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If X is a locally compact Hausdorff space and E is a Banach space, we denote
by Co(X, E) the Banach space of continuous functions vanishing at infinity on
X, taking values in E, and provided with the usual supremum norm. If X is
actually compact, so that Cy(X, E) consists of all continuous functions on X
to E, we use the notation C(X, E) to represent this function space. And if K
is the scalar field associated with E, we will denote Cy(X, K) by Co(X), (or by
C(X) if X is compact).

The well-known Banach-Stone theorem states that if X and Y are locally
compact Hausdorff spaces, then the existence of an isometry 7" of Cy(X) onto
Co(Y) implies that X and Y are homeomorphic. In [2] and [3] this theorem
was strengthened by showing that the conclusion holds if the requirement that
T be an isometry is replaced by the requirement that T be an isomorphism with
ITI 1T~ < 2. Essentially the same result was obtained quite independently
in [1] by D. Amir, who assumed that the spaces X and Y were compact, and
that the functions were real-valued. In [4] it was shown that 2 is indeed the
greatest number for which the formulation of the Banach-Stone theorem given
in [3] is valid, by exhibiting a pair of locally compact Hausdorff spaces X and
Y, with X compact, ¥ noncompact, and an isomorphism T of C(X) onto Cy(Y)
with |T|| |7~ 1| = 2. However, it seems to be still unknown what is the best
number for such a generalization in the case in which X and Y are both required
to be compact. Y. Gordon has shown that if X and Y are countable compact
metric spaces, then the existence of an isomorphism T of C(X) onto C(Y)
satisfying | T'|| |7~ || < 3 implies that X and Y are homeomorphic [6].

Here we investigate the problem of whether a generalization of this type,
involving isomorphisms rather than isometries, is possible when we consider
spaces of vector-valued, rather than scalar-valued functions. We establish the
following:

THEOREM. Let X and Y be locally compact Hausdorff spaces, and E a finite-
dimensional Hilbert space. If there exists an isomorphism T of Co(X, E) onto
Co(Y, E) satisfying |T|| |T™ | < \/2, then X and Y are homeomorphic.

We do not know if /2 is the best number for the formulation of such a the-
orem. The example of [4] shows that /2 cannot be replaced by any number
greater than 2. We note that if T'is required to be an isometry instead of merely
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an isomorphism with small bound, then M. Jerison has shown that, if X and Y
are compact, the conclusion of the theorem is valid for a much larger class of
Banach spaces E [7].

The proof of the theorem is established by two propositions and a sequence
of lemmas. Lemmas 1 through 6’ do not depend upon the fact that E is a
Hilbert space, nor upon the fact that we are using \/ 2 as a bound. They require
only that E be a finite-dimensional Banach space and that ||T|| [T7}| < 2.
We therefore state and prove Lemmas 1 through 6’ under these more liberal
assumptions, since they in no way complicate the proofs, and since it is quite
possible that a stronger theorem may eventually be established. Only following
Lemma 6’ do we use the fact that Eis a Hilbert space and that | T| |T~}| < \/ 2.

Throughout we will use the fact that the dual space Cy(X, E)* of Cy(X, E)
is (isometrically isomorphic to) the Banach space of all regular Borel vector
measures m on X to E*, with finite variation |m|, and norm given by |m| =
[m|(X). This characterization of Co(X, E)* was first proved by I. Singer [8]
for the case in which X is compact. The proof for compact X also follows from
Corollary 2 of [5, p. 387]. The result for locally compact X then follows readily
by considering Cy(X, E) as a subspace of C(X, E), where X denotes the one-
point compactification of X, and using a standard theorem relating the dual
space Co(X, E)* to a quotient space of C(X, E)* [9, p. 188]. All properties of
vector measures which are used in this article may be found in [5].

Elements of E will be denoted by b, c, e, u, v, and those of E*, for the most
part, by ¢ and . The value of ¢ at b is denoted by (b, ¢). We denote elements
of Cyo(X, E) and those of Cy(Y, E), respectively, by the letters F and G, often
accompanied by subscripts. Elements of Cy(X) and of Cy(Y) will be denoted,
respectively, by f and g. The norms in E and E* will be denoted by | - ||, while
norms in Cy(X, E), Co(Y, E), Co(X) and Cy(Y) are denoted by | ‘||,. The
letter S will always represent the surface of the unit sphere in E,

S ={eekE:|e| = 1}.

The following notational convention will be used throughout the article. We
will say that a net {F, , ;:i€l} = Cy(X, E) is regularly associated with a pair
(x,)e X x Eif F,,;=f, i e where {f, ;:iel} is a net contained in
Co(X) with [ f,,illo = fx,(x) = 1 for all i, and the support of f, ; is contained
in N;, where {N;:ie I} is the family of neighborhoods of x and the set of
indices I is directed in the usual manner by set inclusion, (i; < i,if N;, € N;).
We write {F, , ;} <> (x, e) to denote that {F, , ;} is a net in Co(X, E) which
is regularly associated with (x, e). The definition of nets {G,, ., ;} S Co(Y, E)
regularly associated with pairs (y, e) € Y x E is analogous, and we use the
corresponding notation, {G, , ;} < (y, e).

ProposiTION 1. If E is a Hilbert space and if e, e,, ..., e, are vectors in E
with |lejl| = 6 > 0 for 1 < j < n, then there exist scalars 1;, 1 < j < n, with
|A;1 = 1 for all j, such that |3}, Ajejll = /n- 6.
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Proof. The proof is made by induction on the number of elements n. It is
clearly true for n = 1. Thus assume the result holds for some k > 1 and that
we are given elements ¢; € E, 1 < j < k + 1, with |le;]] = 6 > O for all j. By
the inductive hypothesis there exist scalars ;, 1 < j < k, with |1;] = 1 for all
Jjsuch that [Z%_; Ae)ll* > k- 6% Letu = Y%_, Aje;. Then
k+1 2
Zl Aejll = llu + Aerr€erl?
=

= [lull® + 2 Re Ay s> 4D + 1Aer(|* el
> (k + 1)-67
if A4, is chosen so that |4,,,] = 1 and Re 4, {e; 4, u) = 0.

PrOPOSITION 2. If E is a finite-dimensional Banach space there exists a positive
constant Ky such that if ey, e,, ..., e, are elements of E with |e;| = 6 > 0 for
1 < j < n, then there exist scalars 1;, 1 < j < n with |Aj| = 1 for all j, such
that |£5-, Ajejll = Kg-/n-6.

Proof. Suppose that the dimension of Eis m, and let /"; denote m-dimensional
Hilbert space over the scalar field associated with E. Let A be a linear operator
taking E onto ;. Now for each j, A(e;) € IZ and

Al = llel/lA™ = o/147 ]l

By Proposition 1, there exist scalars 4;, 1 < j < n with |4;] = 1 for all j, such
that |[37-, A;A(e))ll = /n-6/I|A7"|. Thus

,21 ae = |A" (é] z,A(ej))

and we may take K = 1/[|A]| - |47 .

Throughout Lemmas 1 to 6’, we shall assume that E is a finite-dimensional
Banach space and that 7 is a fixed isomorphism of Cy(X, E) onto Cy(Y, E)
satisfying ||T|| |T 'l < 2. There is no loss of generality in assuming that T
is norm-increasing—i.e., |F|, < |T(F)|, for Fe Cy(X, E)—and that
IT~1|| = 1, for otherwise we may simply replace T by the isomorphism T’ =
[|T~1||T which has these properties. Thus these assumptions concerning T will
be made throughout the remainder of this article. Then throughout Lemmas 1
to 6’ M will denote a fixed real number satisfying || T||/2 < M?> < M < 1.

For any point x € X, we will denote by u, the scalar-valued measure which
is the positive unit mass concentrated at x. Then any element m € Co(X, E)*
can be written uniquely as m = ¢ - u, + n, where ¢ € E* and ne Cy(X, E)*
with n({x}) = 0. (Let ¢ = m({x}) and n = m — ¢ -p,.) From this remark
and the regularity of the measures involved, it follows that if {F, , ;} <
(x, €) € X x E, then for all m € Cy(Y, E)*,

lim fT(Fx,e,,.) dm = lim fo,e,,. d(T*m)

exists, and is equal to {e, (T*m)({x})>. We thus obtain the following:

‘ > /n-8/IAll- 147,
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Lemma 1. If{F, . ;} < (x,e)e X x Ethen foreachye Y,lim;(T(F,, . ))(»)
exists as an element of E (in the norm topology).

Proof. For fixed y e Y and ¢ € E*, we know that lim; | T(F, . ;) d(¢ - u,)
exists. Moreover, it is clear that this limit is equal to lim; {(T(F,,.,))(»), ¢).
Now the map from E* to the scalars given by ¢ — lim; {(T'(F, . ))(»), ¢) is
clearly linear, and is bounded by 2|e|. Thus there exists an element v € E** =
E such that for ¢ € E*,

hm <(T(Fx, e, 1))(y)’ ¢> = <U, ¢>

But this simply says that the net {(T(F,,.,;))(»)} converges to v in the weak
topology on E, which, since E is finite dimensional, coincides with the norm
topology.

LemMA 2. Let {F, , ;} < (x,e)e X x S. (Note that |e| = 1.) For each
i € I, denote by R, the subset of Y defined by
R = {ye Y: [(T(Fy,e, )W > M}.
If Y, denotes the subset of all y € Y such that there exists a net {y;} in Y, with
¥; € R, for each i, which has y as a cluster point, then Y, is a finite subset of Y.

Proof. Letye Y, and let {y;} be such a net in Y having y as a cluster point.
Since for each i (T(F,,., ))(»;) lies in the compact subset of E defined by

{ueE: M < |ul|l < |T|},
it follows readily that there exists an element u € E, with |u| > M, and a subnet

{Viw} S {:} such that y,,) — y and (T(F; ¢, i) Vi) = U-
Choose some ¢ € E* with |¢|| = 1 such that {u, ¢) = |u|, and consider
the neighborhood N, of u defined by

N, = {veE: [u, ¢) — (v, o)l < M — M?}.

Choose a real-valued g, € Co(Y) with g(y) = llg,ll, = 1/|lull, and define
G,e Cy(Y, E) by G, = g, u. Let N, be the neighborhood of y in Y given by
N, = {y e Y: {G,()), ¢) > IIT|/2}.

Then for all i such that y; € N, and (T'(F,, ., ))(»;) € N,, we have
IT(Fy,e,d) + Gyllw = I(T(Fy, e, DD + Gyl
2 [{(T(Fy,e, D) + Gy(»), $)I
2> KGy(y, ) + u, o)l — 1<, @) — (T (Fy, o, D(¥0) D)
> |TN2 + llul — (M — M?)
> |TI/2 + M2

Thus |F,.,; + TGl > 3 + M?/|T]| > L.
Now ||T7}(G)ll., < 1, so that the maximum set of the function

"Fx,e, i + T_I(Gy)"
is contained in the neighborhood W; of x defined by
W, = {x eX: F,, (x) # 0).
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Moreover, at any point x' of this maximum set, ||(T~'(G,))(x)|| is bounded
away from zero by the positive number 6 = M?/|T| — 4. Thus for each i
such that y; e N, and (T(F,, ., ))(y;) € N,, there exists a point x; in the corre-
sponding set W, in X with [(T'(G,))(x))ll > &. Since the W; thus obtained
constitute a neighborhood basis at x, we conclude that [|(T~!(G,))(x)| = 6.

But this clearly implies that Y, is finite. For given any » points y,, ..., y, of
Y,, we can choose the corresponding functions G,, 1 < j < n, with disjoint
supports, so that for any choice of scalars 4;, 1 < j < n, with [4;] = I for each
J> we have [|237-1 4,G, |, = 1. But for each j, [|(T“(Gyj))(x)|| > J, so that by
Proposition 2, we can choose the 4; such that

T (Z A.I'G.Vj)
j=1

LemMma 3. If {F, . i} «< (x,e) € X x S, then there exists at least one point
v € Y such that ||lim; (T(F, . )| > M.

Proof. By Lemma 2, Y, is finite, say Y, = {y,,..., ».}, and we write

=

e}

PIRFCRTIIE

= KE'\/n'é.

T New) = X &5y, + m,
~ .

where the ¢; € E*, and m € Co(Y, E)* with m({y;}) = 0 for 1 <j < n (It
will follow, from the proof of the lemma, that Y, is nonvoid, since any y satisfy-
ing the condition of the lemma must necessarily belong to Y,. However, for the
moment, we simply set T* (e u,) = m, if Y, is void.)

Now suppose that for all y; € Y,, we had |lim; (T(F, ., ))(y)ll < M. Then
we could find an i, such that for all i > i, and all y; € Y,, we would have

I(TFs, e, DO < M + (1 = M))/2.

Next, by the regularity of |m|, we could find a compact set K = Y — Y, such
that jm|(Y — K) < (1 — M)/4. Since K is compact and disjoint from Y,, there
is an i, such that i > i, implies [|(T(F,,.,))(»)| < M for all y € K. Hence, if
io is such that iy > i, and i, > i,, then for all i > i, noting that 3 [|¢;]| < 1
and [m|| < 1 — ¥ |i¢;ll, we would obtain

1= fo,e,i d(e'#x)

N JT(F"M) d(T* (e~ 1))

¥ T d@y ) + [ TEaddm+ [ T, dm

Y-K
X Ilg,DIM + (1 — M)/2] + M1 = ¥ lI$;l) + 2(1 — M)/4
=M+ (1 + Y l¢;,HA = M)2
<1

A

This contradiction thus completes the proof of the lemma.
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Lemma 3. If(y,e)e Y x Sand {G, ,, ;} < (», e), then there exists at least
one point x € X such that |lim; (T~*(G,,., )| > M/|T||.

Proof. Consider the isomorphism T of Cy(Y, E) onto Cyo(X, E) defined by
T = |TIT™*. We have |T| = |T|, and |T | = 1. Thus we may apply
Lemma 3 to the mapping T, providing the desired conclusion.

Before stating Lemma 4, we make the following observations. As we have
previously noted, if {F, . ;} <> (x,e) € X x S, then any point y such that
[lim; (T(Fy,., ))(»)I > M necessarily belongs to the finite set Y,. It thus
follows that

sup
yeyY

llm (T(Fx, e, l))(.V')

i

is attained at some point y € Y. Similarly, consideration of the isomorphism
T = |T|T™! of Cy(Y, E) onto Co(X, E) and Lemma 2 imply that if

{Gy,e,i} g (y’ e) €Y x S’
then sup,.. x [lim; (T'(G,,., ))(x")|| is attained at some point x € X.

Lemma 4. If{F, .} <> (x,e) e X x S, let y be a point of Y at which

im (T (o )0

attains its maximum. Let

u = lim (T(Fx,e,.-))(y)/

lim (T .-))(y)” .

Then if {G, , ;} < (y,u) e Y x S, it follows that for x' € X, x' # x, we have
1
lim (T 7Y(G,,,, DX)| < 2

J

Proof. Suppose, to the contrary, that there exists some x’ € X, x’ # x, such
that

N =

lim (T ~'(G,,,, N(X)|| >
j
Let ¢ = lim; (T"(Gy,“, (') and choose Y € E* with [y = 1 such that

{e, ¥y = |c|. Then write T* '(y-p,) = ¢ p, + m, where ¢ € E* and
m e Cy(Y, E)* is such that m({y}) = 0. Then

Jel = <e )y = lim [ 71(G,,,,) d(h- o)

= lim fGy, w i AT )
J

= (u, $).
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Since ||u|| = 1, we have |[¢| > |c| > %, and hence, since | T* "1y - pu, )| < 1,
Iml = IT*7 '@ - p)ll = ol < I1T*7 @ - pe)ll = llell < 1 = el < $.
Now let v = lim; (T(F,,,, ))(») (so that u = v/||v]|]). We have

lilin UT (Fy, o, D), > = <o, ¢ = Lllvllu, ¢> = o]l [c].

Since |c|| > 1 — |lc||, we can choose a positive number ¢ such that
(loll = &)llell > (lvll + &)1 — llel).

Next, write m = 3 ;_, ¢, + n, where {y, y;,...,»} is the set Y,, the
¢ € E*,1 < k < randnis an element of Cy(Y, E)* with n({y}) = n({y,}) =
0,1 < k < r. By our choice of y, we can find an i, such that for all i > i;, we
have

(T (Fy,e, D), $31 > (o]l = &lel

and
[(T(Fy, e, D) G2l < (ol + gyl forl <k <r.
Now since |n|(Y,) = 0, we can find a compact set K = Y — Y, such that
(Y — K) < [llv]l + & — M]lnl|/2.

Because K is compact and disjoint from Y,, there exists an i, such thatif i > i,,
I(T(Fy,e, D(P) < M for all y' € K. We choose an i, such that iy > i; and
iy = i,, and such that for i > i, the support of F, , ; does not contain the
point x’. Then for i > i, we have

0 = [Freid@ ) = [ T@ao dT* (1)
- [T d@ w) + B T d
[ TCipans [ T dn

= (T Fae)0) 8 + 3 (T Er e DO, 6

+ f T(F, ., ;) dn +J T(F,,. ) dn
Y-K K

But for all i > i,, the modulus of the first term on the right is greater than
(lv]l — #)llc]|, while the modulus of the sum of the remaining terms is less than

(ol + &) (2 umu) + [lol + & — M]nll + Min]|
= (lol + &lm| < (ol + &)1 — [elD.
Since this contradicts our choice of ¢, the proof of the lemma is complete.
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If we again consider the isomorphism T = ||[T|T !, and note that T~ =
T/||T| we obtain the companion result:

Lemma 4. If {G,,. i} « (y,e) e Y x S let x be a point of X at which

“ lim (T (G, ., x')

attains its maximum. Let

b = lim (T ~'(G,, . ))(x) / lim (T (G, o, )

Then if {F, ,, ;} <> (x, b) e X x S, it follows that for all y’ € Y, y' # y, we have
im; (T(Fy, 5, DOOI < ITN/2.

LeMMA 5. Let x, y, u, and {G, , ;} be as in the statement of Lemma 4. Then

lim (T ~4(G,,., )(*)

> M/|T].
Proof. By Lemma 3', there is some point x, € X such that

> M/|T],

lim (T(G,,,, N(xo)

and, by Lemma 4, the only candidate for x, is x.

Similarly, by using Lemmas 3 and 4’ we obtain:

LEMMA 5'.  Let y, x, b, and {F, ,, ;} be as in the statement of Lemma 4. Then

> M.

lim (T (F,5, ))()

LemMA 6. Let x, y, u, and {G, , ;} be as in the statement of Lemma 4. If

b = lim (T 7'(G,,, ,-))(x)/

lim (T ~!(G,,,, ))x)

and if {F, ,, ;} < (x, b), then we have |lim; (T(F,, )W)l > M, and for all
Ve, y #y,

Jtim (70000 < 1712

Proof. By Lemmas 4 and 5, we know that x is the unique point of X at
which

lim (T ~!(G,,,, N(x")

attains its maximum. Thus by Lemma 4’ (with u replacing e¢) and Lemma 5,
the desired conclusion follows.
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Similarly by using Lemmas 4’ and 5, followed by Lemma 4 (with b replacing
e) and Lemma 5, we obtain:

LeMMA 6'. Let y, x, b, and {F, , ;} be as in the statement of Lemma 4'. If
u = Tim (T(Fy,p ))(Y) /
J

and if {G,,, ;} + (y, u), then we have |lim; (TG L, )N > M]|T||, and
forallx' e X, x' # x,

lim (T(Fy, 5, (Y)

1

< -.

2

Lemmas 4, 5, and 6 show that starting with any point x € X, there is a point
y € Y and elements b, u € S, such that if {F, , ;} < (x, b) then

lim (T 71(Gy,u, (X))

(D lim (T (Fy,5,))(»)| > M,
while
2 im (T (F 5, D) < ITH2, Y eY — {y},

and if {G, , ;} <> (», u) then

3) lim (T ~X(Gy,., ()| > M/IT]
while
“@ lim (T (G0, )| < 3. X € X = {1}

Lemmas 4', 5, and 6’ show conversely that starting with any point y € ¥, there
is an x € X and elements b, u € S such that (1), (2), (3), and (4) are satisfied.

We now place further restrictions on the space E and on the bound of T
which will insure that the relations (1) through (4) define a correspondence
between points of X and Y which is, in fact, a homeomorphism. From now on,
we shall assume that E is a finite-dimensional Hilbert space. Recall that the
conclusions of Lemmas 1 through 6’ hold under the assumptions that T is any
isomorphism of Co(X, E) onto Cy(Y, E) with |T|| < 2 and |T"!|| = 1, and
that M is any real number with ||T||/2 < M? < M < 1. We shall henceforth
assume, in addition, that | T|| < /2 and that |T||/{/2 < M.

For y € Y, define x = p(p) if there exists a b € S such that x is related to y
by (1) and (2). Then p is a well-defined function from Y to X. For if not, for
some y € Y there would exist points x,, x, € X, x; # x, and elements by, b, €
S, such that if {F,, ,, ;} © (x;, by) and {F,, ,, ;} < (x2, b,) then

I(T(Fy,, 5, DI > M for all i > some i,
and

I(T(Fy,,5,, )W > M for all j > some j,.
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If we choose i > iy and j = j, such that the supports of F,, ,, ; and F,, ,, ;
are disjoint, then for all choices of scalars 4,, 4, with |1;] = |1,] = 1, we have

"A'lFxl,b],i + 121;'.3C2,b2,j"00 = 1’

But by Proposition 1, we could choose such scalars 4, A, so that

1T Fyy by, i + A2Fxy by, Mo 2 1A(T(Fyy 5, D) + A2(T(Fy,y, 5y, DO
>\ 2M
> T,

and this contradiction shows that p is indeed a well defined function.
Similarly, if for x € X, we define y = 7(x) if there exists a u € S such that y
is related to x by (3) and (4), then 7 is a well-defined function from X to Y. The
remarks of the paragraph following Lemma 6’ show that y = 1(x) if, and only
if, x = p(y), so that t is a one-one function mapping X onto all of ¥ and

p =11

LEMMA 7. 1 is a homeomorphism of X onto Y.

Proof. We show that 7 is continuous. The proof that p = ™! is continuous
is analogous.

Suppose, to the contrary, that there exists a net {x,: « € A} in X such that
X, = Xg, but that y, = t(x,) + 7(xy) = yo. Then there exists some compact
neighborhood N of y, such that for every o, € 4, there is an « > «, such that
y, lies outside N. By the definition of 7, there exists a u € S such that if
{Gyo,u,1} < (o 1), then for some io, |(T~ Gy, v, i))x)] > M/IT] and the
support of G, , ;. is contained in N.

Since x, = xo and T~!(G,,,,,;,) is continuous, there exists an o € 4 such
that if o > o then [[(T71(G,,, 4, i))X)| > M/|IT||. Thus fix an « > &, such
that y, = 7(x,) lies outside N. Again by the definition of 7, there exists av e S
such that if {G,_, ;} < (),, v), then for some j,,

(T ™Gy, v, ;NI > M/ITI

and the supports of G, , ;, and G,_, ;, are disjoint. Thus for all scalars 4,

k = 1,2, with [4] = 1, we have [4,G,, iy + 242Gy, ., il = 1. But again
using Proposition 1, for a proper choice of such scalars 4;, we have

1T (41Gyo,u,i0 + 42Gy,, 0, i)l = 14T TGy, u, io))(Xe)
+ (TG, ., ;N
> 2 M/|T|
> 1,
which contradicts the fact that |77 = 1.
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Remark. 1If, for any fixed finite-dimensional Banach space E, one could
show that (1) and (2) hold for all b € S, instead of simply for some b € S, one
could then establish that the conclusion of the theorem remains valid for all
isomorphisms T satisfying ||T|| ||| < 2.
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