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1. Introduction
Consider the process of taking the uniform closure of the functions belonging

locally to a uniform algebra. After how many iterations of this process does
the resulting (transfinite) sequence of uniform algebras stabilize? The
possibilities turn out to be the finite and countable ordinal numbers, for each
of which.an example with five generators is constructed, and the first uncounta-
ble ordinal number, for which each example must be non-separable. A simi-
lar result, with four generators instead of five, is true for the process of taking
the uniform closure of the functions locally approximable by a uniform algebra.
These theorems improve previous results of the author [6], both by extending
(and determining) the number of iterations possible, and, for the second proc-
ess, by introducing control over the number of generators of the algebras
involved.

In 2, certain notions are recalled and the main results of the paper are
stated. The proofs are given in 3 and 4. For many details, the reader will
be referred to [6]. Finally, 5 is devoted to indicating a number of open
problems concerning non-local algebras.

2. The main results
If (A, X) is uniform lgebr with spectrum X, we denote by L(A) nd

H(A) the respective closures of the functions locally belonging to A and the
A-holomorphic functions (that is, the functions locally (uniformly) approxi-
mable by A). A is said to be local or non-local according as L(A) A or
L(A) A, and holomorphically closed or non-holomorphically closed accord-
ing as H(A) A or H(A) A. We can inductively define L(A) and
H(A) for all ordinal numbers a by the rules L(A) H(A) A, L+(A)
L(L(A)) and H+(A) H(H(A)), and, if a is a limit ordinal, L(A) is
the uniform closure of

[J{L’(A) "0 _< ’ < }

and H (A) is the uniform closure of

[3{H’(A) "0 _< a’ < }.

Recall that for all a, (L’(A), X) and (H(A), X) are uniform algebras with
spectrum X (see [6], 2). Let a* denote the first uncountable ordinal number.
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Vie remark that, using the algebras whose existence is guaranteed by Theo-
rems 1 and 2 below, the reader will have no difficulty verifying that it need
not always be the case that L(L(A)) L(L(A)) or H(H(A))
H(H(A)).
THEOREM 1. If r is any finite or countable ordinal number, there is an anti-

symmetric uniform algebra (A, X), generated as a Banach algebra (with unit)
by five or fewer elements, such that L(A) is local but L’ (A) is non-local for
0 _< r’ < o’.

THEOREM 2. If is any finite or countable ordinal number, there is an anti-
symmetric uniform algebra (A, X), generated as a Banach algebra (with unit)
by four or fewer elements, such that Ha(A) is holomorphically closed but Ha’ (A
is non-holomorphically closed for 0

_
or’ < .

The proofs of these theorems occupy 3 and 4 respectively.

COROLLARY 3. There is an antisymmetric uniform algebra (A, X) such that
L’(A) is non-local for 0
COROLLARY 4. There is an antisymmetric uniform algebra (A, X) such that

It’ (A) is non-holomorphically closed.for 0 <_ r < r

The corollaries are obtained from the corresponding theorems by taking the
tensor products of the algebras constructed for a < a*; the details are left
to the reader.
The results above are essentially best possible, as the following proposition

shows.

PROPOSITION 5. Let (A, X) be a uniform algebra with spectrum X. Then:
(a L* A is local and H* A is holomorphically closed.
(b) IfL’(A) is non-localfor all a’ < tr*, or ifH’(A) is nonholomorphically

closed for all r’ < a*, it follows that A cannot be separable (equivalently, that
cannot be metrizable).

Proof. (a) One verifies that

(J{/(A) "0_< < *} and (J{H(A) "0_< < *}
are uniformly closed, so

L’*(A) (J{/(A) "0_<<a*} and H*(A) [J{H(A) "0_<a<a*};
for instance, if

{f.}l< c (J{/(A) "0 < < a*l, f e e(X),

and 11 f- f [[x --* 0, then f,, L’(A) for some a. < a*, there is a- <
such that . _< a- for all n, f. L’-(A) for all n, and so

fei’-(A) U{/(A) "0 _< < *}.
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It now follows immediately that L*(A) is local. On the other hand, sup-
pose ] (X) is H*(A)-holomorphic. Then there is a finite open covering
of X, say U1,..., U, and there are rn sequences {f}l_< c H*(A),
1 _< k _< m, such that lim, II h f Ii
such that$ e H(A), and there is - < * such that _< - for all k, n.
Thus f e H-(A) for all k, n, whence f is Ha-(A) -holomorphic, and so a
member of H-+1(A) c H*(A).

(b) Under these conditions, we can find for each
which belongs to L"+1(A) (or to H +1(A)) but is at distance > 1 from L (A)
(or H’(A)). Then {/,’0 _< < *} is an uncountable family in e(X),
and the distance between any two distinct f, is at least 1, so e(X) cannot be
separable, that is, X cannot be metrizable.

3. Proof of Theorem 1
Theorem 1 is proved essentially as is the corresponding theorem in [6], the

main derence being a revised indexing procedure which enables us to treat
large ordinal numbers. e retain the following notations, a bar denoting
closure in C and 0 denoting boundary in C"

A-- /zeC’izl 11 and

01 IC’]i-- 1/ and .-- IC’lz 2/;

(A) I$ () $ is holomorphic on

B(R) {f () $ is holomorphic on R}.

DEFINrrIO 6. The radial algebra with data I, I,, is the pair (A, X)
where

X (/ X {0}) u (OR X ) u (U_- (I ))
A {$ P(X) z f(z, 0) is holomorphi on R;

to f(z, o) is holomorphic on A, Vz OR;
o --- f(z, o) is holomorphic on A’, fz e I, 1 <_ j <_ n;

z (Of/Oo)(z, 0) is in B(R) on OR u ((J" I)}

Here n is a non-negative integer, and for 1 _< j _< n,

I {re" 1 +_< t_< 2} and A {oeC’ll <},

where 0 < < 1 and t. 1. The t must satisfy t t) (mod 2,r) whenever
j#k. We setn(A,X) hand

size(A,X) sup{.’k <j_<n} if 0_<k <n,

size(A,X) 0 if k > n.

LEMMA 7. Let (A, X) be the radial algebra with data I,..., I,,. Then
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(A, X) is an antisymmetric uniform algebra with spectrum X. A is generated
by the four functions z, 1/z, o and a where a [ X X is defined by

a(z, to) =0 for zeO1R and a(z, to)=o for
A is non-local, but

L(A) H(A) {f e(X) z f(z, O) is holomorphic on R;
o -- f(z, o) is holomorphic on 4, Wz OR;
o-, f(z, o) is holomorphic on hi, Wz I,

l<j<n},

and this last algebra is antisymmetric and holomorphically closed (and so local).
Iff (X) belongs locally to A, then f belongs to A on

{(z,o) eX" zOR} andon {(z,) eX" zO.Ru

If in addition f belongs to A on an open subset of X which meets both

{(z,o) eX" zeO1R} and {(z,o) eX" zeORu
then f A.

Proof. See 3 of [6].

Remark. L(A) is generated by the four functions z, l/z, o, and al where
a R X A --+ C is defined by al(z, ) 0 for z e 01R and a(z, o) for
z /\0 R.

DEntitION 8. Let (A, X) be the radial algebra with data I1, ..., I and
let y be a positive number. A satellite of radial algebras of size <_ which
terminates in (A, X) is a pair (, ) where

X=Ulxx{}.o<< }cc,
If e(:) (z, o) ---+ f(z, o, r) is in A, 0 _< k _< }.

Here"
(1) (A, X) is a radial algebra with data I1, I,, I ()+1, ", ,()r() where

n(k) n(A, X) >_ n and sie (A, X) _< y.
(2) (A, X) (A, X).
(3) The r are distinct real numbers such that {r 0 _< k _< } is com-

pact, r <_ r _< ro for all k, and ro- r _< v.
(4) For0_< k < ,sup{r" r.< r} < r.
(5) For 0 < k _< , either

inf{-" r > r} > r
or

lim,_.,+ inf n(j) > n(k) and lim,_., size,() (Aj, X.) 0.

LEMMA 9. Let (, 2) be a satellite of radial algebras. Then (, ) is
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uniform algebra with spectrum .. . is generated by the five functions z, 1/z,
o, (the third complex variable), and a’ where a [ X X C -- is defined by

.’(z, , r) .(z, ).

The maximal sets of antisymmetry for are the sets X X r} and

(X X {rl) {(z, , r) f(z, ) f eA},

Proof. Conditions (3)-(5) of Definition 8 ensure that X be compact and
that a’ X be continuous. For the rest, see Lemma 7 of [6], and its proof.

LEMMA 10. Let (), X) be a satellite of radial algebras. Then for every
ordinal number a,

L’() c {f e(:) (z, ) f(z, , r) is in L(A), 0 <_ k <_
which is holomorphically closed (and so local).
merry for each L(.) are the sets X X {r}.

The maximal sets of antisym-

Proof. This is evident, given that each L(A) is antisymmetric and
holomorphically closed (lemma 7).

PROPOSITION 11. Let (A, X) be a radial algebra, let > 0, and let be a
finite or countable successor ordinal number. Then there exists (, )) a satellite
of radial algebras of size <_ which terminates in (A, X) and which has the
following additional properties"

(1) For 0 <_ ar <_ (r, there is a partition tc 0 <_ t <_ S, (J T, such
that

L’ (i) {f e() (z, ) f(z, oo, r) is in A, t S,;

(z, ) ----) f(z, , r) is in L(A), Wk T,}
and for all l T,,

L’() I(Z X {r}) {(z, o, r) ---f(z, ) "fen(A)}.

(2) S, (and so L() is holomorphically closed).
(3) S,, for 0 <_ (r’ < (r (and so L’ (. is non-local for 0 <_ ’ <
Proof. The proof is by induction on .

replace (3) by the stronger condition"
To facilitate the induction, we

(4) If 0 _< a’ < a, then e S,,.

For 1, set
Now suppose that 0 1 + 1 where 1 >_ 1 is a finite or countable ordinal

number, and that we have proved the proposition for all successor ordinal
numbers

Suppose that (A, X) has data I, ..., I,. Choose (.+ e R such that
0,+1 0 (mod 2r) 1

I+ {te’+" 1
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and let (A, X) be the radial algebra with data I,, ..., I,, I’+,. Two cases
now present themselves.

If is a successor ordinal number, we apply our induction assumption to
find for 1 < s < , (’, ) a satellite of radial algebras of size < 2
which terminates in (A, X’) and satisfies (1)-(4) for

If a, is a limit ordinal number, let {a*},_,< be an enumeration of the suc-
cessor ordinal numbers a a,. We apply our induction assumption to find
for 1 _< s < , (’, .’) a satellite of radial algebras of size _< 2- which
terminates in (A’, X’) and satisfies (1)-(4) for a

In either case we may demand in addition that 2-* 2-*+* for all
(z, w, i’) e Set

2 (X X {0}) u (U{." 1 _< s <
{f e e() (x, w) --. f(z, o, O) is in A on X;

Then (, .) is a satellite of radial algebras of size _< which terminates in
(A, X), and evidently L’() X’ L’() for 1

_
s < and any ordinal

number a. From the usual antisymmetry argument (see [6]), it remains
only to show that

L"(.) (X X {0}) c {(z, , 0) f(z, o) "f .A} if 0 _< ’ _< ,
and that (z, o) f(z, , O) f e. L’(X)} contains a dense subset of L(A).
These are achieved as in the proofs of (1) and (2) of lemma 9 in [6].
We can now prove the theorem. Once we obtaia the proper analogue of

proposition 11 for limit ordinal numbers, we can achieve antisymmetry for all, 1 _< < *, by adding an "analytic rectangle" as in 6 of [6]. Thus we
need only find the aforementioned analogue.
So let a0 be a countable limit ordinal number. Let {a},_<_,< be an enumera-

tion of the successor ordinal numbers a < a0. For 1 _< s < , let (’,
be a satellite of radial algebras such that L’(*) is local but L"’ (’) is non-
local for 0

_
a’ <: a’. We may suppose that 2-’ < < 2-.+* for (z, ,

We set . {f e(X-) (z, o, ) f(z, 2-’, ) is in

{(z, -. f(z, 2% /,

Thus (, X) is a uniform algebra with spectrum :, has the usual five
generators, L’() is local, and L’() is non-local for 0 _< a’ < a.
Finally, set

2+ (/ X {0} X {0}) u (U12. 1 _< s <

+ {] e(X+) z--f(z,O,O) isholomorphic onR;fl :-,-, 1 _< s < oo I.
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The usual antsymetry argument (see [6]) allows us to see that (+, +) s
a uniform algebra wth spectrum +, that .+ has the usual five generators,
and that for all ordinal numbers ,

L(.+) {f e(2+) z /(z, 0, 0) is holomorphc one;

L*(+) ( X {0} X {0}) {(z,O,O) f(z) "feB(R)},
and

This establishes the appropriate analogue, and completes the proof of Theorem
1.

Remark. For the algebras we have constructed, L*(A) is generated by
z, l/z, , , and at where ax(z, , ) at(z, ).

4. Proof of Theorem 2
The proof of Theorem 2 uses substantially he same duction procede

as we used in 3.. However, there is considerably more work and somewhat
less opportunity to refer to [6] for details. This is because the "building
blocks" introduced in Definition 12 below are derent from those used in the
proof of Theorem 2 [6], sce we wish to add control over the nmber of
generators. Fthermore, these new "bufldg blocks" are not tially
defined on the spectra, and we shall never completely identify their spectra,
a fact which forces us to introduce certain intermediate steps in our con-
structions.

DrmIIO 12. The annular aebra with dam Rt, ..., R is the pa (A, X)
where

x ( x {0}) u (0 x ) u (UcL, x ) c,
A {f e e(X) z f(z, 0) is holomohic on A;

f(z, ) is holomohic on A, Vz e R0;

o f(z, ) is holomorphic on he, Vz e R, 1 j n;

z (Of/O)(z, 0) is in B(A) on R;

z (Of/O) (z, 0) is holomohic on R,, k 2}.

Here n is a non-negative integer, R0 {z C’,0 < z] < 1}, and
for 1 j n,

Re {z C < zi < 1} and he { e C [o < exp (-1/,)},

where0<< <<0=3/4. Wesetn(A,X) =hand

size(A,X) sup{*’k <jn} if 0 k <n,

size(A,X) 0 if k n.
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IEMMA 13. Let (A, X) be the annular algebra with data R1, ..., R,. Then
(A, X) is an antisymmetric uniform algebra. If (A) is the spectrum of A,

’2;(A)--C be () ((z),(o)).

Then is a homeomorphism of Z(A) onto a subset of 7x X which contains
X and is such that"

(1) (z, ) e, z < , imply O.
(2) There is a (necessarily upper semi-continuous) function

h" [,, 1]--+ (0, 1]
such that for z e R,,

If O denotes the gelfand transform of g e A, then- {f () z f(z, O) is holomorphic on ;-- f(z, ) is holomorphic on {o C o < h( z )},

Vz R.
z (Of/O)(z, O) is in B(A) on R,;

z ----> (Of/Ob) (z, O) is holomorphic on R,, k >_ 2},

and (f X)/ f o for all f e . o -1. A and . o -1 are generated by the
functions z, , and fib, 1 <_ k < where fib X C is defined by

b(z,o) 0 if z 0 and b(z,) z- if z 0.

Proof. Clearly (A, X) is an antisymmetric uniform algebra which contains
the fb. Note that !! Bb ]Ix

_
Tb.

Let f e A. Then f has a double Laurent expansion

whose Cesaro means converge uniformly to f. Thus z, o, and the fib generate
A.
Suppose e 2(A). If (z) < ., then from Zbgb we have

< _< <_ (I,,(z)

and letting k --. , we see that 2 (Z(A)) satisfies (1).
If (z) 0, from o and q() 0 we obtain() 0 =/b(eb() ).

If (z) 0, from z* we obtain (/b) (z)-(0)*
Thus for all e 2(A), (fb) /b(()) for all k and, since z, , and the
generate A, is injective, thus a homeomorphism.

It is clear that X . X . In view of the preceding paragraph,
consists of those points (z0, 0) e 5 )< such that for all polynomials P in
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z, , and the , one has P(zo, oo) <_ [I P ]Ix. We shall show that if (zo,
has this property then so has (z0, X00) for all X e , whence will satisfy (2).

First consider the case X e 0A. Given P, let Q be obtained from P by using
X and X in place of and . Then

Q(X) P(X) and Q(zo, o) P(zo, x0),

Finally, ven P one notes that X P(z0, X0) is continuous on and holo-
mohic on A, so that

sup ]P(zo, Xo) X e } sup P(z0, x0) x 0a} ll P
Let B denote the object which is alleged to equal o -x. Since z, , and

the fl generate A, also o- z, -o , and the o generate
o @-. Since these functions all lie in B, o- B. On the other hand,

if f e B, its double Laurent expansion shows as before that f is in the closed
algebra generated by z, , and the , hence in o @-x.

It is clear that (f[ X) f o @ for all f e o @-.
We shall hereafter identy (A) with , and with the algebra called B

in the preceding proof. Thus ] X) f for all f e , and each f e A has a
ique extension ] e , which is such that [1 ] [] [] f
COROLLARY 14. Le$ (A X) be an annular algebra. Then

[[ ] [max (4/3, k/e)] (2k) , 1 k < .
T function exp (-k) belongs o , and A and are gerad
by the hree functions z, , a.

Proof. From sup {- exp (-1/8) 0 < 1} (k/e) one obtains

] I[x [max (4/3, k/e)],
and the same estimate follows for ][ [[. Thus x exp (-k I), whence e . Let B denote the closed subalgebra of () generated by
z, , and. It remains to prove that e B, 1 k < .
The proof is by induction on k. Suppose K 1 and we know that e B,

1 < < K. Forl < m < wehavethat

h exp ((g + m))[ exp ( k!)z-exp( m) +-x=+x exp(-k _]

belongs to B. But h + ++exp ((K + m) k)_, so

++x exp (-k!/2)(2(k m)),
which tends to 0 as m --. oo.
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LEMMX 15. Let (A, X) be the annular algebra with data R1, ..., R,,. Then. is local, whereas

H(.) {f e(() z ---. f(z, O) is holomorphic on A;

o f(z, ) is holomorphic on { C" < h( ]z)},

z (Of/O) (z, O) is holomorphic on R,, 1}.
This st algebra is antisymetric and holomorphically closed, a is gestated
by the functions z, , and , 1 k < , where X is defied by

(z,) =o if z o
and

(z,) z- g z O.

Proof. It is clear that h local and that the bracketed expression, wch
we shall call B for the moment, is an antismetfic holomohically closed
(prodded its spectrum is ) unifo algebra wch contains , hence H().
If the belong to H(), then the Laent expansion argent will complete
the proof. To show that H(), it sces to find for each z0 e {0} a
neighborhood N(zo) in such that is uniformly appromable by on, (Y(zo) X C). Let

N(z) {z , C z zo zo /2}.
N(z0) being a closed disc, there is a sequence {p}s< of polynoals in one
variable such that

Then h(z, ) p(z) belongs to , and

Remark. H() is in fact generated by z, , and exp

LEMMA 16. Let (A, X) be the annular algebra with data R, R,.
f e() is locally approximable by ,agin additionf is uniformly approxi-
mable by on an open bset U of which contains (z, 0) ]z ,}, then

Proof. Let {f}$<= be a sequence in such that [] f f ]Iv 0 as
m =. Foracertaine> 0,{(z,) z ,, e} U, hence

]..= sup,_,. (o]./o)(z, o) (o7/o)(z, o) o.
There is h B(a) such that (Of/O)(z, O) h(z) whenever z] ,.
Thus there is h continuous on {z O z] ,} and holomohic on its in-
terior such that (0f/0) (z, O) h(z) whenever z ,. Thus if we define
F 5 C by F(z) (OrlOn)(z, 0) if]z , and F(z) h(z) otheise,
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then F is continuous on and holomorphic on /, while i is clear that
is holomorphic on. It follows (by, say, Morera’s theorem) that
that is, f .

DEFInitION 17. Let (A, X) be the annular algebra wih data R, R,
and let be a positive number. A satellite of annular algebras of size <_
which terminates in (A, X) is a pair (A+, X+) where

x+=U{xx{}.o_<< }c,
A+ {$e(X+) (z, ) --elf(z, , r) is in A, 0_< ] _< }.

Here:
(1) (A, X) is an annular algebra withdataR, .R, ()zn-i-l ’’’z(k)

where n(k) n(A, X) >_ n and size.(A, X) <_ .
(2’) The conditions (2)-(5) of Definition 8 hold.

LEMMA 18. Let (A+, X+) be a satellite of annular algebras. Then (A+, X+)
is a uniform algebra generated by the functions z, , and , 1 <_ k < where

’x ,x c-c
is defined by

’(z, ,, ) (z, ).

The maximal sets of antisymmetry for A+ are the sets X X r}, and

A+ (Z X {}) {(z, , ) --.y(z, ) "yA}, 0 <_ <_

Proof. Once we check that X+ is compact and that the/ belong to A+,
the usual antisymmetry argument [6, Lemma 7 and its proof] will complete
the proof. But conditions (3)-(5) ensure that X+ be compact and that

be continuous on X+, whence ft e A+.
LEMMA 19. Let (A+, X+) be a satellite of annular algebras. If (A+) is

the spectrum of A+, le Y,(A+) --, C be () ((z), (), () ). Then
( is a homeomorphism of (A+) onto 2+ U{ X {r} 0 _< ] _<

the maximal sets of antisymmetry for + o (- are the sets . X r},

(+ o-) ( x {}) {(z, , ) -(z, ) "/l, 0 <

and
(fiX+) ^ f o for all f e .+ o (-.

1+ (- is generated by the functions z, o, , and ’, 1 <_ k <

Proof. All this follows from properly interpreting Lemmas 13 and 18 in
the light of some observations of I. Glicksberg [2, p. 419] about the antisym-
metric decomposition.
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We can hereafter identify 2(A+) with .+ and fl+ with
{fe(+) (z,) f(z,,r) is in, 0_ k_ }.

Thus (f] X+) f for all f e fl+, and f e A+ has a unique extension ] in +,
which is such that 11 I]+ ]lf
COROLLARY 20. Let (A+, X+) be a satellite of annular algebras. The func-

tion " k..1 exp (-k!) belongs to .+, and A+ and + are generated by
the functions z, , , and .

Proof. Since the f belong to + by lemma 19, it follows as in the proof of
Corollary 14 that ’ e/ From corollary 14 and the usual antisymmetry
argument, it follows that z, , i*, and ’ generate ft.+.
Remark. We have proceeded indirectly, first constructing (A+, X+) and

then identifying 2(A+) with (J {k X {r}}, rather than directly taking this
union and the algebra of continuous functions on it which "belong to " on- X r}, because we had no way of knowing a priori that this union is com-
pact, or that the g are continuous on it.

LEMMA 21. Let (A+, X+) be a satellite of annular algebras. Then for every
ordinal number r,

H(+) C {re e(+) (z, ) ---*f(z, , rk) is in H(.), 0 <_ k

_
},

which is holomorphically closed. The maximal sets of antisymmetry for each
H(+) are the sets . X {r}.

Proof. This is evident, given that each H(.) is antisymmetric and holo-
morphically closed (Lemma 15).

PROPOSITION 22. Let (A, X) be an annular algebra, let > 0, and let r

be a finite or countable successor ordinal number. Then there exists (A+, X+)
a satellite of annular algebras of size

_
which terminates in (A, X) and which

has the following additional properties"
(1) For 0

_
(r

_
, there is a partition {]’0

_
]c

_
} S, uT, such

that

H" (.+)

(z, ) f(z, , r) is in g(), Vk e T,}
and for all e T,,

H’(+) ( X r} (z, , r) f(z, ) f e H()}.

(2) S (and so H(+) is holomorphically closed).
(3) S, for 0 a’ < a (and so H’(+) is non holomorphically closed

for 0

Proof. The proof is essentially that of proposition 11. We again facilitate
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the induction by replacing (3) by"

(4) If 0 _< ’ < , then e S,,.

For 1, again set r, 2-* and (A,, X,) (A, X), 0 _< k _< .
Again, suppose that 0 a W 1, 1 < *, and that we have proved

the proposition for successor ordinals . Suppose that (A, X) has data
R,...,R. Forl < s set+ 2-’min(,),

R+ {zC"

and let (A, X) be the annular algebra with data R1, ..., R, R:+. Con-
stmct the (A, X) and (A+, X+) as (’, X) and (, X) were constructed
in the proof of Proposition 11. Then (A+, X+) is a satellite of annular alge-
bras of size which termates in (A, X). Evidently H"(+) X
H’() for 1 s < and any ordinal number a’. From the usual anti-
symmetry argument, it remains to show that

(5) H’(+)](X X {0}) {(z, , 0) f(f, ) "fe} if 0 ’ a,
and

(6) {(z, ) .f(z, , O) "f eH(+)} contains a dense subset of H().
One aceves (5) as in the proof of (4) of 7 of [6], with the aid of Lemmas 16
and 21. Together wih antisymmetry, (5) implies that

(7) H"(+) {fe(+) :,(z,) f(z,,0) isin on2;
8IXeH (d+), ls< }, 0’.

The rgument for (6) goes long the sme lines as that for (5) of 7 of [6],
but few details re in order. ByLe 15, it sces to verify that there is
f,, H(J+) such that f,(z, , O) ,(z, ) whenever (z, ) e . Consider

X X C C defined by (z, , ) (z, ). We assert that
is locally approximable by H"(+), whence we can take f, @.
To begin th, + is continuous except possibly at points of

Y {(z, , t) e2+" z 0},

and on this locus @ 0. Now () ** is known to be continuous on

+ (Lemma 19), so as (z, , ) + approaches Y, fl(z, , ), and so
@(z, , ), approaches 0. Thus @ e (+).

It follows from Lemma 15 and our induction assumption that

x+ "’X+, l<s<

Further, the argument in the proof of Lemma 15 applies to show that @ is
locally approximable by +, and so by H"(+), at each point of +Y. It
remains to consider the pot (0, 0, 0). For 1 m < , let g X+ C
beg @ on

1 m},
g 0 on

(2 x {0}) (O{"X+ roT1 s< }).
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Then g HI(/) by (7) and

[[,.--I]--->0 as ’-->,

where U {(z, , ) + < ,}. The proof is complete.

The theorem can now be proved essentially as was Theorem 1. The addi-
tion of an "analytic rectangle" is carried out as in 7 rather than 6 of [6].

If 0 a countable limit ordinal, we again let {}< enerate the suc-
cessor ordinals < 0, and we choose (A, X) a satellite of annar algebras
such that H’() is holomohically closed, H"’(X) is non-holomohically
closed for 0 < ’, and 2- < < 2-*+ whenever (z, , F) . We set

X {f e(X) (z, , ) f(z, 2-’, ) is in },

X+ {f e(X+) z f(z, O, O) is holomohie o A;

Clearly X is the speetm of X,X is generated by z, , , and the ,
(X) is holomohielly closed, H*’() is non-holomoelly closed for
0 a’ < ,’, nd X+ is eompe, so (+, X+) is uniform lgebra. Obsee
that

(Corollary 14), so is continuous on +, hence belongs to +. Then
[+ (2) implies that v exp (-!) belongs to X+. The

usual antisyetry arent now shows that + is the spectrum of +,
that X+ is generated by z, , F, and (or, alternatively, by , , , and the
), and that for all ordinals ,
H(X+) {f (+) f(, 0, 0) is holomorpc on A;

f[ t <

and

Ts establishes the analoe of Proposition 22 for 0, and completes the proof
of Theorem 2.

Rr. For the algebras we have contracted to satisfy the condifio of
Theorem 2, H*(A) generated by , , , and exp (-!) (or, al-
ternatively, by z, , , and the ).

5. Some Problems
Here we state and comment on a nber of apparently open qutio

wch concern non-local algebras and wch are not mentioned in [6]. We
shall let (A, X) denote a unifo algebra with spectr X.
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(1) (A. Bernard) Suppose that ] belongs locally to A and does not take
the value 0. Then, because L(A) has spectrum X, 1/] e L(A). Must 1/f in
fact belong locally to A? It is easy to prove that the corresponding question
for A-holomorphic functions has an affirmative answer.

This question leads to the problem of identifying the spectra of certain
Banach algebras, which in turn has a relation to some questions about hulls.
To see how this comes about in a simple case, let us suppose that X can be
covered by two open sets U, V such that f belongs to A on U and on V. Let
B consist of all functions on X which belong to A on U and on V. B is not
generally a uniform algebra, but it is the quotient of one. Indeed,

/ {(f,g) A A :f--- g on UV}

is a uniform algebra with spectrum obtained by identifying two copies of X
along hull (kernel (U a V)) [7], and there is a homomorphism of/ onto B
obtained by taking (f, g) onto the function which is f on U and g on V. The
kernel J of this homomorphism consists then of those (, g) such that f = 0
on U and g 0 on V, and the spectrum of B is the hull of J in the spectrum
of/. This hull consists in turn of hull (kernel (U)) in the first copy of X,
together with hull (kernel (V)) in the second. It follows that the hull of J
will project injectively onto X if and only if

U u hull (kernel (U a V)) and V u hull (kernel (U a V))

are hulls. In this case, of course, B will have spectrum X, and so 1/f B.
The reader will readily supply other problems in the symbolic calculus of

the functions locally belonging to A, which are subject to a similar analysis.
It is worth noting that none of these questions depends on the uniform algebra
setting; they can be equally well formulated for commutative Banach alge-
bras with unit.

(2) There exists a non-local uniform algebra with three generators [6,
pp. 740-741]. On the other hand, from Mergelyan’s theorem it follows that
a singly-generated uniform algebra must be holomorphically closed. What
about two generators? One can equally well try to reduce the number of
generators in theorems 1 and 2 for a >_ 2.

(3) Every non-local uniform algebra of which I am aware is based on the
fundamental example of E. Kallin [3], which uses a cross-sectional derivative
in a direction which "is not always there". Are there other ways to construct
non-local algebras? The answers to some of our other questions may well de-
pend on such methods.
The remaining questions ask whether certain features of A are necessarily

retained by L(A) or H(A). Each can equally well be formulated for all
L(A) or all H(A), and the two formulations are not in general (obviously)
equivalent.

(4) Can L(A) or H(A) ever require more generators than A? Fewer
generators? In such an example, at least one of A, L(A), H(A) must be
finitely generated. If one is finitely-generated, must the others be?
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(5) Evidently the antisymmetric decompositions of L(A) and H(A)
refine that of A. Must they in fact be the same as that of A ?

(6) Is it possible to have A (X) but L(A) (X) or
H(A) e(Z) ?

(7) It is known that L(A) and H(A) have the same ilov boundaries and
the same spectra as A [8], [4]; see also [9, 14.9]; these are essentially formal
consequences of H. Rossi’s local maximum modulus theorem [5]. Must L(A)
and H(A) have the same Choquet boundaries as A ? This appears not to be
a formal consequence of the local maximum modulus theorem, even in its
strengthened forms [1]; see also [9, 9].
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