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If X is a locally compact Hausdorff space and E is a Banach space, we denote
by Co(X, E) the Banach space of continuous functions vanishing at infinity on
X, taking values in E, and provided with the usual supremum norm. If X is
actually compact, so that Co(X, E) consists of all continuous functions on X
to E, we use the notation C(X, E) to represent this function space. And if K
is the scalar field associated with E, we will denote Co(X, K) by Co(X), (or by
C(X) if X is compact).
The well-known Banach-Stone theorem states that if X and Y are locally

compact Hausdorff spaces, then the existence of an isometry T of Co(X) onto
Co(Y) implies that X and Y are homeomorphic. In [2] and [3] this theorem
was strengthened by showing that the conclusion holds if the requirement that
T be an isometry is replaced by the requirement that T be an isomorphism with
T]] T-1 < 2. Essentially the same result was obtained quite independently

in 1] by D. Amir, who assumed that the spaces X and Y were compact, and
that the functions were real-valued. In 4] it was shown that 2 is indeed the
greatest number for which the formulation of the Banach-Stone theorem given
in [3] is valid, by exhibiting a pair of locally compact Hausdorff spaces X and
Y, with X compact, Y noncompact, and an isomorphism T of C(X) onto Co()
with T[[ T-l 2. However, it seems to be still unknown what is the best
number for such a generalization in the case in which X and Y are both required
to be compact. Y. Gordon has shown that if X and Y are countable compact
metric spaces, then the existence of an isomorphism T of C(X) onto C(Y)
satisfying IIT[] 11T-1]] < 3 implies that X and Y are homeomorphic [6].
Here we investigate the problem of whether a generalization of this type,

involving isomorphisms rather than isometries, is possible when we consider
spaces of vector-valued, rather than scalar-valued functions. We establish the
following"

THEOREI. Let X and Y be locally compact Hausdorff spaces, and E a finite-
dimensional Hilbert space. If there exists an isomorphism T of Co(X, E) onto

Co(Y, E) satisfying [IT[[ [[T-[[ < x/2, then X and Y are homeomorphic.

We do not know if x/2 is the best number for the formulation of such a the-
orem. The example of [-4] shows that x/2 cannot be replaced by any number
greater than 2. We note that if Tis required to be an isometry instead of merely
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an isomorphism with small bound, then M. Jerison has shown that, if J( and Y
are compact, the conclusion of the theorem is valid for a much larger class of
Banach spaces E [7].
The proof of the theorem is established by two propositions and a sequence

of lemmas. Lemmas through 6’ do not depend upon the fact that E is a
Hilbert space, nor upon the fact that we are using x/2 as a bound. They require
only that E be a finite-dimensional Banach space and that [[TI[ [IT-1[[ < 2.
We therefore state and prove Lemmas 1 through 6’ under these more liberal
assumptions, since they in no way complicate the proofs, and since it is quite
possible that a stronger theorem may eventually be established. Only following
Lemma 6’ do we use the fact that Eis a Hilbert space and that TII T- < x/2.
Throughout we will use the fact that the dual space Co(X, E)* of Co(X, E)

is (isometrically isomorphic to) the Banach space of all regular Borel vector
measures m on X to E*, with finite variation Iml, and norm given by Ilmll
Iml(X). This characterization of Co(X, E)* was first proved by I. Singer I-8]
for the case in which X is compact. The proof for compact X also follows from
Corollary 2 of [5, p. 387]. The result for locally compact X then follows readily
by Considering Co(X, E) as a subspace of C()?, E), where 2 denotes the one-
point compactification of J(, and using a standard theorem relating the dual
space Co(J(, E)* to a quotient space of C(2, E)* [9, p. 188]. All properties of
vector measures which are used in this article may be found in [5].

Elements of E will be denoted by b, c, e, u, v, and those of E*, for the most
part, by b and . The value of b at b is denoted by (b, tk). We denote elements
of Co(J(, E) and those of Co(Y, E), respectively, by the letters F and G, often
accompanied by subscripts. Elements of Co(X) and of Co(Y) will be denoted,
respectively, by f and g. The norms in E and E* will be denoted by I1" II, while
norms in Co(X, E), Co(Y, E), Co(j() and Co(Y) are denoted by I1"11oo. The
letter S will always represent the surface of the unit sphere in E,

S {e e E: Ilell- 1).

The following notational convention will be used throughout the article. We
will say that a net {Fx, e, i: 1} Co(J(, E) is regularly associated with a pair
(x, e) X x E if Fx, e,i f," e, where {fx,: 1} is a net contained in
Co(j() with IIf, 11oo f, (x) for all i, and the support off, is contained
in N, where {Ni: I} is the family of neighborhoods of x and the set of
indices I is directed in the usual manner by set inclusion, (i < i2 if Ni2

_
Nil).

We write {Fx, e, } (x, e) to denote that {Fx, e, } is a net in Co(J(, E) which
is regularly associated with (x, e). The definition of nets {Gy, , } _c Co(Y, E)
regularly associated with pairs (y, e) Y x E is analogous, and we use the
corresponding notation, {Gr, e, } (Y, e).

PROPOSITION 1. If E is a Hilbert space and if e, e2,... en are vectors in E
with IlejII -> 6 > 0 for < j < n, then there exist scalars 2j, < j < n, with

I1 for all j, such that 117--x ell _> x/n" .
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Proof. The proof is made by induction on the number of elements n. It is
clearly true for n 1. Thus assume the result holds for some k >_ and that
we are given elements ej E, < j < k + l, with HejII > > 0 for allj. By
the inductive hypothesis there exist scalars 2j, _< j < k, with 12jI for all
j such that IIY- ’eyll 2 >- k. 62. Let u = 2e. Then

2e u -47. ",k + ek + ill 2
j=l

Ilull 2 / 2 Re 2k+l(ek+ , U> + I;+1211e+ll 2

>_(k+ ).fi-
if 2k+ is chosen so that 12k+ 11 and Re 2k+ l(ek+ 1, U) > O.

PROPOSITION 2. IrE is afinite-dimensional Banach space there exists a positive
constant Kn such that if el, e2,... e, are elements of E with Ilell > 6 > 0 for
< j <_ n, then there exist scalars 2, < j < n with 12j[ for all j, such

that [[E’= A.iejII >- Ke /n .
Proof. Suppose that the dimension ofE is m, and let 1 denote m-dimensional

Hilbert space over the scalar field associated with E. Let ,4 be a linear operator
taking E onto 1’. Now for each , A(e) l2 and

IIA(es)ll _> IlelllllA- >_ 5111A- ll.
By Proposition 1, there exist scalars 2s, < j < n with 12xl for all j, such
that IIET= A(ed)ll > x/n" /llh-ll. Thus

’ 2/e"/ll Ll"-’ (i 2.iA(e.i))ll > /n’6/IIAII’IIA-’[[,
j=l j=l

and we may take Ke /II A A- ll,
Throughout Lemmas to 6’, we shall assume that E is a finite-dimensional

Banach space and that T is a fixed isomorphism of Co(X, E) onto Co(Y, E)
satisfying IITII IIT-ll < 2. There is no loss of generality in assuming that T
is norm-increasing--i.e., Ilgll-< IIT(F)lloo for FCo(X,E)--and that
T-x 1, for otherwise we may simply replace T by the isomorphism T’
T- T which has these properties. Thus these assumptions concerning T will

be made throughout the remainder of this article. Then throughout Lemmas
to 6’ M will denote a fixed real number satisfying TII/2 < M2 < M < 1.
For any point x X, we will denote by/x the scalar-valued measure which

is the positive unit mass concentrated at x. Then any element m Co(X, E)*
can be written uniquely as m b’/x + n, where tk e E* and n Co(X, E)*
with n({x}) 0. (Let b m({x}) and n m b./x.) From this remark
and the regularity of the measures involved, it follows that if {Fx, e,}
(x, e) e X x E, then for all m Co(Y, E)*,

lifT(Fx,,,) dm li/m f Fx, e,d(T*m)

exists, and is equal to (e, (T*m)({x})). We thus obtain the following"
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LEMMA 1. If {Fx, e, i} (x, e) X x E thenfor each y Y, lim (T(Fx, e, ))(Y)
exists as an element of E (in the norm topoloyy).

Proof. For fixed y Y and b s E*, we know that limi j" T(Fx, e, i) d(dp’py)
exists. Moreover, it is clear that this limit is equal to limi ((T(Fx, e,i))(y),
Now the map from E* to the scalars given by b --. lim ((T(Fx, e,i))(y), qb) is
clearly linear, and is bounded by 211ell. Thus there exists an element v E**
E such that for b E*,

lim ((T(Fx, e,i))(y), ) (v, ).

But this simply says that the net {(T(Fx, e,i))(y)} converges to v in the weak
topology on E, which, since E is finite dimensional, coincides with the norm
topology.

LEMMA 2. Let {fx,e,i} (X, e) X x S. (Note that Ilell 1.) For each
I, denote by Ri the subset of Y defined by

Ri {y Y: [l(T(Fx, e,i))(y)l > M}.

If denotes the subset of all y Y such that there exists a net {yi} in Y, with
yi Rifor each i, which has y as a cluster point, then Y is afinite subset of Y.

Proof. Let y Y and let {y} be such a net in Y having y as a cluster point.
Since for each (T(F, e, ))(Yi) lies in the compact subset of E defined by

{u E" M < Ilull-< IITII},
it follows readily that there exists an element u s E, with Ilull _> M, and a subnet
{y()}

_
{y} such that y() y and (T(Fx, e, <)))(y<)) u.

Choose some b E* with I111 such that (u, b) Ilull, and consider
the neighborhood Nu of u defined by

N, {v e E: I(u, q) (v, q)l < M- M}.
Choose a real-valued &, e Co(Y) with &,(y)= [[gylloo 1/llu]], and define

Gr e Co(Y, E) by Gy &,.u. Let Nr be the neighborhood of y in Y given by

N {y’ r: (Gr(y’), b) > IlZll/2}.
Then for all such that y s N and (T(Fx, e, i))(Yi) Nu, we have

IlZ(Fx, e,,) + alloo >- I](T(F,,e,))(Y,) +
> I((T(F,,))(y) / Gy(y),
> I(Gr(y,), b> + (u, b>l I(u, . ((T(F,e, ,))(y,),
> IITII/2 + Ilull- (M- M)
> IITII/2 + M.

Thus IIF, e,, + T- a(aw)llo > 1/2 + M/II Zll > 1,

Now IIZ-l(Gy)llo < 1, so that the maximum set of the function

IlF, e, -l" T- x(ar)ll
is contained in the neighborhood Wi of x defined by

Wi {xt ..,,: Fx, e,,(X’) : 0}.
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Moreover, at any point x’ of this maximum set, II(T-l(Gy))(x’)]l is bounded
away from zero by the positive number 6 M2/IITI[ 1/2. Thus for each
such that Yi e Ny and (T(Fx, e, ))(yi) e N,, there exists a point xi in the corre-
sponding set W in X with [I(T-I(Gy))(x)[I > . Since the W thus obtained
constitute a neighborhood basis at x, we conclude that [](T-X(Gr))(x)[ > 6.

But this clearly implies that Y, is finite. For given any n points Yx,..., Yn of
Yx, we can choose the corresponding functions Gyj, < j < n, with disjoint
supports, so that for any choice of scalars 2j, < j < n, with 121 for each
j, we have II-- AjGrjI[ 1. But for each j, II(T-a(ay))(x)ll > 6, so that by
Proposition 2, we can choose the 2j such that

LEMMA 3. If {F,,e i} (x, e) X x S, then there exists at least one point
y Y such that lllim (T(F,, ))(Y)II > M.

Proof. By Lemma 2, Yx is finite, say Y {Y1,..., Y,}, and we write

T*-(e. p:,) qS. py + m,
j=l

where the tk2 e E*, and m Co(Y, E)* with m({y2}) 0 for < j < n. (It
will follow, from the proof of the lemma, that Yx is nonvoid, since any y satisfy-
ing the condition of the lemma must necessarily belong to Yx. However, for the
moment, we simply set T*-l(e. px) m, if Yx is void.)
Now suppose that for all yj Yx, we had IIlim (T(F,, ))(y)ll < M. Then

we could find an il such that for all > ix and all yj Yx, we would have

II(T(Fx,,,))(yj)II < M + (1 M)/2.

Next, by the regularity of Iml, we could find a compact set K
_
Y such

that Iml(Y- K) < (1 M)/4. Since K is compact and disjoint from Y,, there
is an i2 such that > i2 implies [[(T(F,e, ))(y)[[ < M for all y K. Hence, if
io is such that io > il and io > i2, then for all > io, noting that 11411 -<
and Ilmll -< 1 IIjII, we would obtain

1 fF,,i d(e.lax)

.f T(Fx,,,) d(T*-’(e. Px))

T(Fx’e’i)d(J’l’lYJ)’Jv fK r(Fx’e’i)dm/ f, r(Fx, e,i)dm
j=l -K

< ( IIbll)[M + (1 M)/2] + M(1 IIbjll) + 2(1 M)/4

M + (1 + IIqSll)(1 M)/2

<1.

This contradiction thus completes the proof of the lernma.
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LEMMA 3’. If (y, e) Y x S and {Gr, e, i} (Y, e), then there exists at least
one point x X such that [llimi (T- l(Gy, e, i))(x)[[ > Mill TI[.

Proof. Consider the isomorphism of Co(Y, E) onto Co(X, E) defined by
TILT- t. We have [l TII, and 117’-Xll 1. Thus we may apply

Lemma 3 to the mapping , providing the desired conclusion.
Before stating Lemma 4, we make the following observations. As we have

previously noted, if {Fx,, i} (x, e) X x S, then any point y such that
[[limi (T(Fx, e,i))(y)[[ > M necessarily belongs to the finite set Yx. It thus
follows that

sup lim (T(Fx, e, i))(Y’)[[
y’Y

is attained at some point y Y. Similarly, consideration of the isomorphism
TII T- of Co(Y, E) onto Co(X, E) and Lemma 2 imply that if

{G, e, } (y, e) Y x s,
then supx,x [[limi (T-I(Gy, e, i))(x’) is attained at some point x e X.

LEMMA 4. If {F, , i} (x, e) 6 X x S, let y be a point of Y at which

lim (T(Fx, e,i))(Y’)

attains its maximum. Let

u lim (T(F,,,))(y) lim (T(F,,i))(y)

Then if {a,., j} (3’, u) e x S, it follows that for x’ X, x’ x, we have

lim (T I(G,, u, j))(x’) < .
Suppose, to the contrary, that there exists some x’ X, x’ x, suchProof.

that
1

lim (T ’(Gy, u, j))(x’) > .J

Let c limj (T-a(Gr,.,j))(x’) and choose ff e E* with I[qll such that
(c, q/) I[cll. Then write T*-l(.l/,) b’l/ + m, where b E* and
m Co(Y, E)* is such that m({y}) 0. Then

[Icll (c, ) lin f T I(Gy, u, ) d(b. Px,)

lin f G, ., d(T *-1(I//.

(u, >.
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Since Ilull 1, we have IIll Ilcll > &, and hence, since IIT*-a( x,)ll 1,

Ilmll IIT*-X(q’x,)ll- I111-< IIT*-X(’x,)ll- Ilcll-< -Ilcll < 1/2.

Now let v limi (T(Fx, e, i))(Y) (so that u /llvll). We have

lim ((T(Fx, e,i))(y), t> (v, t> (Illu, > Ilvll Icll.

Since Ilcll > Ilcll, we can choose a positive number e such that

(11 )II cll > (11 v / )(1 ell).

Next, write m ,=t bk/rk + n, where {y, Yt,..., Yr} is the set Yx, the
bk e E*, < k < r and n is an element of Co(Y, E)* with n((y}) n({yk})
0, < k < r. By our choice of y, we can find an it such that for all > il, we
have

I((T(Fx, e,))(y), b)l > (llvll )llcll
and

[((Z(Fx, e, ,))(Yk), bk)l < (Ilvll + )l14kll for < k < r.

Now since Inl(Yx) 0, we can find a compact set K
_
Y Y such that

Inl(Y- K) _< I-Ilvll / - M]llnll/2.
Because K is compact and disjoint from Y,, there exists an i2 such that if > i2,
II(T(F,, ))(Y’)II < M for all y’ K. We choose an io such that io > i and
io > i2, and such that for > io the support of Fx, e, does not contain the
point x’. Then for > io we have

0-fFx, e,, d(ff’/,,,)= f T(F,e, 3 d(T*-t (’lx,))

f T(Fx, e,i) d(dp’12y) "k" T(Fx, e,i) d(k"
d k=l

/ fY-K T(Fx’e’i) dn + fr T(Fx’e’i) dn

((T(f,,))(y), ) + ((T(r,,))(y),
k=l

"-[-fY-K T(Fx’ e’ i) dn "" fK
T(Fx’ e’ i) dn"

But for all _> io, the modulus of the first term on the right is greater than
(llvll e)llcll, while the modulus of the sum of the remaining terms is less than

(llvll/) (k=X ll4kll) /l-]lvll/- Mqllnll/ Mllnll
(11 11 / )11 mll -< (11 11 / )(1 ell),

Since this contradicts our choice of e, the proof of the lemma is complete.
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If we again consider the isomorphism TII T-1, and note that -1
Till Zll we obtain the companion result"

LEMMA 4’. If {Gr, e, i} (Y, e) Y x S let x be a point of X at which

lim (T -l(Gr, e,i))(x’)

attains its maximum. Let

b=lim (T- l(Gr, e, i))(X)/ lim (T-’(Gr, e, i))(X)II
/

Then if {Fx, b, j} (x, b) X x S, it follows that for all y’ Y, y’ y, we have
IIlimj (T(g,b,))(Y’)ll < IITll/2.

LEMMA 5. Let x, y, u, and {G, u, ) be as in the statement of Lemma 4. Then

lim(T-(Gr,",J))(x)>M/IITII’J
Proof. By Lemma 3’, there is some point Xo X such that

lim

and, by Lemma 4, the only candidate for Xo is x.

Similarly, by using Lemmas 3 and 4’ we obtain"

LEMMA 5’. Let y, x, b, and {Fx, b, } be as in the statement of Lemma 4’. Then

lim(T(F’’b’j))(y) >M’
LEMMA 6. Let x, y, u, and {Gr, u, } be as in the statement of Lemma 4. If

b= lim (T-’(Gr.,.j))(x)/ lim (T-’(G,.,))(x)]l
and if {Fx, b,} - (x, b), then we have [llimi (T(F,a,i))(Y)II > M, and for all
y’Y,y’ :y,

lim (T(F,,, b,,))(Y’)ll -< lIT ll/2.

Proof. By Lemmas 4 and 5, we know that x is the unique point of X at
which

lim (T I(Gr.., j))(x’)

attains its maximum. Thus by Lemma 4’ (with u replacing e) and Lemma 5’,
the desired conclusion follows.
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Similarly by using Lemmas 4’ and 5’, followed by Lemma 4 (with b replacing
e) and Lemma 5, we obtain:

LEMMA 6’. Let y, x, b, and {Fx, b, ) be as in the statement of Lemma 4’. If

lim (T(Fx, b,j))(y)/ lim (T(Fx, b,j))(y)
J ] J

and if {Gr, u, i} - (Y, u), then we have IIlim (T-X(Gv,, 3)(x)ll > M/lITll, and
for allx’ X,x’ x,

lim (T-l(Gr, u,i))(x’ <
2

Lemmas 4, 5, and 6 show that starting with any point x X, there is a point
y e Y and elements b, u S, such that if (Fx, b, i} - (x, b) then

(1)

while

lim (T(F,b,i))(y)

(2) lim (T(Fx, b, i))(Y’)

and if {Gr, u, } (y, u) then

-< T 11/2, y’ e Y {y},

(3)

while

(4)

lim (Z- l(Gr, u,j))(x)
J

]lim (T -’(Gr, ,, x))(x’)
J

> MIIITII

Lemmas 4’, 5’, and 6’ show conversely that starting with any point y Y, there
is an x X and elements b, u S such that (1), (2), (3), and (4) are satisfied.
We now place further restrictions on the space E and on the bound of T

which will insure that the relations (1) through (4) define a correspondence
between points of X and Y which is, in fact, a homeomorphism. From now on,
we shall assume that E is a finite-dimensional Hilbert space. Recall that the
conclusions of Lemmas through 6’ hold under the assumptions that T is any
isomorphism of Co(X, E) onto Co(Y, E) with IITII < 2 and liT-11 1, and
that M is any real number with TII/2 < M2 < M < 1. We shall henceforth
assume, in addition, that Tll x/2 and that Tll/x/2 Mo
For y Y, define x p(y) if there exists a b S such that x is related to y

by (1) and (2). Then p is a well-defined function from Y to X. For if not, for
some y Y there would exist points Xl, x2 X, xl # x2 and elements bl, b2 6

S, such that if {Fx,,bl, i) (Xl, bl) and {Fx2, b2,j} (X2, b2) then

II(T(Fx,,b,, ))(Y)II > M for all > some io,
and

(T(F,_, b,_, j))(Y)II > M for all j > some Jo.
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If we choose >_ io and j >_ Jo such that the supports of Fx,,bl, and Fx,,b2, j

are disjoint, then for all choices of scalars 21, 22 with ]21] [22] 1, we have

But by Proposition 1, we could choose such scalars 21, 22 so that

>2M

and this contradiction shows that p is indeed a well defined function.
Similarly, if for x X, we define y z(x) if there exists a u S such that y

is related to x by (3) and (4), then z is a well-defined function from X to Y. The
remarks of the paragraph following Lemma 6’ show that y x(x) if, and only
if, x p(y), so that z is a one-one function mapping X onto all of Y and

-1p=z

LEMMA 7. z is a homeomorphism of X onto Y.

Proof. We show that z is continuous. The proof that p z- is continuous
is analogous.

Suppose, to the contrary, that there exists a net (x: A} in X such that
x Xo, but that y z(x) Z(Xo) Yo. Then there exists some compact
neighborhood N of Yo such that for every ao A, there is an ao such that
y lies outside N. By the definition of z, there exists a u e S such that if
(Gyo,,i) (Yo, u), then for some io, II(T-(G,o..o))(xo)ll > M/lITll and the
support of Gyo, , o is contained in N.

Since x Xo and T-(Go , o) is continuous, there exists an o A such
that if ao then Jl(T-(Go, o))(x)ll > M/lI Tll. Thus fix an ao such
that y z(x) lies outside N. Again by the definition of x, there exists a v S
such that if (G,, , } (y, v), then for somejo,

and the supports of Gyo, to and Gy, , o are disjoint. Thus for all scalars
k 1, 2, with Ikl l, we have 1J2Gyo,,o + 2Gy,o,joJJ 1. But again
using Proposition 1, for a proper choice of such scalars 2k, We have

IIT-(G,o,,o + 2G,o,o)ll

> 2 M/llTll

> 1,

which contradicts the fact that T- 1.
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Remark. If, for any fixed finite-dimensional Banach space E, one could
show that (1) and (2) hold for all b S, instead of simply for some b e S, one
could then establish that the conclusion of the theorem remains valid for all
isomorphisms T satisfying 11TI[ T- [1 < 2.
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