MORE ON HIGH-ORDER NON-LOCAL UNIFORM ALGEBRAS

BY
S. J. SipNEY!

1. Introduction

Consider the process of taking the uniform closure of the functions belonging
locally to a uniform algebra. After how many iterations of this process does
the resulting (transfinite) sequence of uniform algebras stabilize? The
possibilities turn out to be the finite and countable ordinal numbers, for each
of which an example with five generators is constructed, and the first uncounta-
ble ordinal number, for which each example must be non-separable. A simi-
lar result, with four generators instead of five, is true for the process of taking
the uniform closure of the functions locally approximable by a uniform algebra.
These theorems improve previous results of the author [6], both by extending
(and determining) the number of iterations possible, and, for the second proc-
ess, by introducing control over the number of generators of the algebras
involved.

In §2, certain notions are recalled and the main results of the paper are
stated. The proofs are given in §3 and §4. For many details, the reader will
be referred to [6]. Finally, §5 is devoted to indicating a number of open
problems concerning non-local algebras.

2. The main results

If (4, X) is a uniform algebra with spectrum X, we denote by L(4) and
H(A) the respective closures of the functions locally belonging to 4 and the
A-holomorphic functions (that is, the functions locally (uniformly) approxi-
mable by A). A is said to be local or non-local according as L(4A) = A or
L(A) # A, and holomorphically closed or non-holomorphically closed accord-
ing as H(A) = A or H(A) # A. We can inductively define L°(4) and
H°(A) for all ordinal numbers ¢ by the rules L’(4) = H(4) = 4,L ™ (4) =
L(L°(A)) and H™(A) = H(H°(A)), and, if o is a limit ordinal, L°(4) is
the uniform closure of

UL (4) : 0 < o’ < g}

and H°(A) is the uniform closure of
UH"(4) : 0 < ¢ < d}.

Recall that for all o, (L°(4), X) and (H°(4), X) are uniform algebras with
spectrum X (see [6], §2). Let o™ denote the first uncountable ordinal number.
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We remark that, using the algebras whose existence is guaranteed by Theo-
rems 1 and 2 below, the reader will have no difficulty verifying that it need
not always be the case that L(L°(4)) = L°(L(4)) or H(H’(4)) =
H°(H(A)).

THEOREM 1. If o i8 any finite or countable ordinal number, there s an anti-
symmetric uniform algebra (A, X), generated as a Banach algebra (with unit)

by five or fewer elements, such that L°(A) s local but L° (A) is non-local for
0<d <o.

TaeorEM 2. If o ts any finite or countable ordinal number, there is an anti-
symmetric uniform algebra (A, X), generated as a Banach algebra (with unit)
by four or fewer elements, such that H°(A) 1s holomorphically closed but H' (A)
1s non-holomorphically closed for 0 < ¢ < 0.

The proofs of these theorems occupy §3 and §4 respectively.

'COROLLARY 3. There ts an antisymmetric uniform algebra (A, X) such that
L°'(A) is non-local for 0 < o’ < o*.

COROLLARY 4. There is an antisymmetric uniform algebra (A, X) such that
H" (A) 1s non-holomorphically closed for 0 < o’ < o*.

The corollaries are obtained from the corresponding theorems by taking the
tensor products of the algebras constructed for ¢ < ¢*; the details are left
to the reader.

The results above are essentially best possible, as the following proposition
shows.

ProposiTioN 5. Let (A, X) be a uniform algebra with spectrum X. Then:

(a) L™(A) islocal and H™(A) is holomorphically closed.

(b) IfL°(A) is non-local for all o’ < o™, or if H” (A) s nonholomorphically
closed for all ¢’ < o*, it follows that A cannot be separable (equivalently, that X
cannot be metrizable).

Proof. (@) One verifies that
U(L°(4) : 0 <o <¢" and U{H(4) :0< 0 <o}
are uniformly closed, so
L*(A) = U{L°(4) : 0< 0 <¢"} and H™(4) = UH’(4) : 0L o < d"};
for instance, if
{fahignee € U(L7(4) 10 < 0 < 0%, fee(X),

and || f» — fllx — O, then f, ¢ L™"(4) for some ¢, < ¢*, there is ¢~ < o*
such that o, < ¢ foralln, f, e L (A4) for all n, and so

feL (A) c UL°(4) : 0 < o < ¢%.
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It now follows immediately that L°*(A) is local. On the other hand, sup-
pose f e @(X) is H**(A4)-holomorphic. Then there is a finite open covering
of X, say Ui, -+, Un, and there are m sequences {fin}1gn<o < H"'(4),
1 <k < m, such that limpe || fin — f |lv, = 0,1 <k < m. Thereis o < o*
such that fi, e H**(A), and there is ¢~ < ¢* such that o4, < o~ for all k, n.
Thus fin e H(A) for all k, n, whence f is H* (A)-holomorphic, and so a
member of H* 7(4) < H*"(4).

(b) Under these conditions, we can find for each ¢ < ¢* a function f,
which belongs to L°**(4) (or to H°*(4)) but is at distance > 1 from L°(4)
(or H°(A)). Then {f,:0 < ¢ < ¢*} is an uncountable family in e(X),
and the distance between any two distinct f, is at least 1, so @(X) cannot be
separable, that is, X cannot be metrizable. JJj

3. Proof of Theorem 1

Theorem 1 is proved essentially as is the corresponding theorem in [6], the
main difference being a revised indexing procedure which enables us to treat
large ordinal numbers. We retain the following notations, a bar denoting
closure in C and 9 denoting boundary in C:

A=1{zeC: lz|<1 and R={zeC:1<|2|<2};
IR ={z2eC:|z| = and R ={z2¢C:|z| = 2};
B(A) = {fe G(A):fisholomorphiconA};
B(R) = {f ¢ @(R) : f is holomorphic on R}.

Derintrion 6. The radial algebra with data Iy, - -+ , I, is the pair (4, X)
where

= (B X {0}) u (R X B) u (U= (I; X &) < C*,
= {fe €(X) : 2> f(#, 0) is holomorphic on R;
w — f(z, w) is holomorphic on 4, Vz¢dR;
» — f(2, w) is holomorphic on A;, Yzelj 1L m
2z — (9f/dw) (2, 0) is in B(R) on 4R u (Uj=1 I,)}.
Here 7 is a non-negative integer, and for 1 < j < n,
={te' :14+5;<t<2 and A;={weC:|w|<3di,

where 0 < 6; < 1and 0; e R. The 0, must satisfy 6; 5% 6 (mod 2x) whenever
j#* k. Wesetn(4,X) = nand

sizer(4, X) =sup{8;: bk <j<n} if 0<k<m,
sizer(A, X) =0 if £k =>n.
LemMma 7. Let (A, X) be the radial algebra with data Iy, --- , In. Then
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(4, X) is an antisymmetric uniform algebra with spectrum X. A s generated
by the four functions z, 1/z, w and o where o : B X A — C 1s defined by

a(z,0) =0 for ze R and a(z,0) = o for zeR\o:R.
A s non-local, but
L(A) = H(A) = {fee(X) : 2> f(z, 0) is holomorphic on R;
o — f(z, w) is holomorphic on A, VzeoR;
w — f(z, w) 18 holomorphic on A, Vzel;
1<j<n

and this last algebra vs antisymmetric and holomorphically closed (and so local) .
If f € @(X) belongs locally to A, then f belongs to A on

{(2,0) eX:2¢h R} andon {(z,w) eX :2¢0Ru (Ujul;)}.
If in addition f belongs to A on an open subset of X which meets both
{(z,w) eX:2en R} and {(s,0) eX:zedRu (UjI,)},
then f € A.
Proof. See §3 of [6]. I}

Remark. L(A) is generated by the four functions z, 1/2, », and oy where
a1 R X A — C is defined by ai(z, @) = 0 for z € 9; R and a1(2, w) = w for
Z € R\al R.

Derinition 8. Let (4, X) be the radial algebra with data Iy, ---, I, and
let % be a positive number. A satellite of radial algebras of size <n which
terminates in (A, X) is a pair (A, X) where

X=U{Xk><{‘rk}:0$k$°°}cca,

A={fee(X): (2 0) =>f(z,0, n) isin 4;, 0 < k < »}.

Here:

(1)  (As, X&) is aradial algebra with data Iy, « - -, In, Iy, -« -, I%%, where
n(k) = n(4r, Xi) > n and size, (4, Xi) < 9.

(2) (Ao, Xo) = (4, X).

(8) The 7 are distinct real numbers such that {7, : 0 < k < o} is com-
pact, 7o < 7 < 7oforallk, and 70 — 70 < 9.

(4) For0<k< wo,supfi{rj:7; <7} < 7s.

(5) For0 < k < «, either

inf{r;:7; > m} > 7
or
lim, .+ inf n(j) > n(k) and lim.+ sizeaqy (45 X;) = 0.

Lemma 9. Let (A, X) be a satellite of radial algebras. Then (A, X) is 2
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uniform algebra with spectrum X. A 1is generated by the five functions z, 1/z,
w, ¢ (the third complex variable) , and o’ where o’ : B X A X C — C 1s defined by

o' (2, 0, §) = a(z, w).
The maximal sets of antisymmetry for A are the sets Xi X {7} and
ZI(XkX{Tk}) ={(z:w} Tk)—)f(zyw) :feAk}y 0<k< ».

Proof. Conditions (3)-(5) of Definition 8 ensure that X be compact and
that o/ | X be continuous. For the rest, see Lemma, 7 of [6], and its proof. |l

Lemma 10. Let (A, X) be a satellite of radial algebras. Then for every
ordinal number o,

L'(A) c{fee(X) : (2, 0) = f(2, 0, m) s in L(Ar), 0 < k < o},

which is holomorphically closed (and so local). The maximal sets of antisym-
metry for each L°(A) are the sets X3 X {r4}.

Proof. This is evident, given that each L(A;) is antisymmetric and
holomorphically closed (lemma 7). i}

ProrosiTioN 11. Let (A, X) be a radial algebra, let n > 0, and let ¢ be a
finite or countable successor ordinal number. Then there exists (4, X) a satellite
of radial algebras of size < n which terminates in (A, X) and which has the
Sollowing additional properties:

(1) For0 < ¢ < o, thereis a partition {k : 0 < k < o} = Sy U Ty such
that

L"(A) = {fee(X) : (2, 0) = f(z, », 1) i in A, Yk € Syr;

(2, @) = f(z, w, &) 18 20 L(Ax), Yk € Ty}
and for all k e Ty,

L(A) | (Xi X (1) = {(z, 0, 1) = f(2, w) : f e L(Ax)}.
(2) 8, = @ (and so L°(A) is holomorphically closed).
(3) 8, # Bfor0 <o <o (andso L’ (A) is non-local for 0 < o’ < o).
Proof. The proof is by induction on ¢. To facilitate the induction, we
replace (3) by the stronger condition:
(4) If0 < ¢ < o, then = €8,.

Foro = 1,set 7 = 2 *nand (Az, Xz) = (4,X),0<k < .

Now suppose that 69 = o1 + 1 where o1 > 1 is a finite or countable ordinal
number, and that we have proved the proposition for all successor ordinal
numbers ¢ < a1.

Suppose that (A, X) has data I, -+, I,. Choose 6,1 ¢ R such that
Ony1 % 0; (mod 27),1 <7< n Forl <s< o setdpyr = 2" min (1, 9),

Lo = {1 1 1 4+ 80y <t < 2, Avn = {0eC:|w| < dhal,
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and let (4°, X°) be the radial algebra with data Is, « -, I, I541. Two cases
now present themselves.

If o, is a successor ordinal number, we apply our induction assumption to
find for 1 < s < », (4°, X°) a satellite of radial algebras of size < 27y
which terminates in (4°, X*) and satisfies (1)~(4) for ¢ = 1.

If 0y is a limit ordinal number, let {¢°}15s< be an enumeration of the suc-
cessor ordinal numbers ¢ < o1. 'We apply our induction assumption to find
forl1 < s < «, (4%, X°) a satellite of radial algebras of size < 27°y which
terminates in (4°, X*) and satisfies (1)-(4) for ¢ = ¢".

In either case we may demand in addition that 27y < ¢ < 27ty for all

(2, w,¢) €X', Set
X=Xx{0)HuU{X':1<s< x}),
A=1{fee®) : (z,0) —f(z w0 isin A on X;
F1X el 1 <s< o},

Then (4, X) is a satellite of radial algebras of size < 5 which terminates in
(4, X), and evidently L' (4) | X* = L' (4°) for 1 £ s < » and any ordinal
number ¢/. From the usual antisymmetry argument (see [6]), it remains
only to show that

L"(A) | (X X {0}) € {(2,0,0) > f(z,0) :fed} if 0L <oy

and that {(z, ©) = f(z, w, 0) : f e L°°(A)} contains a dense subset of L(A4).
These are achieved as in the proofs of (1) and (2) of lemma 9 in [6]. [l

We can now prove the theorem. Once we obtain the proper analogue of
proposition 11 for limit ordinal numbers, we can achieve antisymmetry for all
5,1 < ¢ < o, by adding an “analytic rectangle” as in §6 of [6]. Thus we
need only find the aforementioned analogue.

So let o be a countable limit ordinal number. Let {¢°}1<s<x be an enumera-
tion of the successor ordinal numbers ¢ < oo. For1 < 8 < o, let (4°, X*)
be a satellite of radial algebras such that L°'(4°) is local but L°' (4°) is non-
local for 0 < ¢’ < ¢*. We may suppose that 27° < ¢ < 27 for (2, », ) € X".
We set

Xfl- ={(2,27%,{) (&, &) GX‘}

AL ={fee(X%) : (2 0,8) = (2, 270, ¢) isin 4%
= {(z, 0, §) > f(z,2',¢) : fe 4.

Thus (4%, £%) is a uniform algebra with spectrum X%, A% has the usual five
generators, L' (A3%) is local, and L”(A%) is non-local for 0 < ¢ < o
Finally, set

Xe=(RX{0) xX{0})u(U{Zi:1<s8< =},

A, ={fee(X,) : 2—f(z,0,0) isholomorphic on R; f| X} e 45,1 < 8 < oo}.
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The usual antisymetry argument (see [6]) allows us to see that (4, X,) is
a uniform algebra with spectrum X, that A has the usual five generators,
and that for all ordinal numbers o,

L°(4)) = {fee(X,) : 2—f(z,0,0) is holomorphic on R;
FI XL eLl7(A3),1 < s < =},

. L°(AL) | (B X {0} X {0}) ={(2,0,0) = f(2) : fe B(R)},
an
LAYIX =4, 1<s< w.

This establishes the appropriate analogue, and completes the proof of Theorem
1.

Remark. For 1';he algebl;a.s we have constructed, L°*(4) is generated by
2, 1/2, w, ¢, and oy where a1(z, v, §) = a1z, w).

4. Proof of Theorem 2

The proof of Theorem 2 uses substantially the same induction procedure
as we used in §3. However, there is considerably more work and somewhat
less opportunity to refer to [6] for details. This is because the “building
blocks” introduced in Definition 12 below are different from those used in the
proof of Theorem 2 in [6], since we wish to add control over the number of
generators. Furthermore, these new “building blocks” are not initially
defined on their spectra, and we shall never completely identify their spectra,
a fact which forces us to introduce certain intermediate steps in our con-
structions.

DEeriNiTION 12.  The annular algebra with data Ry, - - «, R, is the pair (4, X)
where

X =(AX{0})u (R X 3)u (U R; X 3;) cC,
A = {fee(X) :z— f(z, 0) is holomorphic on A;
w — f(2, w) is holomorphic on A, Vz e Ry;
w — f(2, ) is holomorphic on A;, VzeR; 1 < j < n;
2 — (8f/dw) (2, 0) is in B(A) on R,;
z — (8%/0") (2, 0) is holomorphic on R,, k > 2}.

Here n is a non-negative integer, By = {2¢C:8 < |z| < 1}, and
forl1 <j<mn,

Ri={2eC:5;<|2| <1} and A; ={weC:|w| <exp(—1/5)},
where 0 < 6, < -+ < 8, < & = 3/4. Weset n(4,X) = nand
size, (4, X) =sup{8;: bk <j<n} if 0Zk<m,
size, (4, X) =0 if k2> n.
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Lemma 13. Let (4, X) be the annular algebra with data Ry, - -+, B.. Then
(4, X) 1is an antisymmetric uniform algebra. If Z(A) 1is the spectrum of A,
let

®:32(4) > C be ®(p) = (p(2), 2(w)).
Then ® is a homeomorphism of Z(A) onto a subset X of A X A which contains
X and is such that:
(1) (zw)eX,|2z] < 8 tmply w = 0.
(2) There is a (necessarily upper semi-continuous) function
] Bt [, 11— (0, 1]
such that for z € R,

{weC: (z,w) eX} ={weC:|w| <h(|2])}.
If § denotes the gelfand transform of g € A, then
Aod = {fee(X) :2—f(z0) is holomorphic on A;
w — f(z, w) is holomorphicon {w eC : |w | < h( |2 |)},

_ Yz e Ry;
2 — (3f/0w) (2, 0) s in B(A) on Ry,;

z — (8*1/80°) (2, 0) 4s holomorphic on R, k > 2},

and (f| X)N = fod for all feAod™. A and Aod™ are generated by the
functions z, w, and i, 1 < k < o, where B : A X A — C is defined by

Bi(z,w) =0 3 z2=0 and Bu(z,w) =27 if 250.

Proof. Clearly (4, X) is an antisymmetric uniform algebra which contains
the Bx. Note that || 8 ||z < &'
Let f e A. Then f has a double Laurent expansion

) k k © © k
Dot + Do i w0 A D ry D oo Gl 2
k © k © © k 0 —1 -2
= D+ Do be o+ Dors Do Cor 20 Dy Do Cor 0 B
whose Cesaro means converge uniformly to f. Thus 2, w, and the 8, generate

A.
Suppose p € Z(4). If | o(2) | < 8, then from o = 2", we have

le(@) P < le@) o) | < 1e2) [l B llz < (1e(2) | /8a)"

and letting & — o, we see that X = ®(Z(4)) satisfies (1).

If o(z) = 0, from B} = w*Bx and ¢(w) = 0 we obtain p(8:) = 0 = B (3(p)).
If o(2) # 0, from o = 2°8; we obtain o(8:) = o(2) "e(w)® = Br(®(e)).
Thus for all ¢ € 2(4), ¢(Br) = Br(®(p)) for all k and, since 2, w, and the B
generate A, ® is injective, thus a homeomorphism.

It is clear that X € X < A X A. In view of the preceding paragraph, X
consists of those points (2o, wo) ¢ A X A such that for all polynomials P in
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2, w, and the Bi, onehas | P(2, wo) | < || P ||x. We shall show that if (2o, wo)
has this property then so has (2, Awo) for all A € A, whence X will satisfy (2).

First consider the case A ¢ 9A. Given P, let @ be obtained from P by using
M and N8, in place of w and Bx. Then

Q(X) = P(X) and Q(z, wo) = P (20, Mwo),

50 | P(20, M) | = | Q(20, w0) | < | Q [lx = [| P [l _
Finally, given P one notes that A — P (2y, Awo) is continuous on A and holo-
morphic on A, so that

sup { | P(20, \ao) | : N e A} = sup { | P(20, Awo) | : A€dA} < || P ||x.

Let B denote the object which is alleged to equal A o &™. Since 2, w, and
the i generate 4, also 203~ = 2,00 ® " = w, and the B 0 ®™ = B generate
A o3&, Since these functions all liein B, 4 ™ < B. On the other hand,
if f € B, its double Laurent expansion shows as before that f is in the closed
algebra generated by 2, w, and the B, hence in A o 7.

It is clear that (f| X)* = fodforallfed o7 i

We shall hereafter identify Z(4) with X, and 4 wifih the algebra called B
in the preceding proof. Thus (f| X)» =fforallfeA, and each f¢ A has a
unique extension f ¢ A, which is such that || f |2 = || f |z

CoROLLARY 14. Let (A, X) be an annular algebra. Then
| 8 12 < [max (4/3, k/e)]" < (2b)", 1<k < o.

The functiony = D ue1 exp (—k!)Bs belongs to A, and A and A are generated
by the three functions z, w, and v.

Proof. From sup { ¥ exp (—1/5) : 0 < & < 1} = (k/e)® one obtains
Il 8 llx < [max (4/3, k/e) ",

and the same estimate follows for || 8; [|#. Thus Y e exp (—k!) || 84 |2 <
®, whencey e A. Let B denote the closed subalgebra of €(X) generated by
2, w,andy. Itremainsto provethat@,eB,1 <k < .

The proof is by induction on k. Suppose K > 1 and we know that 8; ¢ B,
1<k < K. Forl<m< « wehave that

b = exp ((K + m) )™y — Dmer exp (—k!)2" "’
— exp (—ml)o’ — 2 exp (—k!)Bi-m]
belongs to B. But hy = Bx + 2 teximi1exp ((K + m)! — k!)Btm, 50
[ 7 — Bx 12 < 2iexmis exp (K + m)! — k1) || Bi—wm [I2
< Dimr+mir €xp (—k1/2) (2(k — m))*™,
which tends to 0 as m — . |l
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LemMma 15. Let (4, X) be the annular algebra with data Ry, +++, Ro. Then
A is local, whereas

H(A) = {fee(X) : z— f(z, 0) is holomorphic on A;
w — f(2, ) 18 holomorphic on{weC : |w| < h(|2]|)},
VzeRn;
z — (8"f/8u*) (2, 0) is holomorphic on R,, k > 1}.

This last algebra is antisymmelric and holomorphwally closed, and vs generated
by the functions z, w, and yr, 1 < k < o, where Y5 : A X A — C s defined by
W(z,0) =0 o 2=0

and
W(z,0) =270 if 20,

Proof. 1t is clear that 4 is local and that the bracketed expression, which
we shall call B for the moment, is an antisymmetric holomorphically closed
(provided its spectrum is X) uniform algebra which contains 4, hence H(A).
If the ¥i belong to H(A), then the Laurent expansion argument will complete
the proof. To show that ¥ ¢ H(A), it suffices to find for each 2z ¢ A\{0} a
neighborhood N (%) in C such that ¥ is uniformly approximable by 4 on
Xn (N(2) X C). Let

N(z) ={2eC:|lz— 2| <|2]|/2.

N (20) being a closed disc, there is a sequence {pm}i1<m<w Of polynomials in one
variable such that

| pm — Z lvep =0 as m— .
Then hm(2, @) = pm(z)w belongs to A, and
| bm — ¥ |20 vzpxey = 0 a8 m — oo, n
Remark. H(A) is in fact generated by 2z, w, and D ey exp (—k!)¢s.
LemMmaA 16. Let (A, X) be the annular algebra with data Ry, - -+ , Ra. If
f e @(X) s locally approximable by A, and if in addition f is uniformly approxi-

mable by A on an open subset U of X which contains {(z, 0) : |z | = 8}, then
feA.

Proof. Let {fm}15m<e be a sequence in A such that || fm — f|lv = O as
m— . Foracertaine > 0,{(z,w) : |2] =, |w]| < & < U, hence

M seo SUD|simt, | (8fm/00) (2, 0) — (8f/9w) (2, 0) | = O.

There is hm € B(A) such that (9fm/0w)(2,0) = hm(z) whenever |z| = 8.
Thus there is h continuous on {z ¢ C : | 2| < 8.} and holomorphic on its in-
terior such that (9f/dw) (2, 0) = h(z) whenever | z| = 8,. Thus if we define
F:A— CbyF(2) = (3f/dw)(z,0) if | 2| > 6, and F(2) = h(z) otherwise,
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then F is continuous on A and holomorphic on A/R,, while it is clear that F

is holomorphic on R,. It follows (by, say, Morera’s theorem) that F ¢ B(A),
thatis, fed. I

DeriNiTION 17. Let (4, X) be the annular algebra with data Ry, - - , R
and let n be a positive number. A satellite of annular algebras of size < 9
which terminates in (A, X) is a pair (4., X,.) where

X, =UXX{n}:0Lk< o} cC,
= {fee(Xy) : (3 0) = f(z, 0, ) isin Ay, O0ZL Kk < oo},

Here:

(1) (A, X&) is an annular algebra withdataRy, - - - , Rn, RS, -+, R
where n(k) = n(4s, Xx) = nand size,(Ar, Xi) < 9.

(2') The conditions (2)-(5) of Definition 8 hold.

LEmMA 18. Let (4.4, X..) be a satellite of annular algebras Then (A4, X4)
18 a uniform algebra generated by the functions 2, w, ¢ and B, 1 <k < o, where

Be:AXAXC—C
18 defined by

Bl,c(z) w, f) = /3k(z’ w)'
The maximal sets of antisymmetry for A . are the sets Xi, X {4}, and
A+ l (Xk X {Tk}) = {(2, @, Tk) —')f(z) "’) :feAk}, 0<Fk< w.

Proof. Once we check that X, is compact and that the Bt belong to 4,
the usual antisymmetry argument [6, Lemma 7 and its proof] will complete
the proof. But conditions (3)- (5) ensure that X, be compact and that
B be continuous on X, whence Sx e A,. i

Lemuma 19. Let (4., X,) bea satellite of annular algebras. If Z(A.) is
the spectrum of A, let® : Z(44) — C' be &(p) = (¢(2), ¢(), ¢(£)). Then
& is a homeomorphism of Z(A4) onto Xy = U{Xi X {r} : 0 < k < oo},

Aod ' ={feC(Xy) : (2,0) »f(2,0,m) dsin Ay, 0<k< w},
the maximal sets of antisymmetry for A, o & are the sets X1 X {ri},
(A4o®) | (X X {r}) = {(z, 0, ) 2 f(z,0) i fedd}, 0<k< o,
and
(| X )r =fod forall fed, od™.
A, o &7 is generated by the functions z, w, ¢, and B, 1 < k < .
Proof. All this follows from properly interpreting Lemmas 13 and 18 in

the light of some observations of I. Glicksberg [2, p. 419] about the antisym-
metric decomposition. i
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We can hereafter identify =(4 ) with X, and 4, with
fee(Xy) : (3 0) > f(z0,m) is indy, 0Lk< o}

Thus (f| X;)* = fforall feA,, and f ¢ A, has a unique extension f in 4,
which is such that || /|12, = || f ||z,

CoroLLARY 20. Let (4 +,,X +) bea sa@llite of annular algebras. The func-
tiony = D ryexp (—k!)Bx belongs to A, and A, and A are generated by
the functions z, w, ¢, and ¥

Proof. Since the Bt belong to A, by lemma 19, it follows as in the proof of
Corollary 14 that " e A;. From corollary 14 and the usual antisymmetry
argument, it follows that 2, w, ¢, and v" generate A,. i

Remark. We have proceeded indirectly, first constructing (44, X,) and
then identifying =(44) with U {X; X {7:}}, rather than directly taking this
union and the algebra of continuous functions on it which “belong to 4;” on
X X {7}, because we had no way of knowing a priori that this union is com-
pact, or that the 8; are continuous on it.

LEmMMA 21. Let (A, X4) be a satellite of annular algebras. Then for every
ordinal number o,

HV(A+) o {fé e(X+) : (z) w) _')f(z, w, Tk) 189N H(Ak)’ 0k < °°},

which 1s holomorphicg,lly closed. The mazvmal sets of antisymmetry for each
H°(A.) are the sets X X {r4}.

Proof. This is evident, given that each H(A4;) is antisymmetric and holo-
morphically closed (Lemma 15). [}

ProrosiTioN 22. Let (A, X) be an annular algebra, let n > 0, and let o
be a finite or countable successor ordinal number. Then there exists (A4, X4)
a satellite of annular algebras of size < n which terminates in (4, X) and which
has the following additional properties:

(1) For0 < o < o, there is a partition {k : 0 < k < o} = S, uT, such
that

HY(A)) ={fee(Xy) : (2, 0) > f(z, 0, 1) dsin Ay,  VkeSy;

(2, ) = f(2, w, ) isin H(A), Yk eT,}
and for all k € Ty,

H”(AL) | (X X {ri}) = {(2, 0, 7) = f(z, @) : f e H(Ar)}.

(2) S, = @ (and so H°(A.) s holomorphically closed).
(83) 8, = Pfor0 <o <o (andsoH (A,) is non holomorphically closed
for0 < o < o).

Proof. The proof is essentially that of proposition 11. We again facilitate
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the induction by replacing (3) by:
(4) If0 <o < o,then © €8,.

For ¢ = 1, again set 7, = 2%y and (4s, Xi) = (4,X),0<k < .

Again, suppose that o9 = o1 + 1,1 < 01 < o*, and that we have proved
the proposition for successor ordinals ¢ < ¢1. Suppose that (4, X) has data
Ry, -+, Rs. Forl < s < o getdpia = 27 min (8a, 1),

R;-}-l = {ZGC:5:.+1 < |Z| < 1}, A:..H = {weC:]wI < exp (—1/5:,4.1)

and let (4°, X*) be the annular algebra with data Ri, ---, Ra, R741. Con-
struct the (4%, X5) and (44, X,) as (4°, X°) and (4, X) were constructed
in the proof of Proposition 11. Then (44, X.) is a satellite of annular alge-
bras of size < n which terminates in (4, X). Ev1dently H"(A)) | X% =
H” (4%) for 1 < s < » and any ordinal number ¢'. From the usual anti-
symmetry argument, it remains to show that

((15> H' (&) | (X X {0) C{(2,0,0) = f(f,0) : fed}if0 < o' <oy,
an
(6) {(2,w) = f(z, v 0):feH(A,)} contains a dense subset of H(A4).

One achieves (5) as in the proof of (4) of §7 of [6], with the aid of Lemmas 16
and 21. Together with antisymmetry, (5) implies that

(7) H"(Ay) ={fee(Xy): (2, @) = f(2,%,0) isin 4 on X;
FI1 XL eH (4%), 1<s< ®}, 0<d <o

The argument for (6) goes along the same lines as that for (5) of §7 of [6],
but a few details are in order. By Lemma 15, it suffices to verify that there is
fk e H(A.) such that (2, », 0) = ¥x(2, w) whenever (z, ») € X. Conmder
Yi i A X A X C — C defined by ¢x(z, », §) = ¢z, w). We assert that ¥
is locally approxunable by H°*(4,), whence we can take fi = V.

To begin with, A | X, is continuous except possibly at points of

= {(2 & ) e2(+:z = 0},

and on this locus xbk 0. Now (\l«k) = By is known to be continuous on
X+ (Lemma 19), so as (2, o, {) eX+ approaches Y, Bex(2, w, ), and so
¥r(z, w, ¢), approaches 0. Thus vn e @(X,).

It follows from Lemma 15 and our induction assumption that

Ve | X4 e HY (A | XL, 1 <8< o,

Further, the argument in the proof of Lemma 15 applies to show that ¥n is
locally approximable by 4., and so by H°'(4,), at each point of X +\Y It
remains to consider the point (0,0,0). Forl < m < »,let g, : Xy — C
be gm = 1//; on
U{Xi:1<s<m,
gm = 0 on
(XX {Hu(U{Xi:m+1<s< o)),
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Then g, ¢ H''(4,) by (7) and
lgm — ¥alle—>0 as m— =,
where U = {(2, », ¢) eX4 :|2| < 8. The proof is complete. [l

The theorem can now be proved essentially as was Theorem 1. The addi-
tion of an “analytic rectangle” is carried out as in §7 rather than §6 of [6].

If o0 is a countable limit ordinal, we again let {0"}1<.<o enumerate the suc-
cessor ordinals ¢ < ¢, and we choose (A%, X3) a satellite of annular algebras
such that H*'(4%) is holomorphically closed, H”' (4%) is non-holomorphically
closed for 0 < ¢’ < ¢, and 27° < ¢ < 27" whenever (2, », ) ¢ X% Weset

X = {5270, 8) : (2, 0,8) e X3,
A ={fec(X): (2,0, 8) > f(2,270,¢) isin 43,
o= (@B X{0} X{0})u(U{Xi:1<s< =}),
A, ={fec(Xy) : 2—f(2,0,0) isholomorphicon A;
flXiedl, 1 <s< »}.
Clearly X% is the spectrum of A%, A% is generated by 2, w, {, and the 8, H°
(A%) is holomorphically closed, H* (4%) is non-holomorphically closed for

0 < o’ < ¢*, and X, is compact, so (A, X,) is a uniform algebra. Observe
that

6 lI7s = 47 || s llgs < 47 (2K)*
(Corollary 14), 50 By is contmuous on X, hence belongs to A,. Then
Il 8% Iz, < (2k)* implies that v = D e exp (— —k!)Bx belongs to A,. The
usual antisymmetry argument now shows that X, is the spectrum of 4,
that A, is generated by 2, w, ¢, and v' (or, alternatively, by 2, w, {, and the
8t), and that for all ordinals o,
H(A,) = {fee(X;) :2—f(2,0,0) isholomorphic on A;
FIXEeH (AY), 1<s<
H'(A,) | (A X {0} X {0})) ={(2,0,0) = f(2) : f e B(A)},
and
HAH|X =44 1<s< =,
This establishes the analogue of Proposition 22 for gy, and completes the proof
of Theorem 2.
Remark. For the algebras we have constructed to satisfy the condltlons of

Theorem 2, H(A) is generated by 2, w, £, and X e exp (— A (or, al-
ternatively, by 2, w, ¢, and the y¥x).

5. Some Problems

Here we state and comment on a number of apparently open questions
which concern non-local algebras and which are not mentioned in [6]. We
shall let (4, X) denote a uniform algebra with spectrum X.
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(1) (A.Bernard) Suppose that f belongs locally to A and does not take
the value 0. Then, because L(A) has spectrum X, 1/f e L(A). Must 1/fin
fact belong locally to A? It is easy to prove that the corresponding question
for A-holomorphic functions has an affirmative answer.

This question leads to the problem of identifying the spectra of certain
Banach algebras, which in turn has a relation to some questions about hulls.
To see how this comes about in a simple case, let us suppose that X can be
covered by two open sets U, V such that f belongs to 4 on U andon V. Let
B consist of all functions on X which belong to A on U and on V. B is not
generally a uniform algebra, but it is the quotient of one. Indeed,

B={(f,g)eA®A:f=9g on UnV}

is a uniform algebra with spectrum obtained by identifying two copies of X
along hull (kernel (U n V)) [7], and there is a homomorphism of B onto B
obtained by taking (f, g) onto the function whichisfon Uandgon V. The
kernel J of this homomorphism consists then of those (f, g) such that f = 0
on U and ¢ = 0 on V, and the spectrum of B is the hull of J in the spectrum
of B. This hull consists in turn of hull (kernel (U)) in the first copy of X,
together with hull (kernel (V)) in the second. It follows that the hull of J
will project injectively onto X if and only if

U u hull (kernel (Un V)) and V u hull (kernel (Un V))

are hulls. In this case, of course, B will have spectrum X, and so 1/f ¢ B.

The reader will readily supply other problems in the symbolic calculus of
the functions locally belonging to A, which are subject to a similar analysis.
It is worth noting that none of these questions depends on the uniform algebra
setting; they can be equally well formulated for commutative Banach alge-
bras with unit.

(2) There exists a non-local uniform algebra with three generators [6,
Pp. 740-741]. On the other hand, from Mergelyan’s theorem it follows that
a singly-generated uniform algebra must be holomorphically closed. What
about two generators? One can equally well try to reduce the number of
generators in theorems 1 and 2 for ¢ > 2.

(8) Every non-local uniform algebra of which I am aware is based on the
fundamental example of E. Kallin [3], which uses a cross-sectional derivative
in a direction which “is not always there”. Are there other ways to construct
non-local algebras? The answers to some of our other questions may well de-
pend on such methods.

The remaining questions ask whether certain features of A are necessarily
retained by L(A) or H(A). Each can equally well be formulated for all
L°(A) or all H'(A), and the two formulations are not in general (obviously)
equivalent,

(4) Can L(A) or H(A) ever require more generators than A? Fewer
generators? In such an example, at least one of A, L(A4), H(A) must be
finitely generated. If one is finitely-generated, must the others be?
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(5) Evidently the antisymmetric decompositions of L(A) and H(A)
refine that of A. Must they in fact be the same as that of A?

(6) Is it possible to have A = e(X) but L(4) = e(X) or
H(A) = e(X)?

(7) Ttis known that L(A4) and H(A) have the same Silov boundaries and
the same spectra as A [8], [4]; see also [9, 14.9]; these are essentially formal
consequences of H. Rossi’s local maximum modulus theorem [5]. Must L(A)
and H(A) have the same Choquet boundaries as A? This appears not to be
a formal consequence of the local maximum modulus theorem, even in its
strengthened forms [1]; see also [9, §9].
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