PROJECTIVE DIAGRAMS OF INTERLOCKING SEQUENCES

BY
Ross H. STrEET!

1. Introduction

A complex over an abelian category @ with enough projectives is projective
as an object in the category of complexes precisely when the kernel of each
of its (boundary) maps is projective and the homology of the complex is zero
in each dimension. This paper shows that the projective objects in a more
general category of diagrams of interlocking sequences over G are those
diagrams with the kernel of each map in the diagram projective and with each
of the sequences exact.

Let N be a fixed integer greater than 2. Denote by ® the pointed category
whose objects are pairs (s, ¢) of integers satisfying s — N < ¢t < s, whose
hom-sets are given by

R((s t), (u,v)) =2 Z, whenu — N <t<v<s=<u

=~ {0} otherwise,
and whose composition

®R((u, v), (w, 2))OR((s, 1), (%, v)) = R((s, t), (w, 2))
is the isomorphism Z, ® Z, — Z, when all three hom-sets are Z, , and zero
otherwise. (Here ® denotes the coproduct of pointed sets.)
For (s, t), (u,v) e®, t < v, 8 < u, the symbol (s, ¢; , v) will denote the
non-zero element of ®((s, t), (u, v)) when it has one, and the zero element
otherwise; the rule of composition in & may be expressed by

(u, v; w, x)- (8, t; u, v) = (8, t; w, :E)
Put 6 = (s, t; u,v). The integer I; = u — s + v — ¢ is called the length of
6. Ifls; > N — 1then dis zero. Ifl; = N — 2 then § is non-zero precisely
whenu =N+ t—1Lv=8—1 Ifl;=0thenu=s0v=1¢ Ifl =1
then 6 is non-zero and either v = s + L, v =toru =s, v =t + 1. If s
is non-zero (i.e. u — N < ¢t < v < s < u) then we also define integers m; =
s—v—1landns =N —[; — 2. NoticeO <ms; <n; <N — 2.
An ®-sequence is a diagram in ® of the form

(u, v) 260, oy (BOEU)

or

(t, v) (2, 05 ¢, u)>(t, u) (t; u; v + N: u)’ (‘l) + N, u)
forv <u<t<wv+ N.
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The following diagram illustrates the maps of & of length 1 in the case
N =5,

1,0 2,1 3,2 4,3 5,4
NN 2N AN
2,0 31 4,2 5,3

N 2N 2N 20N AN A

2,—1 3,0 4,1 5,2 6,3

2 NN 2N AN AN
3,—1 4,0 5,1 6, 2

The category of diagrams of interlocking sequences we wish to consider is
the category ® of pointed functors from ® to @ and natural transformations.
A pointed functor D:® — @ will be called exact if it takes each ®R-sequence into
an exact sequence of Q.

The aim of this paper is to prove the following result.

TurOREM 1. The pointed functor D:® — @ s a projective object of D if and
only if it is exact and the kernel of each of the maps

D(s, t; u,v) : D(s, t) = D(u, v)
18 a projective object of Q.

Motivation for considering the category D may be provided by the follow-
ing. Let A be a complex over @, and let

0=A4"<4'< ... <4 =4

be a filtration of A of length N — 1. An object D of © may now be defined.
For any integer r and for integers p, ¢ such that 0 < ¢ < p < N, put

D(p —rN,q — rN) = H,(A"/A")
and

D(g— (r — 1)N,p — rN) = H,,(A"/AY).

This determines D (s, t) uniquely for all (s, ¢) ¢ ®. It is a routine matter to
check that the inclusions of the filtration and the boundary maps of 4 in-
duce maps D(s, t; w, v) : D(s, t) — D(u, v) in @ as required to make D an
object of . Moreover, D takes the ®R-sequences to portions of the long exact
homology sequences of the short exact sequences

0> AY/A" > A"/A* - A"/AY -0
of complexes over @. So D is exact. Such diagrams appear in [W, p. 98].

2. One way is easy
Let E,, : © — @ be the functor which evaluates at (y, z) ¢ ® The left

adjoint J,, of E,, exists and takes an object 4 of @ to the functor J,, A: ® — @
as follows.

(a)
(Jy: A)(s,t) = Awhens — N <z<it<y<s,
= 0 otherwise;
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() foru — N <t <v<s< u,the map
(Jye A)(8y 5 u, v) 2 (e A) (3, 8) = (Jye A) (u, v)

is the identity of A whens — N <:2<t<y<s,u—N <z<v <y <L uy,
and zero otherwise.

Suppose for each (y, 2) ¢ ® an objeet A (y, 2) of @ is given. The coproduct
D = Ea—N<z<y Ju A(y, 2)

exists in D; in fact, it is given as follows.

(a) D(8,t) = X enecexicy<s Ay, 2) (a finite direct sum);
(b) foru — N <t <v<s < u,the map

D(s, t; u, v) : D(s, t) = D(u, v)

corresponds to the matrix whose typical element 4 (y, 2) — A(y’, #') is the
identity map when y = 3/, 2 = 2/, and is the zero map otherwise.

D is an abelian category with exact sequences those sequences which go
to exact sequences in @ under all the functors E,,, (y, 2) e ®. The theory
of [EM, Ch. II §3] caters for this situation.

LemMa 2. The poinied functor D : & — @ is a projective object of D if and
only if it 1s a retract of an object of the form

Zy—N<z<v Juz A (y, z),
where A (y, 2) is a projective object of @ fory — N <z < y. ||

ProrosiTion 3. If D is a projective object of D, then it is exact and the kernel
of each of the maps D (s, t; u, v) 18 a projective object of Q.

Proor. The properties in question are preserved by retracts. The direct
sum of a finite number of exact sequences in @ is exact, and so by Lemma 2
it suffices to prove the proposition for D = J,, A, where 4 is projective and
(y, 2) e ®. The kernel of any map in D is either 0 or 4, and so projective.
Suppose

(s, ) = (u,v) = (w, z)
is an ®R-sequence. Ifu — N < z < v < y < w then it is readily checked that
s—N<z<t<y<sistrueprecisely whenw — N <z<z < y < w
is false (in fact, this property, for all (y, 2) ¢ ®, characterizes the ®-sequences
—Dbut this is not needed); so D takes the R-sequence to either

A—1>A-—->O or 0—>A——1-—>A,

each of which is exact. Otherwise D(u, v) = 0, and so D necessarily takes
the ®-sequence into an exact sequence. [

3. The necessary machinery

Let & denote the pointed category with three objects —1, 0, 1 and with
only two non-zero non-identity maps —1 — 0, 0 — 1. Let X, denote the
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tensor product (as pointed categories) of n (= 0) copies of &. The object
of X, will be denoted by 1; the objects of X, for » > 0 are the functions

a:Q, ={1,2, .- ,n} ={-—1,0,1}.

In particular, we let o € &, denote the function from @, to {—1, 0, 1} given
by o(¢) = OforallzeQ,. An n-corneris an object a of X, such that a(z) #
Oforalli eQ,. ForieQ, andXe{—1,0,1},let T : %,y — X, bethepointed
functor which takes @ e K,_; to Tha € K, given by

(Ta) (5)

I

a(j) for 1 <j <73,

=\ for j =71,

=a(j—1) for 1 <j<n.
The maps —1 — 0, 0 — 1 in the ¢-th copy of X in X, give a sequence
T — T — T;

of natural transformations for each 7 ¢ Q, .

The category of pointed functors F : X, — @ and natural transformations
will be denoted by F, . An object F of &, is called an n-dimensional three-
diagram in @. We say F is exact if, for each 7 € Q, , the sequence

0— FT* > FT? — FT; —0

is exact in §F,—; . An exact 1-dimensional three-diagram in @ is a short exact
sequence in @. We say F ¢ F, takes projective values if, for each a ¢ X, , Fa is
a projective object of @.

ProrosiTioN 4. If F is an exact n-dimensional three-diagram which takes
projective values, then F is a projective object of Fn .

Proof. If n = 1 then F is the direct sum of the two short exact sequences

0—>F(—1)—>F(-1)—>0-0
and
0—-0—-F(1)>F(1) >0

which are easily checked to be projective in &, ; so F is. Forn > 1 an exact
n-dimensional three-diagram in @ is a short exact sequence in F,_;, so the
result follows by induction. |

Fora,beX,,a < bmeansa(z) < b(z) forall7eQ,. Let

Sa = {c| ¢ is an n-corner and ¢(¢) = a(z) when a(z) = 0}.
Let 8 = So be the set of n-corners.
Remark 5. Ifa < a’/,ceSa, ¢’ ¢Sa’ and ¢’ < ¢, then ce Sa’ & ¢’ ¢ Sa .}

Remark 6. ST3a is the disjoint union of ST7'a and 8Tia, for1 < ¢ < n
and @ € Xn—1 .
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Suppose F is a function which assigns to each n-corner ¢ an object Fe¢ of Q.
Define ) F €%, by

(1) (L F)a = D eesa Fe for a e X, ;

(ii) fora, a’ € %X, suchthata < a’, (2, F)a — (2_F)a’ is the map corre-
sponding to the matrix with typical element F¢ — F¢' the identity map when
¢ = ¢, and the zero map otherwise.

It follows from Remark 6, that ) F is an exact n-dimensional three-diagram.
In fact,

(XFP)T: = ()T & (X F)Ti

Remark 7. If FeS,, 1 <4< mand =1 <\ <1, then > (FTY) =
(ZF)Th |1

A splitting of F ¢, is an isomorphism f : F — 2 F in &, such that f, is
the identity of Fc for each n-corner ¢. If such an f exists then we say F
splits.

ProrosiTioN 8. Ezact n-dimensional three-diagrams, which take projective
values, split.

Proof. Suppose
0-4-> B2 -0
is exact, C is projective and f: A — A’, g : C — ('’ are maps, all in some

abelian category. Let r be a left inverse of <. Then the following diagram

commutes:
P .
d
—C'.

(0, 1)

A —*, B
1 @)
A —(—(1;)—»11'@0'

Forn = 1 the result follows from the above by taking A’ = A,C’ = C,f = 14,
g = 1z. We prove the proposition by induction on n. Suppose the result
is true for n — 1 where n > 1. Let F be an exact n-dimensional three-
diagram taking projective values. Then FT) is exact and takes projective
values. By Proposition 4, FT) is projective in §,_y . The sequence

0—FTT' - FT{— FTi — 0
is exact in F,—; . By induction there exist splittings

f:FT7 > > (FTTY, g¢:FTi— X (FT}).
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By the above, and using Remark 7, there exists a commutative diagram
FT;* — FTT —  FTi
1o
(NI = (ZPTi— (X P)Ty

that is, there exists an isomorphism (% is an isomorphism by the short five-
lemma) &k : F — Y F which agrees with f at points in the image of 77", and
agrees with g at points in the image of T:. Each n-corner is either in the
image of T7" or in the image of T4, so k is the identity at each n-corner. So
F splics. |

ProrosiTioNn 9. Suppose F, F' are functions which assign an object of G to
each n-corner. Then F,(>_ F, > F') is isomorphic to the additive group of
matrices D ces Fec — 2 oes F'c with elements Fc — F'c’ zero whenever ¢’ £ ¢
the isomorphism s given by

f=U)1—f.
Proof Suppose f : Z F — > F’; we show that f, is such a matrix. If
¢, ¢/ are m-corners and ¢’ £ c, then there exists j € @, such that ¢(j) = —1,

c(j) = 1,50 ceS8T;'0and ¢’ € STjo. Thus Fc — F’¢/, induced by f, , factors
as

Fec— (X F)T7 o—>(ZF)o (2 FYo— (2 F)Tio— F'¢;
but this is zero since the following diagram commutes:
(X F)T5'0 — (22 F)o— (2 F)Tio
Jro fol 1f’.";~a
(X F) T30 — (2 F)o— (2 F)T.

Suppose a map g(¢, ¢’) : Fc — F¢’ in @ is given for each pair ¢, ¢’ of n-cor-
ners with ¢’ < ¢. ForaeX,,let

fot (X F)a— (X F)a
be the matrix e F¢ — D cesa F'c with typical element Fc — F’c’ equal to

g(c, ¢’) when ¢’ < ¢, and equal to the zero map otherwise. From Remark 5
it follows that, for a < a/, the following square commutes:

Zces’a Fc— Zceﬂa' Fe
| |
ZceSa F/C d ZceSa' F’c,
where the rows are the maps of the diagrams >, F, >, F’. Thus

f=(0): ZF_)ZF'

is a well-defined map of &, such that fo = (g(c, ¢’)). So fI— fo is surjective.
Suppose f = (f.) : 2L F — > F’ is a map with f, = 0. We show that
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f1'— f, is an isomorphism by proving that f, = O for each a ¢ X,. Take
a € X , and define b € X, by
b(¢) = a(i) when a(z) = —1,
=0 when a(z) = —1.
Then Sa < 8b < So, and the following squares commute:
(XFo— (X b (XFa— (X Fp
Ol lfb fal fb
(X FYo— (X F) (2 F)a— (2 Fb.
The horizontal maps of the first diagram are projections, so f, = 0; those of
the second are coprojections, so f, = 0 as required. [

Prorosrrion 10. Suppose F, F' are exact n-dimensional three-diagrams
which take projective values. Suppose, for each a € K. except @ = 0, & map
Ja : Fa — F'a is given, such that, whenever o % a < o' % o, the following square
commutes:

Fa ——-f“—> Fla

L]

Fo' —'—>f F'o'.
al

Then there exists a map f, : Fo — F'o such that f = (f,) : F — F' is a map of
gn .

Proof. By Proposition 8 and the nature of this proposition, we may suppose
F=>F F =Y F. Letm, P € X, be the objects given by m(¢) = —1,
p(¢) = 1forallied,. Suppose c, ¢’ are n-corners with ¢’ < ¢ but not both
¢ = mand ¢ = p. Then there exists j ¢ Q, such that ¢(j) = ¢/(j). Define
b; e X, by

b;j(¢) = ¢(j) fori =
=0 otherwise.
Then ¢, ¢’ ¢ Sb; and ¢’ < ¢, s0
Joit Zus’b; Fe — Z«Sbj Fle
induces a map F¢c — F'c’. If also ¢(k) = ¢/(k) for some k = j (say j < k),
we show that the resulting map Fc¢ — F’c’ induced by f;, is the same as the
one induced by f5; . Let d ¢ X, be given by

d(i) = c(j) fori =y,
c(k) fori =k,
=0 otherwise.

From the hypothesis of the proposition, f;; and f, both induce f; : Fd — F'd,
and this induces a unique (Proposition 9) map F¢ — F'c’.
Choose any map Fp — F'm in G whatever-for example, the zero map.
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Now we have determined maps Fc — F’c’ in @ for all n-corners ¢, ¢’ with
¢ < c Letf,: E“,ch — D s F'c be the matrix with typical element
Fe¢ — F'¢’ this determined map when ¢/ < ¢, and the zero map otherwise.
Let b = (hs) : F — F' be the unique map (Proposition 9) with h, = fo. By
definition of f, , the following squares commute:

FTi%o—>Fo Fo— FTh

fr.ﬂol 1 o fal [frﬁ.,

F'T7% — F'o F'o — F'To
for 7 e 2, , where the rows of the first square are coprojections, and those of

the second are projections. The corresponding diagrams commute with f
replaced by A. But fo = ho ; s0

fTéo = h!’t’o for A = +£1.

Each a ¢ X, is either o or of the form T}a’ for some @’ € Kn_y, % €, A = 1.
So h, = f,forall @ e X, . So f, has the required property. |

4. Proof of Theorem 1

Let £ denote the pointed category whose objects are symbols & = (s, t; u, v)
where (s, t), (4, v) e®, t < v and s < u; whose hom-sets are given by

£(5,0)=2Zywhens’ — N<t<{t<s<d,v -—-N<v<v<uslv,

w—-—N<t<v<s<u
= {0} otherwise;

and whose composition corresponding to Z, ® Z, — Z, is the isomorphism.

Let 6 = (s, t,; u, v), wherew — N < t < v < s < u, be an object of £.
Let £; denote the full subcategory of £ with objects those symbols &' =
(¢,¢;u,v")suchthat s — N < <t<s s,  —N<ov<v<ugv.
We shall write I, m, n for I;, ms , ns; unless confusion is likely.

Given aeX,, set

¢ =¢(a) = max {O}u{i|0 < i < m,a(d) = —1,
¢ = min{m + Jufi|0 < i < m, a(s) = 1},

n = max {mjuli|m < i < n,a(d) = —1},

0 = min{n + Lu{i|m < ¢ < n,a() =1},

o =8 —¢&

T=u—1l—9-1,
v =u+n—0-+1,
¢ =8 —¢.
The following inequalities are simply deduced:
0<esm 1<¢{<m+1 m<9<n, m+1<0<n-+1,
s—N<7<it<o<s rv—N<v<o<usln
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IfdeX,,and € = ¢(@) ete, thene < g, < &84+ n, 0 F+n, ¢<06. If
furthera < Gthen 8 < ¢, { <7<, 0<0. So6 —N<r<#<
c0<#H§T—N<¢p< Pdp<v<W

Define A = A; : K, — £ by

A(a’) = (‘7’ T Yy ¢):

A(e £ @) is the non-zero element of £5(A(a), A(@)) when it has one, and
the zero element otherwise. For ¢ < @,

Ka(a, @) = 0 & there exists j € &, such that
a(j) = —landa(j) =1
< either{ < eorfd < g
< eithero < porr <9 — N

& £(A(a), A(a)) = 0.
So A is a pointed functor.
For &' = (s, t'; u/, v') € £, let T'sd’ denote the object of X, given by

(T = —1 for0<i<s—sdom<i<m+t—1¢t,
= 0 fors—s<i<v—0v+m
orm—+t—t'<i<n+u—u,
= 1 foro—vV+m<i<morn+4+u-—u <z<n.

Then A(T38’) = &. It is not necessarily the case that TA(a) = a, for
a € X, ; but there does exist b ¢ X, such that A(b) = A(a), b < a and
b < I'A(a); namely,

b(0)

—1 for0<i<Lcecorm<i<n,

a(7) otherwise.
These results are expressed by the following,.

Remark 11. For each 8’ € £5, the fibre category of the functor A; over & is
non-empty and pathwise connected. §

Given an object D of D, we define a pointed functor D : £ — @ by:
(i) fords = (s, t;u,v) e £, Ds is the image in @ of the map

D6 : D(s, t) — D(u, v);
(ii) for £(5,8") = Zy, D(5 — &') is the map Ds — Ds’ induced vertically
on images by the square
D(s, t) — D(u, v)
! i
D(s', ') —» D(w/, ).
For non-zero § ¢ £, put F; = DA; ¢ 5., .
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Lemma 12. If D s an exact object of © and § = (s, t; u, v), where
u—N<t<v<s < uthen F = F;1is an exact object of Fn, .

Proof. Suppose 7 € 2, (n = ns). Given a ¢ X, such that a(¢) = 0, define
a’,a” € X, by

a’(j) = a"(j) = a(y) forj#=4,d'(7) = —1,a"(7) = 1.
We must show that the following sequence is exact:
0— Fa' — Fa — Fa” — 0.

Let ¢ = e(a), ¢ = o(a) ete; so Fa = D(o, 7; »,¢). FEight exhaustive cases
must be distinguished.

(i) ¢ <1< ¢ HereFa = Fa = Fa” and ¢ < ¢, so Aa is zero. The
sequence is thus trivial.

(i) 0<i<L¢et<¢ HereFa' =Faando=s—c<v+m—1+ 1,
so Aa” = (o, 7;v,¢ +m — ¢ + 1) = 0. The sequence is thus

0— Fa-X Fa—0—0.

(iii) e<i1<m¢ <47 HereFa=Fa’ands—i<v+m—¢+1=¢,
s0 Aa’ = (s — ¢, 7; v,¢) = 0. The sequence is thus

0—0— Fa -2 Fa— 0.
(iv) & <7 < ¢. In this case the sequence becomes
O_QD("” Ty ¥ ¢) —')D(U, TV ¢) —')D(o', TV, w) -0

wherew = s — ¢t =09+ m — ¢+ 1. A chase of the following commutative
diagram, using the exactness of the sequences

D(w, ¢) = D(»,¢) = D(», w)

D(w, 1) > D(w, ¢) > D(N + 7, ¢)

D(», 7) > D(»,¢) > D(N + 7, ¢),
yields the exactness required.

D(w, 1) D(o, 1) === D(0, 7)

\/\ .

D(w, ¢) / Do, 7) / /

D(”} ¢) D(”y 4’) — D(V’ “’)

DN +7,4)
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The remaining four cases

(v) 6<¢<m;
(vi) m <7< n1<6;

(vil) <2< n,0 L 1;and
(viil) 9 <1< 6;

may be dealt with correspondingly. ||
LeMMmA 13. If D € D is exact and the kernel of each of the maps

Db : D(s, t) = D(u, v)
is a projective object of @, then each Fs is exact and takes projective values.
Proof. It suffices to show that the image D; of each
Dé = D(s, t;u,v) : D(s, t) = D(u, )

is projective, where u — N < ¢t < v < 8 £ u. If ¢t = v then, from the exact
sequence

D(s, t) = D(u, v) = D(y, 3),

we have that Ds is the kernel of D(u, v; u, s), and hence projective. If
t < v then, from (viil) of Lemma 13, we have a short exact sequence

0 — D(s, t; u, v) = D(s, v; u, v) = D(s, v, N + t,v) — 0.

By the ¢t = v case we have that the second and third terms in this sequence
are projective; and hence, so is the first. ||

TurorREM 14. If D e D is exact and the kernel of each of the maps
D(s, t; u,v) : D(s,t) = D(u,v)
18 @ projective object of @, then
D3, vacy Jue Ay, 2)
n D, where A(y, z) is the projective object of @ given by
A(,2) =D(y,z;2+ N —1,y —1) fory—N<z<y.
Proof. Let £" denote the full subcategory of £ whose objects are those
objects & of £ such that n; < n. In particular, £"? = £ and
L ={yzz+N—-1,y—1]|y—N<z<y}

as a discrete pointed category (only zero maps). With the objects A (y, 2)
as in the theorem, put D’ = D y_wcecy Juc A(y, 2). Let D, , D7, denote the
restrictions of D, D’ to £".

By induction on n we shall prove

(*) for 0 < n < N — 2 there exists a natural isomorphism

f:D,—D,.
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Then, by takingn = N — 2, we shall have D = D’, which certainly implies
D =2 D’ as asserted by the theorem.

Forn = 0 we may take f = 1in (*) since Dy = Dy .

Suppose 0 < n < N — 2 and that there exists a natural isomorphism
f:Du— D.n_i. For & ¢ £ such that n, = n there exists fitFs0 =
Ds — D’ = Fj o such that @ = (g} : Fs— Fs , given by

gz =fA5a fOI'a # 0, gg =f5
is a map of §, . This is by Proposition 10 applied to the family
{fae t Foa — Fra |0 5 a € K}

which satisfies the hypothesis of the proposition since f is natural and since
Nae < Me for all @ € X, with equality precisely when @ = o. By the short
five-lemma, f; is an isomorphism. So, for each § ¢ £, we have an isomorphism
fs: D5 — D’s. It remains to show that f = (f;) : D, — D, is natural.

Given a non-zero map & — & of £", where § = (s, t; u, v), § = (§, {; 4, 9),
we must show that the following square commutes:

ps L prs
(1) ! !

D5 L ps,
If 5, 5 ¢ £ " then (1) commutes since f restricted to £" " is natural. _ Suppose
then & ¢ £"'; a similar argument will apply in the case § ¢ £"

Put &’ = (s, t; 4, 7). Then é — & factors as § — & — §. Commutativity of
(1) will thus follow from commutativity of the two squares:

Do L s
(2) ! !
py L pry
Do L pry
(3) ! !
ps L prs.
If 8’ e £" thenu = @, v = 7,508’ = §, and so (2) commutes. If &’ ¢ £" set

a = T, &, and note that a(7) # —1forall7 eQ,,s00 < a. So the square

go . o
Fs0 —=— Fso

P
F.;a-—;ﬁ Fsa

commutes; but this is just (2). So (2) commutes. If & ¢ £" then §’ ¢ £" and
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so (3) commutes since f restricted to £"" is natural. So consider the case
defL” Ifd'eL”thend = 650 (3) commutes. Ifd’ ¢ £",set @ = T';6’ and
note @ < 0. So the square
Fsa % Fia
! l

Fs0 ——

7t Fio
commutes; but this is just (3). So (3) commutes. |
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