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In [4] we developed an obstruction theory for not necessarily simply con-
nected spaces. Fundamental to the application of this theory is the com-
putation of the group H" (L (o, m), .)) which corresponds to the group of
cohomology operations of type (m, n, q, q,.). We showed that this group
could in theory be computed by a modified Serre spectral sequence. But,
except for special cases no attempt was made to compute this spectral sequence.
In the present work we explore this computation question. We present

an alternate formulation of our spectral sequence as the spectral sequence of a
bigraded module. We then explore the two filtrations that such a module
presents. The usual filtration contains little new information. However,
the second filtration makes possible extensive computations, moreover, it
exhibits the relation between the equivariant cohomology theories and our
investigations.
We would like to thank the referee for his many helpful comments especially

with regard to Section 2 below.

1. Rigid bundles
In this section we introduce a category whose obiects re bsiclly fibre

bundles with discrete group, but whose maps are subject to a special condition.
We begin by recalling some information from [6].

Let F

___
B -- X be a fibre bundle with group G. We assume throughout

ttmt X is path connected. In general, given x0, x e X and a path C I --* X
with C (0) x0 and C (1) x we may lift the path (not necessarily uniquely)
to C I X F0 --* B such that Ca X Fo

_
Ft is a homeomorphism.

1.1 LEMMA [5, 13.2]. If the topology of the group G is totally disconnected
then translation of fibres along curves is a unique operation.

1.2 LEMMA [5, 13.3]. If the topology of G is totally disconnected let C and
C,. be paths from Xo to x and x to x,. respectively. Let C C,. be the standard
composition from Xo to x then

C (1 C( 1 Fo) ) (C o C,) (1 F,) ---, F,.,..

1.3 LEMMA [6, 13.4]. If the topology of G is totally disconnected. Let C
and C’ be paths from Xo to x, that are homotopic by an end point preserving
homotopy then C(1 X Fo) C’(1 X Fo).
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Motivated by the above we define a category that allows application of the
theorem on acyclic models [5]. For x0, xl e X let P (x0, xl) be the space of
paths from x0 to xl. Let Ph (x0, x) be the set of equivalence classes of
P (x0, xl) under end point preserving homotopy.

1.4 DEFINITION. We define , the category of Rigid Bundles as follows"
The objects of (B are. pairs (B, r) where B is a bundle

FCB P ;X

over a path. connected base pointed space X. (Note: "bundle" simply means
locally a product), r is a function which satisfies the properties 1.1-3. More
specifically, for each x0, xl e X we are given

r Ph (x0, xl) X F0 --+ FI
a homeomorphism for each c e Pa (x0, x) satisfying the following.

(a) For c e P (x0, xl) and c’ Pa (x, x) we have

re, rc root, F --* F
where re(x) r(c, x).

(b) r is continuous. That is, let h0 U0 F -. B and h U X F -- Bbe local homeomorphisms. Let P (Uo, U) be the space of paths starting in
U0 and ending in U. Consider the map

, P (Uo U ----> C (F, F)

defined by the formula (p) (x) r h-lr[ h0 (p (0), x). We assume , is
continuous where C (F, F) is the space of continuous functions F to F.

The morphisms of our category, written ] (B, r) -o (B’, r’) are fibre maps
that commute with r and r’. That is, pairs of maps (f, f’), f’ base pointed,
such that

(1) pf f’p
(2) r,()f fr F --+ F,( where ceP(xo, x)
1.5 Remarks. (a) The map f is completely determined by f’ and

f0 F0 --* F’(0)
(b) Given a fibre bundle B with totally disconnected group there is u

natural choice for making (B, ) into a rigid bundle.
(c) The only rigid bundles over simply connected spaces are product

bundles.

We now define two functors from to , the category of chain complexes,
and show that they are naturally chain homotopic.

1.6 DEFINITION. Let T: -. be defined by T(B, r) C.(B, M)
the singular complex of the total space of the bundle with coefficients in a
module over a commutative ring with unit R.
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We now define T’" (R -- e. Let F F and let r rl (X, ) then
C.(F, M) is a left R[,r]-complex by the formula g.[c’q] [r(g)c] where
cq" Aq

--* F is the map corresponding to the generator [c]. Note that the
boundary homomorphism d commutes with the operations of r.
Now let C. (X, M) C. (X, M) be the subcomplex generated by singular

simplices sending vertices to . Let [e] e C. (X, M) and let g[e] e r be the
class represented by the loop corresponding to the leading edge of e. We
define d on C, (X, M) (R) R C. (F, M) by the formula

(:.7) & ([,1 (R) [c]] [0] (R) [,].[c] + -: (-1)’[,,1 (R) [c]
where the are face operators.
We note that3(1 (R) d) (1 (R) d).

1.8 DEFINITION. T 6t --* is now defined as follows"

T’ (B, r) O,(X, M) (R) C,(F, M)

with the usual grading and usual total differential associated with 3 and
(1 (R) d). T’ (]) is the obvious tensor product.

1.9 THEOREM. The functors T and T’ are naturally chain homotopy equiva-
lent.

Proof. The proof is based on Spanier’s version of the theorem of acyclic
models [5]. We sketch the necessary details. Let

X X Y r X.

be the product bundle over X. Let ,x.r be the obvious produc translation
then the models for T are (Aq X Aq, ,aq.aq) and the models for T are (& X Aq,
va.a). Clearly the models for T(T’) are acyclic in T’ (T).
T is free on [d,] where d. A" A" X A" is the diagonM map.
T is free on [1] @ [lq]+q=. where 1" A A is the identity map us is q.

Freeness in each case follows from an examination of 1.5.
It should be noted thut if we use cubical singulur homology ubove, there is u

naturM trution preserng choice for the chMn equivalence T T. We map
@ cq to the p + q cube %+q in B defined by

c+(h, t, t+, t+) -c’(t+, t+),

where c- is the cluss of the pth p I X defined by p (t) e (th, ..’, tt).
We now cust the ubove into the setting of [4]. In purticular, we ussume

that we are ging a fibration

F B P.. (X, xo)

over a path connected space X. Assume also we are given a local system of
R-module over X. We set p* (Note is tribal in each fibre).
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1.10 DEFTON. (a) Assume we are given a rigid bundle (B, r) and a
local system 5 on X. We define (F, 5) to be the local system of complexes
over X with * (F, ) *(F, M). Let b(t) I -- X be a path from
x0 to xl. We define

to be the composition of

* "C*(F M)--C*(F, M) and"rib]

* (5-1)" C* (F M) --* C* (F,, M,,).

As in 1.6, the coboundary, commutes with the actions of the b*.
(b) Letting F p- (x0) and M M, we form the double complex

’ (X, Cq (F, M)). The differentials are/, and , the coboundary in local
coefficient theory.

1.11 THEOREM. Let (B, r) and be as in 1.10. There is a filtration-
preserving natural chain map between C* (B, 9) and the total complex of

* (X, C* (F, M)) filtered on the first index. This chain map induces an iso-
morphism of the corresponding spectral sequences on the E-level.

2. The natural filtration

In this section we briefly examine the natural filtration. Little new will be
gleaned from this filtration. In fact, this section serves more to illustrate the
difficulties presented by the usual filtration than ways to circumvent them.

2.1 DEFINITION. A first quadrant spectral sequence (E’, H"(S)) si
called d-split if for each/c there is a spectral sequence (E ’q, H" (S)) and
spectral sequence maps

E’ -+ E’,
a :H (S) -- H (S),

satisfying
(1) a 1,
(2)
(3)

H" (S --> H" (S

a Ef ’q E, ’q,q-[-d < kandr >_ 0,
kerr ’q O, q > nd r >_ 0.

2.2 LEMMA. A sucient condition for a spectral sequence to be d-split is the
existence for each ]c of a spectral sequence (’q, H" (S) and maps and
satisfying (1), (2) and (3) of 2.1 for r O.

Proof. Clearly we must only check (2). Assume we have verified (2) for
some r >_ 0; we show (2) holds for r - 1. Consider the diagram

,q+r-1 ], -Fr,q-r-klE’q -->

12--r q-r--1,., -.., E’ --, E+,-+.
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Since + and E+ are the cohomology of the middle terms of the horizontal
sequences a simple diagram chase completes the proof.

2.4 THEOREM. A d-split spectral sequence satisfies the condition E$qd E’q

for all p, q. Ifin addition d 0 andE’ 0for k <_ n 1 thenE’q EE’
for q

_
n and H (s),. +.. Ef’qt <_ n.

Proo]. The proof of the first part of the theorem follows by examining the
following diagram

E-",q+- E,q d’q

E$+’,q-+

(*) Ilf Ilf
:---r ,q+r--1 kE+r,q-r+l0 E’q

where r >_ 3 d and ]c q - d 1.
For the second part we notice that the condition E’’ 0 for k _< n 1

in conjunction wigh (,) for r 2, implies E’’q E’’q q _< n. Now the first
part of this theorem with d 0 implies E[ ’q E’q. The splitting follows
from a straight forward examination of the composition series for H (S) in
relation to the various composition series for H (Sk), k _< t _< n. One uses
the maps ak and to establish the splitting.
The above theorems may now be applied to the situation of Section 1. As

before we have (B, r) and 5; we also let r rl (X, x0).
We give several applications of the above theorem. Unfortunately, as

mentioned above, none of the applications are useful in a general way.
In each case a 0-splitting will be obtained by considering an appropriate

splitting of C, (F, M),

2.4 THEOREM. Suppose R and R[v] are principal ideal domains (P.I.D.)
and C, (F, R ) is free as an R[r]-module; then the spectral sequence of 1.11 is an
E3 E.o spectral sequence.

Moreover, if C* (F, M] is free as an R[r]-module then the spectral sequence is
an E2 Eoo spectral sequence and

H (B, ) . ,+q.. H’ (X, 5Cq (F, ) )

Proof. Consider the following commutative diagram of R[’]-modules.

d-1 i0--C0(F,R)*--... Ck_(F, R) B_(F, R) ,- O O

(2.5) llfa llfa & $’ a ’0 --- Co(F, R) -- -- C_(F, R) C(F, R) --- Ck_(F, R)

where B_ (F, R) image d,i dF and7 is any lifting ofa with t 1.
t- exists since B_I (F, R) is R[r]-free being a submodule of a free R[]-

module. The construction of the 0-splitting is now easy. The hE spectral
sequence is that of 1.11 with the top line of 2.5 in place of C, (F, R).
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If C* (F, M) is itself R[r]-free, the splitting map may be defined directly on
C* (F, M) giving the necessary additional conditions needed for an applica-
tion of the second part of 2.3.

2.6 Remarks. The conclusions of 2.4 hold with the following slightly al-
tered hypothesis; C (F, R) (resp. C (F, R)) is free only for n > 0.
E..o,.. .oE for all p. In 3.5-9 below we see that the conditions on C (F, R)
and E’ always are present in the study of local cohomology operations, and
the condition on C (F, R) is true in a large number of situations. However,
the assumption that R[] is a P.I.D. is quite strong. In fact, usually we may
infer 2.4 more directly (see [4, 2.13]) when this condition is present.
As can be seen from the above a 0-splitting can be produced by constructing

an R[r]-splitting of the chain complex C, (F, R) then passing to cohomology.
Another situation where this is possible is the following generalization of the
Kunneth formula.

2.7 THEOREM. Let B X X F and let R be a P.I.D.; then the spectral
sequence for B is an E E spectral sequence.

Proof. Consider the diagram (2.5) as a splitting of C, (F, R) considered
as a complex of R-modules. This is possible since R is a P.I.D. Since the
action of r is assumed to be trivial it is automatically a splitting of C, (F, R)
as a complex of R[r]-modules. Now all goes as in 2.4.

2.8 Remarks. As in 2.4, we may improve 2.6 by insisting that R[] be a
P.I.D. and M be R[v]-free but again this has limited application.

We leave unstated theorems employing full use of the concept of d-splitting
since they involve obvious statements about the global dimension of R and
R[] and again are not particularly useful.

3. The second filtration
The major problem in applving 2.4 of the previous section is the strong

algebraic condition needed for R[r]. In this section we show that in our situa-
tion we can make do with a condition that is more often present.

3.1 DEFINITION (2]. Let A be a ring; we say A is self injective if A is injective
when considered as a left A-module. (Note A need not be commutative.)

3.2 Examples of self injective commutative rings.
(a) Let R be any field
(b) Let R Z, the integers mod n for any n.

3.3 THEOREM [2]. Let R be a commutative ring. Let r be afinite group. R is
self injective iff R[] is.

We will use 3.3 in conjunction with

3.4 LEMMA. Let M A @ h be the free A,module on n generators;
then h self injective implies M injective.
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3.5 Remarks. We now apply the results of Section 1 and the algebra above
to the computation of the group H (L (1, m), (L)).
To quickly review the situation presented in [4], we have a bundle with

cross-section K (G1, m) L (1, m) --+ K 0r, 1 ), where and are actions
of r on R-modules G1 and G respectively and 1 induces a base point preserving
action of r on K (G, m).. L is the universal r bundle over K (r, 1). We
note that because of the actions of r on K (G1, m) and G we can speak of
He (K (G, m), G.) the nh equivariant cohomology group with respect to this
action. (See [7].)
We let

d0.+- R II0 +- II

be a free R[,r] resolution of R. We let II. be the associated unaugmented
complex.

3.6 THEOREM. The cohomology group H (L (, m), q (L)) may be com-
puted from the total complex associated with the double complex

C*Hom (II., (K (G, m), G2) ).

Proof. 1.11 and elementary considerations about the spaces K (,r, 1).
We now state the main computational theorem.

3.7 THEOREM. Suppose the complex C* (K (G1, m ), G) is injective except
in dimension O then

H’* (L (q m), (L)) -- H (g (GI m), G2) H (g Or, 1 ), q2 ()

Proof. Instead of filtering the double complex of 3.6 on p we filter on he
second index q and denote this spectral sequence by ’E’’a. We note the fol-
lowing consequences of the injectivity of C (K (G, m), G) q > 0.

(1) ’E ’q O for r, p, q all > 0.

On the other hand

(2)
(3)
(4)

Now taking into account the existence of a cross-section we may conclude
from (1), (3)and (4)that

0, ,E;(5) E.-
(6) ’El’ = ’E’.
Now using the cross-section (1), (5) and (6) we conclude

h-n,0g (L(q,, m), (L)) --" @

This in conjunction with (3) and (4) completes the proof.
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We have yet to show that the condition C (K (G1, m), G) iniective is rea-
sonable. To do this we use the following lemma of Bredon [1].

3.8. LEMMA. We may choose the space K (GI m) in such a way that the group
rr acts on the cells freely except in dimension O. Hence we may assume that the
chain complex

R Co (K (G, m), R) <--- C (K (G, m), R) ,-- C, (K (G1, m), R)

is a free R[r] complex except in dimension O.

We also will need the following algebraic fact. We assume r is finite.

3.9 LEMMA. Let M be an R[r]-module that is free and finite dimensional as an
R-module. Let F be a free and finite-dimensional R[r]-module. Then
Hom[F, M] is a free R[r]-module under the usual action g ( g o q g-1 for
q e Hom.[F, M] and g r.

Proof. Let e, et be a basis for M. Define e Hom[R[r], M] by

q:[r[1]] re, 1 e r,

,[r[g]] 0, g 1 e -One shows forms an R[]-basis for Hom[R[r], M] using the fact that for
any g e r, [g]el, [g]et also is an R-basis for M. The case of a general F
now follows quickly.
We now give applications of the above.

3.10 THEOREM. Assume G is a self-injective ring. Let be trivial, r be
finite and G finitely generated. We have

H" (L( m), ( ) ) H (K (G m ), G @ H" (K (r, 1), G.)

that
The triviality of . combined with 3.9 and 3.8 allows us to conclude

C (K(G,m),G.)---,CI(K(GI,m), G)----> ---C(K(G,m),G)--
is a free G[r]-module except in dimension 0. We now use 3.3 and 3.4 to con-
clude that it is injective except in dimension 0. 3.7 completes the proof.

3.11 THEOREM. Let G. be a finite-dimensional vector space over a field . We
have

H" (L( m)q(/)) H, (K (G m ), G. @ H" (g (r, 1), ,(L))
Proof. As before.

We now give a direct application of 3.11.

3.12 Application. Let P be a pseudo projective space of dimension n (See
[3];P =P"). Forn>2,
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k 1 copies of the group Z. The action of Z on r+l (P’) is

[ul-, [], ..., [u_]-, [u_], [u_]-, [u] + + [u_]

We state the following theorem which follows at once from 3.11. We refer
the reader to [4] where the importance of the theorem in the obstruction theory
of pseudo projective spaces is explained.

3.13
H"+ (Lz, (r, (P), n), r,+l (P)--- H;+ (g (r, (P ), n ), rn+l (P ) @ H"+ (g (Z, 1 ), r+(P$ ).

3.14 Final Remarks. It is possible to avoid self injectivity at various places
by computing the homology spectral sequence then duali,ing to cohomology.
This is true for example in 3.10. However, the theorems then take a less pleas-
ing form. More important, when we are forced to study non-trivial systems as
in 3.11 there are no general coefficient theorems which allow such duali,ation.

It should be noted that 3.13 can also be derived by the methods of [4].
One of the points developed in the next section is that this is not always the

case.

4. Extendability of cohomology operations
In this last section we discuss the question as to which cohomology opera-

tions extend to local coefficient theory [4]. We will present various algebraic
and geometric conditions on cohomology operations and discuss their necessity
and sufficiency for the extendability of that operation. Finally, we will draw
implications from these conditions about the spectral sequences in Sections 2
and 3 above.
We begin by listing the properties of cohomology operations we will use

below. Again, [4] offers a more complete guide to the notions involved.

4.1 DEFINITION. Let q r X G --* G (i 1, 2) be as before. For each
y e r we have . G -- G an automorphism of G. This induces auto-

* H* (X, G) --. H* (X, G). We call a cohomology operationmorphism .
0, of type (m, n, G, G), (1, .)-equivariant if * *., 0, for all y e r.

4.2 Remarks. This definition can be formulated in a geometric form. As-
sume and act in K(G, m) and K (G, n) as before.

If we assume 0 is given as a map K (G, m) --. K (G, n) then (1, q.) equi-
variant is equivalent to 0 being homotopy commutative with respect to and. Implicit in this is the fact that homotopy commutibility does not depend
on the model chosen forK (G, m) andK (G, n). This can be quickly checked.

4.3 DEFINITION. In the setting of 3.5 let

i K(G, m)

_
L(q, m).
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We say 0 e H" (K (G m), G) is ( )-extendable if 0 e image i* where
i* H"(L,(I, m), 2(L)) H"(K(G1, m), G2).

The form of 4.3 is suitable for our present investigations, but, in fact, the
(1, )-extendable operations are exactly those that extend to L.C. theory
[4, 2.3].

4.3 can also be cast into a geometric form [4, 2.5] in which (1, .)-extendable
is shown equivalent to the existence of extensions of certain cross-sections.
Again, it is simple to show that this property does not depend on the various
models chosen.
We now relate 4.1 and 4.3. As before we let E’q be the usual wisted spec-

tral sequence for the bundle

K(GI, m)

_
L(q, m) P K(r, 1)

with coefficients in . (L).

4.4 THEOREM [4, 2.10 and 2.12]. Identifying H" (K (GI m ), G) as E’ we
have

(a) is ( .)-equivariant iff 1 0
(b) is ( q)-extendable iff r 0 for all r,

hence
(c) an operation is ( .)-extendable only if it is (, )-equivariant.

Below we show that the converse does not hold, but first we consider a third
condition on an operation. This condition is related to the spectral sequence
of Section 3.

4.5 DEFINITION. AII operation 0 is called (, .)-s(trongly)-equivariant if
there exist models K(GI, m) and K(G, n) and a fixed representation
K (G, m) -. K (G, n) with q, 0 0, y e . (See 4.2.)

Obviously finding a map 0 that commutes with the in the prescribed way
will depend on the models chosen for K (G, m) and K (G., n).

For example, let be the trivial action of Z on Z. Let K (Z, 1) be
the circle with trivial Z action and K’ (Z, 1) be a "free" model (see 3.8).
One checks that there is no representative of the identity operation with the re-
quired commutivity property. On the other hand, we have the following
lemma.

4.6 LEMMA. Let 0 be a (, q)-s-equivariant operation. We can find a
K (G, m) --. K (G., n) with q, 0 Oq,, y r and with K (G, m) a "free"

model (see 3.8.)

Notice that if we consider equivariant maps and equivariant homotopy
classes with K (G, m) a free model we get the group H (K (G1, m), G.) con-
sidered in Section 3 above.
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A complete discussion of the que stion of choice of model can be found in [1]
but is not needed below.
We now relate 4.5, 4.3, and 4.1.

4.7 THEOREM. (a) A (1, q2)-s-equivariant operation is (1, 2)-extendable
and (1, .)-equivariant.

(b) Let 0 be (1, .)-equivariant. Suppose H’-1 (K (GI, m), G.) O.
Then is (, .)-s-equivariant hence ( 2)-extendable.

Proof. Most of the above is an exercise in ho-motopy theory. The .only
point requiring care is part (b) where we must choose a free model forK (G, m),
then notice that the obstruction for a (, .)-equivariant operation to be
(, .)-s-equivariant lies in the group which is assumed to be zero.
In a sense 4.7 is a best possible result since we now give an example of an

operation that is (, )-equivariant but not (, )-extendable hence not
(, )-s-equivariant.

4.8 Example. Let G Z2 Z and let G. Z. Let r Z. act of Z. @ Z2
by interchange of factor and let Z act on Z4 non-trivially (i.e. multiplication
by 1 ). We exhibit an element e H (K (Z @ Z), 1 ), Z4) with the property
that in the spectral sequence for Lz (Z @ Z2)^, 1 with coefficients in 4 we
have 1 0 but 0. It is convenient to exhibit on the chain level.
Let the cochain complex for K (Z., 1 with coefficients in Z4 be given by

do d d
Z[e0]- Z[e] Z[e,] Z[e+,.]--

with d 0 for n even d multiplication by 2 for n odd. We let
Zde’,,] be a second isomorphic complex. Then the eoehain com-

plex C* (K (Z @ Z), 1 ), Z) can be considered as the tensor product of these
complexes. Let Z2 act on this complex by e (R) e --. e. (R) e. We let 0 be
the class of the cocyele 2 (e (R) e). This eoeyele represents a class that is
(, .)-equivariant since 2 (e (R) el e (R) e) (e (R) e). We know then
in light of 4.4, that 1[0] 0. On the other hand we can check that 8 0 e E’
is not ero. In fact, if ,-- Z[g] -- is a chain complex for K(Z, 1)
then 8 0 is represented by the coehain in

C (g (Z., 1 ), C’ (K (Z2 @ Z2, 1,), Z)

given by (g.) 2 (e (8) e ).
4.9 Final Remarks. 4.8 allows us to drav several conclusions. First, it

allows us to separate the notion of (, .)-equivariance from the other two
notions presented above. Second, since Z is a Z[Z] module that is free as a

Z module, the spectral sequenceof Section 3 collapses. However, the in-
terest in the above example is that the usual spectral sequence does not collapse.
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