PROJECTIONS AND EXTENSION MAPS IN C(T)

BY
Biur D. ANDERSON

1. Introduction

This paper is concerned principally with metric projections in C (7') with
special attention given to the subspace R0 of functions that vanish on a
closed set Q. The existence of a linear metric projection onto R0 is shown
to be equivalent to the existence of a bounded linear extension map of norm 1
from C(Q) to C(T) (Theorem 7). It is established that in a connected
metric space R0 has a linear metric projection of norm 2 (Corollary 9).
Sufficient conditions are given in order for a certain subspace of codimension
7 to have a linear metric projection (Theorem 10).

2. Notation and definitions

A map P from a normed linear space X onto a subspace Y is called a projec-
tionif Py = yforall y ¢ Y. The distance from a point x to a set Y is defined
by

dist (x, V) = inf{|le — y || : y e V}.
If for each z ¢ X there exists a y € Y such that || 2 — y || = dist (z, Y) then
Y is called an E-space. If the projection P : X — Y has the property that
Il x — Pz || = dist (z, Y) then we call P a metric projection or a promixity map.
The restriction operator R : C(T) — C(Q) is defined by (Rx)(¢) = x(q)
forall z e C(T) and all ¢ £ Q. Thus, if Y is a subspace of C'(Q),

R7'Y = {zeC(T) : RxeY).

A function E : C(Q) — C(T) is called an extension map if REr = x for all
z e C(Q). The restriction of a function x to a set 4 is sometimes denoted by
x| A. The difference of two sets is written A — B = {z: 2 ed, 2 ¢B}. In
topological nomenclature we follow J. L. Kelley’s General topology,

3. E-spaces and linear metric projections
If T is a topological space then C(T) will denote the Banach space of
bounded continuous functions z defined on 7' with the supremum norm,
[l =sup{[z()|:teT}.
Lemma 1. Let Q be a closed set in a normal space T. If xeC(T) and
2 € C(Q) then z has an extension 2’ in C (T') such that || Rz — z || = || — 2’ ||.

Proof. Leta = ||Rx —z]|. Ifa = 0then Rz — 2z = 0. Definez’ = z.
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Thus, | Re — z|| = ||z — 2’ ||. Suppose @ > 0. By Tietze’s Theorem, z
has an extension y ¢ C(T"). Define the functionz’ by
Z(@¢) =y@) iflz@) —y@®) | <L e

=zlt) —a if z@) —y@) > a

=z@)+a if 2¢) —y@l) < —a.
To verify that 2’ ¢ C(T) it suffices to show that 2’ is continuous on the set

A={teT:|2@) —y@)| = a}.
Supposet e A and z(¢) — y(t) = a. (Thecasex(t) — y(t) = —aissimilar.)
Let {¢;} be a net in T converging to ¢. Since # — y is continuous and a > 0
we can assume z(f;) — y (&) > 0. If 2(t;) — y () < athen
() =y) —y@).
If 2(t;) — y(t:) > o then
z'(t.;) = x(t,i) — a-—-—):n(t) —_a = y(t)

Hence, in any case, 2’ ({;) =y () = 2/ ({). Thusz' eC(T)and ||z —2'| = a.

LemMA 2. Let Q be a closed set in a normal space T. For all x e C(T) and
for any subspace M in C (Q), dist (z, R™M) = dist (Rx, M).
Proof. If ye R7'M, then ||z — y|| > || Rz — Ry]|| > dist (Rz, M).
Thus,
dist (z, R™'M) > dist (Rz, M).

Assume there is an z ¢ C (T) for which dist (z, R™M) > dist (Rz, M). Then
there is an m ¢ M such that || Rz — m || < dist (x, R~M). By Lemma 1
there is an m’ € C (T') such that || x — m' || = || Rz — m ||, a contradiction.

TaeOREM 3. Let Q be a closed set in a normal space T. If Z is a subspace
of C(Q) then the following are equivalent:

1) Z is an E-space in C(Q)

(2) R™Z is an E-space in C(T).

Proof. Assume that (1) is true. Let z ¢ C(T"). Let z be a best approxi-
mation to Rz in Z. By Lemma 1, z has an extension 2’ ¢ C (T') such that

[Be — 2]l = ||z — 2.

IfyeR 'Zthen ||z —y| > || Rz — Ry|| = ||z — 2'||. This shows that 2’
is a best approximation to z. Since 2’ ¢ R™'Z, the latter is an E-space.

Next assume (2). Let z ¢ C(Q). Let 2’ be a Tietze extension of z. Let
y be a best approximation to 2’ in R™Z. If z ¢ Z, then by Lemma 1, z has
an extension 2’ such that || 2’ — 2’ || = || — 2z ||. Thus,

lz—Ryl| <l =yl <]l =2|| =]la—=].

So Ry is a best approximation to «, and Z is an E-space.
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Since finite-dimensional spaces are E-spaces we have

CoroLLARY 4. Let Q be a closed set in a normal space T. If Z is a finite-
dimensional subspace of C(Q), then R™Z is an E-space in C (T).

A subspace Y is said to be complemented if Y is the range of a bounded
linear projection.

TeEOREM 5. Let Q be a closed set in a normal space T. If there exists a
finite-dimensional subspace Z in C (Q) such that R™Z s complemented in C (T'),
then there 1s a bounded linear extension operator from C(Q) to C(T).

Proof. Let 21, 25, - -+, 2, be a basis for Z. By Tietze’s Theorem, each 2;
has an extension z; in C(T) such that || z; || = ll zill. fzeZ,z= Z,el @ 25
Define E by the equation Bz = Dty a;2:. Then E is a bounded linear
extension operator from Z to C(T). If x e R"'Z define L by Lz = (I — ER)x
and note that L is a bounded projection from R™'Z onto R™0. By hypothesis
there is a bounded linear projection L’ from C(T) onto R™Z. Thus, LL’
is a bounded linear projection from C(T) onto R0 and by a known result
[4] there is a bounded linear extension operator from C (@) to C(T).

The following elementary lemma will be needed.

LEMMA 6. Let P be a linear projection from a normed linear space E onto a
nontrivial subspace M. Then P is a metric projection if and only if I — P
28 of norm 1.

The next theorem is similar to a result of Dean [4].

TaEOREM 7. Let Q be a closed set in a normal space T. Then the following
are equivalent:

(1) R70 has a linear metric projection.

(2) There is a linear norm 1 extension operator from C(Q) to C(T').

Proof. Assume (2) is true. Define L = I — ER. Since ER is a linear
projection of norm 1, by Lemma 6, L is a metric projection. If x ¢ C(T),
then RLz = 0. Thus Lz e R™0. Let ye R™0. Then Ly = yand L is a
projection onto R0.

If (1) is true, let P be a linear metric projection from C(T) onto R0.
Let E be a Tietze extension map of norm 1 from C (@) to C(T). We wish to
obtain a linear norm 1 extension map. Define the map E' by E' = (I — P)E.
Since RE' = RE — RPE = I, E’ is an extension operator from C(Q) to
C(T). By Lemma 6, ||I — P | = 1 and therefore || E' || =

To prove E' is linear it suffices to show that for arbitrary = and yin C(Q),
and scalars « and g,

(I — P)[E(ax + By) — (eEz + BEy)] = 0.
Since P is a projection onto R0, it follows that (I — P)™(0) = R™0.
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Thus it suffices to show that E (az + 8y) — (aFz + BEy) e R™'0. Since
RE (ax + By) — aREx — BREy = ax + By — ax — By = 0,
the conclusion follows.

TaEOREM 8. Let Q be a closed set in a Ty-space T. Then the following are
equivalent:

(1) R0 has a linear projection of norm < 2.

2) @ s open.

(3) R0 has a linear metric projection of norm 1.

Proof. 1f (1) is true, let L be a linear projection from C(T) onto R™'0
of norm2 — ¢, where0 < e <1. Lety=1—Ll. Ifte@ theny(t) = 1.
Let U = {t:y(t) > 1 — &. Then U is an open set containing Q. If @ is
not open, there exists a point ¢, e U — Q. By Urysohn’s Lemma there is a
function x e C(T) such that |Q = 1, (%) = —1 and ||z|| = 1. Since
Ly =0Le=L(x—y). Sincex —yeR70,L(z —y) = x —y. Hence,
Lr = ¢ — y. However,

z(h) —ylh) = =1 —yl) < —2 + ¢,
sothat || Le|] > 2 — e. Since ||z || = 1, | L] > 2 — ¢. This contradic-
tion implies @ is open.

Assume (2) is true and let v be the characteristic function of T — Q. For

y € C(T) define Py = vy. Clearly, P is a linear projection of norm 1 onto
R7'0. That P is a metric projection follows by writing

dist (y, R70) < ||y — Pyl = || Ry — 0] = dist (Ry,0) = dist (y, R70).
If (3) is true, then (1) follows trivially.

CoroLLARY 9. Let  be a closed set in a connected metric space T. Then
R0 has a linear metric projection of norm 2.

Proof. If P is a metric projection note that || P || < 2, since
[Pzl =[Pr—z+a|<[z—-Peff+][z] <2]z].

By the Borsuk-Dugundji Theorem [5] there is a bounded linear norm 1 ex-
tension operator from C (Q) to C(T). By Theorem 7, R7'0 has a linear metric
projection and by Theorem 8 it is of norm 2.

If Bis a set in T, define B30 = {xeC(T) : z|B = 0}. If ¢ ¢C* (con-
tinuous linear functionals on C (7)), we define the support of ¢, denoted by
S (¢), as the smallest closed set A such that R;'0 C ¢ (0).

TrrEorEM 10. Let T be a normal space and let ¢1, ¢o, - - -, ¢ be multiplica-
tive linear functionals on C(T) having disjoint supports. Then Ni—y¢; " (0)
has a linear metric projection.

Proof. Each ¢; has the property that ¢;(1) = 1 and || ¢;|| = 1. Since T’
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is normal, there exist disjoint open sets U, Us, - - -, U, such that U; O S(¢.).
By Urysohn’s Lemma there exist functions 31, %, ---, ¥. such that
yi| S(¢:) = 1, 9| (T/U;) = 0,and 0 < y; < 1. Thus, y: | S(¢;) = 6ij.
Since (1 — y:) | S(@:) = 0,¢:(1 — y:) = ¢:(1) — ¢i(y:) = 0, which implies
¢:(y:) = 1. Thus ¢:(y,;) = 8.

Let Y be the subspace generated by y1, 42, - -+, ¥». Define the map P frow
C(T) to Y by Pr = D ia¢i(x)y,. If y e then

y = 2iaa;y; and Py = D la¢i(D o y)yi = Dimaiyi = Y.

It is clear that P is linear and therefore I is a linear projection from C(7')
onto V.
Let H = Nl-1 ¢; (0). If 2 € C(T) then

6;(I — P)r = ¢;(x) — D iadi(@)e,;(y:) = 0.

Thus (I — P)xeH. 1f h e H then ¢,(h) = 0 for each zand (I — P)h = h.
Thus I — P is a linear projection from C' (7') onto H. By the definition of the
y:and since [ ¢; [| = L wehave || P | < 1. Thus| P || = 1 and by Lemma 6,
I — P is a linear metric projection.

Since the point-evaluation functional #; defined by #;(x) = z(t) for each
z e C(T) satisfy the hypotheses of Theorem 10 and R7'0 = N {7'(0) we
obtain

CoroLLARY 11. Let T be a Tyi-space and let @ = Ui {t;} where t; ¢ T-
Then R™'0 has a linear metric projection.

REFERENCES

1. R. ArENs, Projections on continuous function spaces, Duke Math. J., vol. 32 (1965),
pp. 469-478.

2. . W. CHENEY, Iniroduction to approximation theory, McGraw-Hill, New York, 1966.

3. E. W. CueNEY anp D. E. WuLBERT, Existence and unicity of best approximations,
Math. Scand., vol. 24 (1969), pp. 113-140.

4. D. W. DEeAN, Subspaces of C(H) which are direct factors of C(H), Proc. Amer. Math.
Soc., vol. 16 (1965), pp. 237-242.

5. J. DugunpJi, An extension of Tietze’s Theorem, Pacific J. Math., vol. 1 (1951), pp.
353-367.

6. . MicHAEL AND A. PELCZYNSKI, Peaked partition subspaces of C(X), Illinois J. Math.,
vol. 11 (1967), pp. 555-562.

7. R. R. PugLes, CebySev subspaces of finite codimension in C(X), Pacific J. Math., vol.
13 (1963), pp. 647-655.

East TExAs STATE UNIVERSITY
ComMERCE, TEXAS



