ISOMETRIES INDUCED BY COMPOSITION OPERATORS AND INVARIANT SUBSPACES¹

BY ARTHUR LUBIN

1. In this note, we consider some relations between some subspaces of $H^p(D)$ invariant under multiplication by z and some classes of isometries induced by linear fractional transformations mapping D onto D (l.f.t.). Here $D=\{|z|<1\}$ and $H^p(D), \, \infty>p\geq 1$, denotes the standard Hardy class of holomorphic functions. Given a l.f.t. ϕ , let C_{ϕ} and V_{ϕ} be defined on H^p by $C_{\phi}f=f\circ \phi$ and $V_{\phi}f=(\phi')^{1/p}C_{\phi}f$. (Note that the definition of V_{ϕ} depends on its domain H^p .) C_{ϕ} is a standard composition operator and is well known to be a bounded linear map of H^p onto H^p (see [5] for a discussion of composition operators). V_{ϕ} is clearly an isometry of H^p onto H^p , and further, F. Forelli has shown that for $p\neq 2$, every isometry of H^p onto H^p has the form bV_{ϕ} for some l.f.t. ϕ , where $b\in \mathbb{C}$, |b|=1 [4]. We consider here the case where ϕ has a fixed point on $T=\{|z|=1\}$, and for simplicity, we will assume $\phi(1)=1$. Our main results are for H^2 ; in Theorem 1 we show that V_{ϕ} is a bilateral shift, and in Theorem 2 we show that a subcollection of $\{V_{\phi}\}$ generates a reflexive algebra which is related to a reflexive-type property of some other algebras.

2. For c > 0, $t \in \mathbb{R}$, let

$$\alpha_{c,t} = [t + i(c - 1)][t + i(c + 1)]^{-1},$$

and let $\phi_{c,t}(z) = (1 - \bar{\alpha})(1 - \alpha)^{-1}(z - \alpha)(1 - \bar{\alpha}z)^{-1}$ be the unique l.f.t. such that $\phi_{c,t}(\alpha_{c,t}) = 0$, $\phi_{c,t}(1) = 1$. Let $C_{c,t}$ and $V_{c,t}$ denote the corresponding maps induced by $\phi_{c,t}$, and for t > 0, let

$$\Delta_r(z) = \exp \left[-r(1+z)(1-z)^{-1}\right].$$

We note that by Beurling's theorem, $\{\Delta_r(z)H^p\}$ forms a decreasing family of invariant subspaces of H^p with $\bigcap_r \Delta_r H^p = \{0\}$.

LEMMA 1. For $\alpha \in D$, there exists a unique c > 0, $t \in \mathbb{R}$ such that $\alpha = \alpha_{c,t}$. For r > 0, $V_{c,t}(\Delta_r H^p) = (\Delta_{rc^{-1}} H^p)$.

Proof. Consider $\psi: \Pi^+ \to D$ by $\psi(w) = (w-1)(w+1)^{-1}$, where $\Pi^+ = \{\text{Re } w > 0\}$. Then $\text{Re } w = c \text{ iff } \psi(w) = \alpha_{c,t}$, and, in fact,

$$\alpha_{c,t} \in \{z \mid |z - c(c+1)^{-1}| = (c+1)^{-1}\},\$$

the circle in D of radius $(c + 1)^{-1}$ tangent to T at 1. A direct computation

Received August 5, 1974.

¹ Research partially supported by a National Science Foundation grant.

shows that $\Delta_r(\phi_{c,t}(z)) = \Delta_{rc^{-1}}(z) \cdot \exp(itc^{-1})$; since $V_{\phi}(H^p) = H^p$, the lemma follows. This can also be seen by observing that

$$\phi'_{c,t}(1) = (1 - |\alpha|^2)[(1 - \alpha)(1 - \bar{\alpha})]^{-1} = c.$$

Theorem 1. $V_{c,t}: H^2 \to H^2$ is unitarily equivalent to a bilateral shift of infinite multiplicity.

Proof. Our proof will also give a representation for $V_{c,t}$: $H^p \to H^p$. Consider

$$T_{c,t}: H^p(\prod^+) \to H^p(\prod^+)$$

by $(T_{c,t}f)(w) = c^{-1/p}f((w-it)c^{-1})$, and

$$U: H^p(\prod^+) \to H^p(D)$$

by $(Uf)(z) = 2^{1/p}(1-z)^{-2/p}f((1+z)(1-z)^{-1})$. Then $T_{c,t}$ and U are unitary, and

$$(U^*f)(w) = 2^{1/p}(w+1)^{-2/p}f((w-1)(w+1)^{-1}).$$

We compute

$$(UT_{c,t}U^*f)(z)$$

$$= U(2^{1/p}c^{1/p}(w-it+c)^{-2/p}f((w-it-c)(w-it+c)^{-1}))$$

$$= 2^{2/p}c^{1/p}(z(1-c+it)+1+c-it)^{-2/p}$$

$$\times f([z(1+c+it)+1-c-it][z(1-c+it)+1+c-it])$$

$$= (4c(c+1-it)^{-2}(1-\bar{\alpha}_{c,t}z)^{-2})^{1/p}f(\phi_{c,t}(z))$$

$$= [\phi'_{c,t}(z)]^{1/p}f(\phi_{c,t}(z)) = V_{c,t}(z).$$

When p=2, we take Fourier transforms and we get $V_{c,t}$ unitarily equivalent to $S_{c,t}$ on $L^2(0,\infty)$, where

$$(S_{c,t}f)(x) = c^{1/2}e^{-itx}f(cx).$$

Clearly, $L^2(1, c) \subset L^2(0, \infty)$ is a complete wandering subspace for $S_{c,t}$, so $V_{c,t}$ is a bilateral shift of infinite multiplicity (see [2] for basic facts about shifts).

COROLLARY 1. The spectrum of $V_{c,t}$ is the whole unit circle T.

For any algebra of operators \mathscr{A} , Lat (\mathscr{A}) denotes the lattice of closed invariant subspaces of \mathscr{A} , and for a lattice of invariant subspaces \mathscr{L} , Alg (\mathscr{L}) denotes the algebra of all operators leaving invariant all elements of \mathscr{L} . An algebra \mathscr{A} is said to be reflexive if $\mathscr{A} = \text{Alg }(\text{Lat }(\mathscr{A}))$. Let \mathscr{A} be the weakly closed algebra generated by $\{V_{1,1}\}_{t\in\mathbb{R}}$.

THEOREM 2. Fix c > 0 and let Φ be a bounded linear map on H^2 . If

$$\Phi((\Delta_r H^2)^{\perp} \ominus (\Delta_s H^2)^{\perp}) \subset ((\Delta_{rc^{-1}} H^2)^{\perp} \ominus (\Delta_{sc^{-1}} H^2)^{\perp})$$

for all 0 < s < r, then for any t, $\Phi \in V_{c,t} \circ \mathcal{A} = \{V_{c,t} \circ A \mid A \in \mathcal{A}\}.$

Proof. By Lemma 1 and the representation obtained in the proof of Theorem 1, we have the spectral representation $V_{1,t} = \int_0^\infty e^{it\lambda} \, dP_{\lambda}$, where P_{λ} is the projection of H^2 onto $(\Delta_{\lambda}H^2)^{\perp}$. This yields a unitary $\mathscr{F} \colon L^2(0,\infty) \to H^2$ such that $\mathscr{F}^{-1}V_{1,t}\mathscr{F}$ is multiplication by $e^{it\lambda}$ and

$$\mathscr{F}(L^2(s,r)) = (\Delta_r H^2)^{\perp} \ominus (\Delta_s H^2)^{\perp}.$$

(We note that \mathscr{F} is given by $(\mathscr{F}a)(z) = \sqrt{2} \int_0^\infty a(\lambda) \Delta_{\lambda}(z) (1-z)^{-1} d\lambda$, which is the map used in [1, p. 195] and [6]. We can also obtain the above spectral representation directly from this by a simple computation.) Hence, \mathscr{F} produces a unitary equivalence between \mathscr{A} and \mathscr{M} , the algebra of bounded multiplication operators on $L^2(0, \infty)$. Clearly, Lat $(\mathscr{M}) = \{L^2(E)\}$, for $E \subset (0, \infty)$ measurable, where

$$L^{2}(E) = \{ f \in L^{2}(0, \infty) | f(x) = 0 \text{ a.e. } x \notin E \},$$

and this lattice is generated by

$$\{L^2(s,r) \mid 0 < s < r\} = \{\mathscr{F}^{-1}((\Delta_r H^2)^{\perp} \ominus (\Delta_s H^2)^{\perp}) \mid 0 < s < r\}.$$

Thus, if for all 0 < s < r, $(\Delta_r H^2)^{\perp} \ominus (\Delta_s H^2)^{\perp}$ is invariant for Φ , all $L^2(s, r)$ are invariant for $\mathscr{F}^{-1} \circ \Phi \circ \mathscr{F}$, which must therefore be a multiplication operator. Hence, $\Phi \in \mathscr{A}$ which proves the theorem for the case c = 1. If

$$\Phi((\Delta_r H^2)^{\perp} \ominus (\Delta_s H^2)^{\perp}) \subset ((\Delta_{rc^{-1}} H^2)^{\perp} \ominus (\Delta_{sc^{-1}} H^2)^{\perp})$$

for some c > 0, 0 < s < r, then choose $u \in \mathbb{R}$ and apply (using Lemma 1) the above case to the map $V_{c^{-1},u} \circ \Phi$. This gives $V_{c^{-1},u} \circ \Phi \in \mathscr{A}$, and since $V_{c,t} \circ V_{c^{-1},u} = I$ where t = -cu, we get $\Phi \in V_{c,t} \circ \mathscr{A}$ and the theorem is proved.

COROLLARY 2. (i) $V_{c,t}$ induces a one-parameter group given by

$$(V_{1,t})^s = \int e^{ist\lambda} dP_{\lambda} \quad if \quad c = 1,$$

$$(V_{c,t})^s = V_{c^s,u} \quad where \quad u = t(1 - c^s)(1 - c)^{-1} \quad if \quad c \neq 1.$$

(ii) \mathcal{A} is a reflexive algebra.

Proof. For c=1, (i) was shown in the proof of the theorem and for $c\neq 1$, (i) follows from the group structure of the l.f.t.'s; (ii) is a weaker statement than the theorem.

3. If ϕ is a l.f.t. with $\phi(e^{i\theta}) = e^{i\theta}$, $e^{i\theta} \neq 1$, then analogous results hold using $\tilde{\Delta}_r(z) = \exp\left[-r(e^{i\theta} + z)(e^{i\theta} - z)^{-1}\right]$ in place of $\Delta_r(z)$. This case does

not exclude the case $\phi(1) = 1$, since there exist l.f.t.'s (hyperbolic) fixing two points on T; a l.f.t. with a unique fixed point on T is called parabolic. Since

$$\phi_{c,t}(z) = \left[(it - (c+1))z + (-it + c - 1)\right] \left[-it - (c+1) + (it + c - 1)z\right]^{-1},$$

we see immediately (see [3] or [5]) that $\phi_{c,t}$ is parabolic iff c=1. If $c\neq 1$, then $\phi_{c,t}(1)=1$ and $\phi_{c,t}(\gamma)=\gamma$ where

$$\gamma = (t + i(c - 1))(t - i(c - 1))^{-1}.$$

A l.f.t. without a fixed point on T is called elliptic, but our results do not apply in this case.

BIBLIOGRAPHY

- 1. P. R. AHERN AND D. N. CLARK, On functions orthogonal to invariant subspaces, Acta. Math., vol. 124 (1970), pp. 191–204.
- 2. P. A. FILLMORE, Notes on operator theory, Van Nostrand Reinhold, New York, 1970.
- 3. L. R. FORD, Automorphic functions, McGraw-Hill, New York, 1929.
- 4. F. Forelli, *The isometries of H^p*, Canad. J. Math., vol. 16 (1964), pp. 721-729.
- 5. E. A. NORDGREN, Composition operators, Canad. J. Math., vol. 20 (1968), pp. 442-449.
- D. SARASON, A remark on the Volterra operator, J. Math. Anal. Appl., vol. 4 (1962), pp. 244–246.

NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS