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In his classic paper [9] Post not only posed his famous problem but also
introduced concepts and techniques which he hoped would lead to its solution.
Although the problem was not solved along the lines envisioned by Post, his
methods have been extensively analyzed for their own interest, as have the
particular sets constructed by Post. In Ill it is shown that Post’s hypersimple
set can be either (Turing) complete or incomplete depending on which enumera-
tion of the r.e. sets is used for its construction. In [3] the analogous result is
obtained for Post’s simple (nonhypersimple) set with respect to truth-table com-
pleteness. In [7], [5] it is shown that Post’s simple set is Turing (in fact weak
truth-table) complete for any enumeration. We prove another result in this line
by showing that Post’s simple set is not contained in any maximal set.
The first example of a coinfinite r.e. set not contained in any maximal set was

given by D. A. Martin [4]. A more "natural" example of such a set was given
by R. W. Robinson [10, Corollary 7], who showed that the deficiency set of a
creative set is not contained in any maximal set. Such a deficiency set is a dense
simple set [10, Corollary 6], whereas we prove that Post’s simple set is not con-
tained in any dense simple set.

In order to state our result in a strong and recursively invariant form we
recall a notion from [7]. A simple set A is called strongly effectively simple (s.e.s.)
if there is a recursive function # such that whenever We -- -, every element of
We is less than g(e). (Here We is the eth r.e. set in some effective enumeration.)
Post’s simple set is s.e.s, with g(e) 2e + 1. A set A is called dense [6] if .
is finite or if for every recursive function h it is the case that a, >_ h(n) for all but
finitely many n, where a, is the (n + 1)st element of A in ascending order. It is
easy to see that all maximal sets are dense [6, p. 298]. In fact all hyperhyper-
simple sets are dense [4], although this latter result is much more difficult to
prove. Since every r.e. coinfinite superset of a s.e.s, set is s.e.s., the following
result implies that Post’s simple set is not contained in any maximal (or even
hyperhypersimple) set. This result was also used in [-8, Corollary 2] to show that
no s.e.s, set has a regressive complement.

THEOREM 1. No s.e.s, set is dense.

Proof. Suppose for a contradiction that A is both s.e.s, and dense. Let #
witness that A is s.e.s., and let a be the (n + 1)st element of. in ascending order.
Before giving the actual proof we sketch it in a style intended to clarify its
motivation.
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For < j we define an r.e. set Wyt, (frecursive) in order to be able to use g
to show that a > h(j + 1), provided a > h(j) and a+ > h(j + 1). Here h
is a recursive function such that lim h(j) oo and h(j) > gf(i, j) for < j.
This goal can be achieved by finding s such that a > h(j) and a+ > h(j + 1)
and then defining Wy, {a.}. Then gf(i, j) < h(j) < a so gf(i, j) fails to
exceed all elements of Wyt,. It follows that a. e A, so a > a+ > h(j + 1)
as required. If we now assume for simplicity that a > h(j) for all j, it is easy
to show that a > h(j) whenever > j, in contradiction to the assumption that
A is coinfinite. (The proof is an induction in the order So, S, $2, where S
is the sequence of statements a > h(j), a_ > h(j),. ao > h(j).)
To convert the above discussion into a proof it is necessary to show the

existence of the appropriate recursive functionsfand h and carry out the induc-
tion referred to. By the recursion theorem it is permissible to use an index off
in the definition of a partial recursive function f. From an index off we may
calculate an index of the partial recursive function h where

h(j) sup #f(i, j) + j
_<j

(and h(j) is understood to be undefined iff(i, j) is undefined for any < j). If
< j, h(j) is defined, h(j + 1) is defined, and there is an s such that a > h(j)

and a+ > h(j + 1), define f(i, j) so that Wy,) (a}, where is the least s
such that a > h(j) and a/ > h(j + 1). If the hypothesis of the preceding
sentence fails, choose f(i, j) so that Wy,) 0.
Observe that instructions for enumerating Wy,) may be uniformly obtained

from i, j, and an index off, and make sense without the assumption thatf(and
h) are total. Hence, by the recursion theorem, there exist total recursive f, h as
above. Since A is dense, there is a number Jo such that a > h(j) for j > Jo.
Forj > Jo, let C be the conjunction of the statements a > h(j)forjo < < j.
We prove C by induction on j starting with j Jo. Co just says ao > h(jo),
which is immediate by choice of Jo. We now assume C (j > Jo) and prove
C+ 1. It is shown that a > h(j + 1) by a descending induction on i, starting
withi=j+ and ending withi=jo. Againa/ > h(j+ 1) comes from
the choice ofjo. Now assume ai/ > h(j + 1) in order to prove a > h(j + 1),
where Jo < < j + 1. Then < j so from the induction assumption C it
follows that a > h(j). It now follows that Wf(i,j) {a.} for some s such that
a >_ h(j) and a+ >_ h(j + 1) and hence, as in the initial sketch of the argu-
ment, that ai > h(j + 1) as required. The fact that all the Cj’s hold contradicts
the assumption that A is coinfinite, so the proof of the theorem is complete.
We remark that, in contrast to Theorem 1, there exists a dense simple (in fact

maximal) set which is effectively simple. (A simple set A is called effectively
simple [12] if there is a recursive function # such that [w[ < #(e) whenever
We -- A.) The construction of a maximal, effectively simple set is an easy varia-
tion of the maximal set construction [11, Chapter 12].
The next result is a sort of converse to Theorem 1.
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THEOREM 2. Every r.e., coinfinite, and nondense set is contained in a s.e.s, set.

Proof. Let .4 be r.e., coinfinite, and nondense. Let an be the (n + 1)st
element of A in increasing order. Since A is not dense, there is a recursive func-
tion h such that h(n) >_ an for infinitely many n. Without loss of generality we
assume that h is strictly increasing.

The desired s.e.s, superset of A will be A w B, where B is obtained by
Post’s simple set construction [8] with 2e replaced by h(2e). That is, for each e
enumerate We until the first time, if ever, a number xe >_ h(2e) occurs. Let
B {Xe" xe exists}. Let C A w B. Obviously C is an r.e. superset of A.
To see that C" is infinite, consider n such that h(n) >_ an. If n is even, say n

2e, then every element of B less than h(n) has the form x for < e and so there
are at least 2e e e nonmembers of C less than h(2e). If n is odd, say n
2e 1, then again B has at most e elements less than h(2e) and thus at most e
elements less than h(2e 1), since h(2e 1) < h(2e). Hence there are at least
(2e 1) e e nonmembers of C less than h(2e 1). Since there are
infinitely many such n, it follows that C’ is infinite.

Finally C is s.e.s. Suppose We C’, so Xe does not exist. Then every element
of We is less than h(2e), so t7 witnesses that A is s.e.s., where #(e) h(2e).
The first corollary contrasts with Theorem 1.

COROLLARY |. There exists an r-maximal s.e.s, set.

Proof. By the proof of I-2, Theorem 8] there is an r-maximal set A with no
dense simple superset. Thus, in particular A is not dense, so it has a s.e.s.
superset C, which is r-maximal because it contains A.
The next two corollaries are immediate consequences of Theorems and 2.

COROLLARY 2.
superset.

A coinfinite r.e. set is dense if and only if it has no s.e.s.

COROLLARY 3. Every coinfinite r.e. set which is not dense has a coinfinite r.e.
superset which has no dense simple superset.
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