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Abstract

In this paper we give some continuity properties of the Weyl spectrum of
a continuous linear operator on a Banach space and show that the Weyl’s
theorem holds for a spectral operator of finite type although the theorem fails
for a spectral operator in general.

1. Preliminaries
Throughout this paper X will denote a complex Banach space and 33 (X)

the space of continuous linear operators on X considered with the norm to-
pology. For T e 33(X) let (T), p(T) and z00(T) be respectively the spec-
trum, the resolvent set and the isolated points of (T) which are eigenvalues
of finite multiplicity. Let 9(T) and 6t(T) be respectively the null space
and the range space of T. Let 5 be the class of Fredholm operators on X
(T e 5 if and only if 6t (T) is closed and dimension 9 (T) and co-dimension
6t (T) are both finite) and let 50 be the class of Fredholm operators of index
0 (i.e., dimension 9 (T) co-dimension 6t (T)). Let e (X) be the ideal of
compact operators on X and let be the image of T under the canonical
mapping of 33 (X) into the quotient algebra 33 (X)/e (X). Finally, let e be
the set of complex numbers.

DFNWON 1. The Weyl spectrum (T) of T e 33 (X) is defined by

(T) {a.:I- T50}.
It is well known (see e.g., [1]) that

(i) T e 5 if and only if 0 e p (), and
(ii) g() c (T) (T).

In particular if X is infinite dimensional then 0 (T) is a non-empty com-
pact subset of .

2. Continuity of c0(T)
In this section we define upper and lower semi-continuity of the mapping

T --* 0 (T) and show that this mapping is upper semi-continuous while it may
not be lower semi-continuous.

DFNTON 2. Let (G) be a sequence of compact subsets of e. The
limit inferior, lim inf G, is the set of all k in such that every neighbourhood
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of ), has a non-empty intersection with all but finitely many G. The limit
superior, lim sup Gn, is the set of all in e such that every neighbourhood of
X intersects infinitely many G. If lin inf G,, lim sup G then lim G is
said to exist and is equal to this common limit.

A mapping r defined on (X) whose values are compact subsets of e is
said to be upper seni-continuous at T when if T --, T then lira sup r (T) c
r (T). r is lower seni-continuous at T if r (T) c lin inf r (T,). If r is both
upper and lower semi-continuous at T then it is said to be continuous at T
and in this case lira r (T) r (T).

THEOREM 1. The mapping T ---, o (T) is upper set,i-continuous at T.

Proof. Let e (T) so that hi T is a Fredholm operator of index 0.
By [4; Theorem 4.5.17] there exists an > 0 such that if S e 2(X) and
I- T- SI < thenS0.
There exists an integer N such that

] I- T- (- T)1l < /2 for n N.

Let V be an open (/2) neighbourhood of . We have, for e V and n N

so that (I T) e 0. This implies that k lim sup w (T). Thus

lim sup (T) (T)

and the theorem is proved.
The standard example (see e.g., [6; p. 282]) to show that the mapping

T (T) is in general not lower secontinuous may be used to show that
the mapping T (T) need not be lower semi-continuous.

THEOREM 2. Let T T. Then if lim ) then lim (T)

Proof. In the presence of Theorem 1 it is enough to show that (T)
lim inf (T).

Suppose lim inf (T) so that there is a neighbourhood V of that does
not intersect initely many (T). Since () (T), V does not
intersect itely many (), i.e., lim () (). Ts shows that
(I T) e. By using [4; Theorem 4.5.17] it is easy to see that index
(I T) 0 so that (T).

COROLLARY. Let T T. Then lim (T) (T) in each one of the
folling cases.

(i) TT TT for all n.
(fi) (T) is totally disconnected.
(iii) X is a Hilbert space and T, T are normal operators.
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Proof. Each one of the above conditions implies lim () () (see
[5] for details).

If

3. Weyl’s theorem

(T) a(T) 00(T)

then we say that Weyl’s theorem holds for T. If X is finite dimensional then,
of course, Weyl’s theorem holds for each T, (X). There are several classes
of operators including normal and hyponormal operators on a Hilbert space
(see e.g., [1] and [2]) for which Weyl’s theorem holds. In this section we
show that if T is a spectral operator, in the sense of Dunford, of finite type
(for definitions we refer to [3: Chapter XV]), then Weyl’s theorem holds for T.
The following simple example shows that Weyl’s theorem need not hold

for a spectral operator.

Example. Let X l. Define T by

T(x,, x, ...) (1/2x, 1/2x, ...).

T is a quasi-nilpotent operator and hence a spectral operator. 0 (T) and
also 0 (T). Thus T does not satisfy the relation (*).
In what follows T will denote a spectral operator on X, S and N will denote

its scalar and radical parts respectively, and E (.) will denote its resolution
of the identity. The following results which will be used in the proof of
Theorems 3 and 4 are given in [3] as Theorems XV.8.2 and XV.7.14.

LEMM. 1. For an x e X and a non.negative integer n, (I T)"x 0
if and only if E ({ X} )x x and N"x O.

LEMMA 2. The operator T has a closed range if and only if
(i) the point X 0 is either in p (T) or is an isolated point of r (T), and
(ii) the operator TE ({0}) has a closed range.

Remark. Lemma 1 shows that 9Z(S) E({0})X and if T is replaced by
S in Lemma 2 then (i) implies (ii) (since, in this case SE ({0}) 0) so that
the condition (ii) is superfluous for a scalar type operator.

THEOREM 3. Let S be a scalar type operator on X. Then Weyl’s theorem
holds for S.

Proof. We have to show that , 00(S) if and only if , (S) (S).
Without loss of generality we may assume that X 0.

Let 0 00 (S) so that 9 (S) is finite dimensional and by Lemma 2, a (S)
is closed. Lemma 1 shows thst Sx 0 if and only if Sx 0. Hence
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Also, from the relation a(SIE()X c for a Borel subset of e it is
easy to see that

() (s) x.
Thus dimension 9(S) codimension (S) so that S ff0 i.e., 0 (S).

Conversely suppose 0 a(S) (S). Since ( (S) is closed, 0 is an iso-
lated point of a(S). Also 9 (S) is fite dimensional and non-zero so that
0 (S).

LEMMA 3. Let T be .a spectral operator of finite type so that for some non-
negative integer m, N O. Then voo(S) roo(T).

Proof. We need only to show that 0 voo(S) if and only if 0 e v0o(T).
Let 0 oo (S). It is immediate that if Sx 0 then T"x 0. Thus 0 is

an eigenvalue of T. From the relation 9(T) c (S)it follows that
0 (T).

Conversely let 0 . 00 (T) so that 0 is also an eigenvalue of S. Since 9 (T)
is a finite-dimensional subspace of 9 (S) we may write

(S) 9(T) Y.

If y e Y then Sy 0 so that T"y 0 i.e., 9Z (T). This implies
that Y and hence 9 (S) is finite dimensional showing thereby that 0 e 00 (S).

THEOREM 4. Let T be a spectral operator of finite type.
theorem holds for T.

Then Weyl’s

Proof. We have

(S) a(S) r00(S) a(T) v00(T).

Hence the theorem follows if we show that (S) (T). It is enough to
show that 0 (S) if and only if 0 (T).

Let 0 (S) so that S eft0. Since (S) is closed, either 0 e p(S) p(T),
or 0 is an isolated point of (S) a(T) and (S) E ({0})X is finite di-
mensional. Therefore TE({0})X is finite dimensional and hence a closed
subspace of X. By Lemma 2, (R (T) is closed. Let

(1) X 9(S) Y whereY= (R(S) E(e-{0})X.
Also, let

(2) 9Z (S) 9 (T) span {xl, x, x}.
where xx, ...x are linearly independent. It is easy to verify that
Txx, Tx are linearly independent. We assert that

(3) 6t (T) Y span Txx, Tx,.}.
Since 0 e a(TI Y), TY Y. If possible let Tx y . Y for some i (1 _<
i _< r). Since S is iniective on Y we have

O Sy STx TSx 0
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which is a contradiction. In fact no non-zero linear, combination of Tx can
belong to Y.

This proves our assertion. Relations (1), (2) and (3) together with the
fact that S e $ show that T e 0 i.e., 0 t (T).
The converse assertion viz., if 0 (T) then 0 (S) follows in exactly the

same fashion.
We conclude this paper with the following conjecture.
Let T e 2 (X) and let N be a nilpotent operator commuting with T. Then

if Weyl’s Theorem holds for T it also holds for T -t- N.

Added in proof. The above conjecture is true. However, if N is not as-
sumed to commute with T then the coniecture is false. The proofs will appear
elsewhere.
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