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A compact set K in C" is called uniformly H-convex if there exist a sequence
{Dk}=I of domains of holomorphy and a constant r, 0 < r < 1, such that

(a) Dk contains all points at distance < r/k from K, and
(b) all points of Dk have distance < 1/k from K.

This terminology is due to (irka [1] who proved several propositions con-
cerning uniform approximation by holomorphic functions on uniformly H-
convex sets, although the condition itself appears earlier in the paper by
H6rmander and Wermer [2].

If K is the closure of a bounded, strongly pseudoconvex domain then K is
known to be uniformly H-convex. However, it is not known whether this
remains true for the closure of an arbitrary bounded domain of holomorphy
with smooth, but not strongly pseudoconvex, boundary.

Let D c C" be a domain with C 3 boundary. We denote by n(z) the unit
exterior normal to D at z. For each > 0 we consider the set D, defined by

D, D w {z + sn(z)’z cD,O < s < t).

It is well known that if is sufficiently small then Dt is a domain with C2 bound-
ary. We call D a special domain of holomorphy if Dt is a domain of holo-
morphy for all sufficiently small t. Convex domains and strongly pseudoconvex
domains with smooth boundary are special, and it is clear that the closure of a
special domain of holomorphy is uniformly H-convex. The purpose of this note
is to characterize the special domains of holomorphy by means of a boundary
condition.

It will be convenient for us to work entirely in the underlying real vector space
R2". We suppose that D {p < 0} where p is a real-valued C 3 function on a
neighborhood of D satisfying the condition grad p 4:0 on OD. Such a function
will be referred to as a defining function for D. If z OD, the tangent space to
OD at z, denoted T(OD), is the set of vectors normal to grad p(z). The holo-
morphic tangent space to OD at z, denoted A(OD), is the subspace of T(OD)
consisting of vectors v such that Jv T(OD), where J is the orthogonal trans-
formation on R2" corresponding to multiplication by x/- in C".

Let Ho(z) denote the 2n x 2n matrix (OZp/Oxi (Xj(Z)) and let Lo(z) be the
matrix 1/4{Ho(z) + tjHo(z)J}. The Levi form for OD at z is the bilinear form
defined on A(OD) by the matrix L(z). (A simple computation shows that this
definition is consistent with the usual definition of the Levi form as a hermitian
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form on a complex vector space.) The domain D is a domain of holomorphy if
and only if the Levi form is positive semidefinite on Az(OD) for each z t3D.

Since tgD is compact we can find to > 0 such that the matrix (I + trip(z)) is
invertible for all t, 0 < < to. Henceforth we will assume that [0, to].

PROPOSITION 1. Let D be a bounded domain ofholomorphy in C and let p be
a Ca defining function for D satisfying [grad p(z)[ for all z OD. Then D
is a special domain of holomorphy if and only if there exists > 0 such that, if
0 < < t the matrix

IA(z) H,(z)(I + tH,(z))- + tjHo(z)(l + tH,(z))-td

defines a positive semidefinite form on Az(OD) for each z

Proposition is stated in terms of a particular defining function for D. How-
ever the following corollary gives a necessary condition independent of the
choice of defining function.

COROLLARY 1. IfD is a special domain ofholomorphy andp is any C2 defining
function for D then (L(z)v, v)= 0 for v A(D) implies (H,(z)v, w)= 0
for all w Az(OD). (Here ( ) denotes the usual scalar product on R2").

Remark. It is easy to find examples of pseudoconvex hypersurfaces which
do not satisfy the condition of Corollary 1. For instance, if S is the surface
X2 xlyt in C2 (where z x + iyj, j 1, 2) then the Levi form is iden-
tically zero on S but the real Hessian form is not identically zero on the holo-
morphic tangent space.

The next corollary gives a sufficient condition for D to be a special domain of
holomorphy.

COROLLARY 2. Let D be a bounded domain of holomorphy in C" with a C a

defining function p satisfying Igrad p(z)l for all z D. Suppose that
OD Ea w E2 where E1 and E2 are closed sets satisfying the following con-
ditions"

(i) if z Ei and v Tz(OD) then (H(z)v, v) > 0;
(ii) if z E2, v A(OD) and (Lo(z)v, v) 0 then Ho(z)v 0;
(iii) there is a constant C > 0 such that if z E2 and 2(z) is any nonzero

eigenvalue of the form defined by La(z) on A(OD) then 2(z) > C.
Then D is a special domain of holomorphy.

It follows from the proof of Corollary given below that condition (ii) is
necessary for D to be special, given that Igrad p(z)l on OD. Also note that
as special cases of Corollary 2 one can deduce that strongly pseudoconvex
domains and convex domains with Ca boundaries are special.
For the proof of Proposition we introduce the following notation. Let
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Zo OD. Choose a parametrization for cOD near Zo, i.e., a Ca mapping b
(bl, b2,) of a neighborhood U of 0 in R2n- into a neighborhood V of Zo
such that

(a) (0) =zo,

(b) db has rank 2n at each point of V, and
(c) ODr V= b(U).

Let ux,..., u2,- denote the coordinates in R2"-1. Then the vectors vx,...,
v2"- defined by

\ &,/

form a basis for the tangent space T2o(OD). For sufficiently small the mapping
b’ defined by

c’(u) c(u) + tn((u)), u e U,

is a parametrization of cOD near Z’o Zo + tn(zo). Consequently, if we let

then {wt,..., w2"-x} is a basis for To,(CDt). Here O(n $)/Ou, is the vector
whose jth component is O(n
Now it is straightforward to verify, using where necessary the fact that

[grad p[ 1, that

(1) Ho(zo)(V0 (O(n dp)/Ou,)(O) and
(2) if is any C2 defining function for Dt then grad a(z;) [grad a(z))[

grad p(Zo).

In particular,

(3) Tzo(8D)= Tzo,((gD,)

from which it follows that

(4) Azo(OD)= Azo,(ODt).

Finally one has the following identity

(5) if w Tzo,(OD,) then <Ho(z’o)W, w> Igrad a(Z’o)l<Hp(zo)v, w>.
Indeed, let w (w1,..., w2,) and write a(z’) for Igrad a(z’)l. Then, using the
property

Z Wj (t (0) 0
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one obtains

(H,(z’o)W, w) ,
\dx, OxjJ\ou/

wj

a(z)w ()[(ao$’)- (do
a(z;) wkou/kdx 4 (0)

Igrad a(z)l (na(zo)v, w).

Proof of Proposition 1. Let v bw, w cw. Then

(H.(z)v, w) X (H,()w, wa)bca
From (5),

(H,(z)w, wa) Igrad a(z)l(Ha(zo)vL
But (1) implies v (1 + tHa(zo))- tw. Thus

(6) (n,(z)v, w) Igrad a(z)l(na(zo)(l + tna(zo))-v, w).
Since L,(z) H,(z) + JH,z)L Proposition is established.

Proof of Corollary 1. Observe that for any symmetric matrix A,

(7) A(I + tA) -1 A tA2(l + tA) -t,

and also A2(I + tA)- is positive for small t. Suppose now that Igrad p(z)l
for z e t3D and that (Ho(z)v, v) + (Ha(z)Jv, Jr) 0. If D is special then
Proposition implies that

0 (Ha(z)2(1 + tHp(z))-tv, v) + (Hp(z)2(1 + tHp(z))-Jv, Jv)

from which it follows that Hp(z)v O.
If we do not assume Igrad p(z)[ then p gp’ where Igrad p’(z)l 1,

and p’ is a defining function for D. A straightforward calculation shows that
(Ha(z)v, w) g(z)(Hp,(z)v, w), since v and w are orthogonal to grad p’(z).
But Hp,(Z)V 0 by the preceding argument, which completes the proof.

Proof of Corollary 2. If z E1 then Ha(z maps Tz(OD) into Tz(OD). (This
follows from the assumption that [grad p(z)[ is constant on cD.) Since by (i),
Ha(z) is positive semidefinite on Tz(OD) it follows that Ha(z)(I + tHa(z))-is positive semidefinite for sufficiently small t, independent of z E1 by
compactness.
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If z E2 we choose an orthonormal basis wI,..., w2n- 2 for Az(cOD) such that,
if w b,w" then (Lp(z)w,w) Y, 2,b2 with 2, 0 or 2, > C. Write

w" where b, 0W W -- W2 where (Lp(z)wl, Wl) 0 and W2 E b,,2 ,2

if 2, 0. Then (Lo(z)w2, w2) >_ CIw2l. Also, by (ii), Ho(z)wx 0. Finally,
observe that Lo commutes with J. Arguing as in the proof of Corollary one
obtains

4(/2(z)w, w) 4(Lo(z)w, w) t(Hp(z)2(I / tHo)(I / tHo(z))-lw, w)

t(H(z)2(I / tH(z))-Jw, Jw)

4(Lp(z)w2, w2) t(H,(z)2(I + tH(z))-Xw2, w2)

(Ho(z)2(I + trio(z))-XJw2, Jw2)
>_ (4C- y(t))llw2ll 2

which can be made nonnegative by choosing small independent of z E2.
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