¢ K,

[f(x) — Sa() (@) | = |f(&) — Xt f(e)fi(z) |
= | 2ot fi(@) (f() — f(2)) |
< Xifu@) | f(x) — f(z) | =k,

where {f}7=1 is the peaked partition of unity associated with d. Now if
zeU;, |f(x) — f(z:) | < e, since {U}jm refines {Vj}j=1. Ifx ¢U;, then
fi(z) = 0. Hencek < Y 1= fi(x)e = e. This completes the proof.
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Remark 2. The proof of Corollary 1 shows that a separable subspace of a
dual 77 space, X, is contained in a separable =1 -dual =1 subspace of X. Thus
by Theorem 4, every separable subspace of C'(K) is contained in a separable
w1 subspace of C(K). In particular, when K is compact metric, we have the
result of Michael and Pelezynski [4], that C(K) is a =1 space.

Recall that a Hausdorff space K is a Boolean space iff the compact-open
subsets of K form a base for the topology. In [1], Dyer notes that Theorem 4
can be improved for Boolean spaces:

TuaroreM 5. If K is a compact Boolean space, then C(K) has a w1 -dual w1
decomposition {Sq : d e D} such that for each d € D, R(S4) vs spanned the charac-
teristic functions of the elemenis of a pairwise disjoint compact-open cover of K.
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