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Introduction

For an oriented smooth compact manifold M of dimension m let .’(M) be
the surgery space which is defined by Quinn in [91, [14, p. 240]. This space has
the property that its homotopy groups are the Wall groups of z(M). Let

(E, B, p, F) be an oriented smooth fiber bundle, i.e., E, B, F are oriented
smooth compact manifolds, p’E - B is smooth and the orientation of E is
induced by the orientations of B and F. Let b dim B andf dim F. There
is a pull back map p#" ’b(B) ---, .b+.(E) [14, p. 240-1. In this paper, we will
study this map in the case that 71(B) nl(E) Zp, a cyclic group of odd
prime order p. At first, recall the following:

THEOREM 0.1 [’14, p. 240]. For a finitely generated group re, let Lk(n) be the
Wall group of 7r with trivial homomorphism 1" 7r ---, Z2.

(i) 7r,(.q’,(M)) Lm+
(ii) L4k(1 ) Z and L4k+2(1) Z2.
(iii) Let p be an odd prime, then L2k+ (Zp) O, L2k(Z) L2k(1)

2k(Z,) and E2k(Zp) is afree abelian group ofrank 1/2(p 1).

Our main result is the following"

THEOREM 0.2. Let be a smoothfiber bundle as above with structure group H.
Ifthe identity component ofHhas afinite index, thenfor > O, n(p) is given by

[(I(F)x, I(F)x2) iff 0 (mod 4) and b + 0 (mod 4),
7r,(pa)x J(x(F)xa, I(F)x2) iff =- 0 (mod 4) and b + 2 (mod 4),

otherwise,

where (xl, x2) x e Lb+i(1) +(Z), and I(F)(x(F), respectively) is the
index (Euler characteristic, respectively) ofF.

This paper is organized as follows" In Section 1, we study the G-signatures of
G-fibered manifolds. In Section 2, we apply the result of Section and the theory
of free G-bordism of Conner-Floyd to study the Atiyah-Singer invariants of
free G-fibered manifolds. In Section 3, we will apply the result of Section 2 and
the results of Sullivan to prove our main result.

1. The G-signatures of G-fibered manifolds

Let p" E2n BTM be an oriented smooth fiber bundle with fiber F2k where
B, E may have nonempty boundaries. Then for each integer t, there is a bundle
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.g’t(F; R) of coefficients over X with fiber Ht(F; R). Let HS(B, OB; ,g"(F; R))
be the s-dimensional eohomology module of (B, OB) with coefficients in
aCa’(F; R) [13]. Let/S(B; /gt(F; R)) be the image ofthe natural homomorphism

j*: HS(B, OB; 9g’(r; R)) - HS(B; ,g’t(F; R)).

It is easy to see that the bilinear form b on/(B; Vgk(F; R)) defined by

dp(j*(a), j*(b)) ((a b) n [B]) c IF]

is nondegenerate and d(j*(a), j*(b)) (- 1)’+kb(j*(a), j*(b)).
Let G be a compact Lie group which acts smoothly on E and B such that p is

equivariant. It is clear that there is an induced G action on orgY(F; R) and
consequently/(B; f(F; R)) is a G module. It is also clear that the bilinear
form b is G-invariant. Then we can define the G-signature of b as in [1] which
will be denoted by Sign (G; ) where stands for the bundle (E, B, p, F).

THEOREM 1.1. Let G be a compact Lie group and let (E, B, p, F) be an
oriented smoothfiber bundle as above. Suppose G acts smoothly on E and B such
that p is equivariant. Then

Sign (G, ) Sign (G, E).

where Sign (G, E) is the G-signature of the G action on E [-1].

Proof By [12], there is a covergent E2 cohomology spectral sequence of
bigraded algebra with ES2’t ,. H(B, OB; ’t(F; R)). Let/,t //(B; t(F; R)).
This spectral sequence is functorial on the category of fiber bundles and fiber
preserving maps. It is clear that for each G, acts on as a fiber preserving
map. Thus # induces a map *"/t /:t which is a spectral sequence iso-
morphism and which induces an isomorphism of some filtration of/*(E; R)
and which in turn induces an isomorphism of *(E; R) which coincides with
the induced action of 9 on *(E; R). Hence/:t are G-modules and differen-
tials of the spectral sequence are G-homomorphisms, etc. Now it is easy to
follow formally the arguments of [3] to prove the theorem. []

COaOLLAY 1.2. Letp: Ez" BTM be a smoothfiber bundle withfiber Fz as
above. Let H be the structure group. Let G be a compact Lie group which acts on
E" as bundle isomorphisms [5]. If the identity component ofH hasfinite index,
then

Sign (G, E) I(F) Sign (G, B).

Proof. Let re" P B be the associated principal H bundle. Note that
E - P x n F. There is a G action on P which commutes with the principal H
action such that #(p, f) (#p, f) where # G, p P, and f F [5]. If H is
connected, then it is easy to see that

(B; Vg’(F; R)) /(B; R) (R) H’(F; .R)
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and the G action on //S(B; R) (R) Ht(F; R) is given by tT(u (R) v) tTu (R) v
where 9 G, u S(B; R) and v Ht(F; R). It is clear that

Sign (G, ) Sign (G,/"(B; R) (R) Hk(r; R)) I(r) Sign (G, B).

Thus Sign (G, E) I(F) Sign (G, B) by Theorem 1.1.
If H is not connected, but the identity component of H has a finite index,

then we can use an equivariant version of [11] to prove the Corollary 1.2
without difficulty. []

Remark 1.3. The assumption in the Corollary 1.2 that G acts as bundle
isomorphisms is necessary. For example, let B and F be nontrivial G manifolds
and let G acts on B x F by #(b, f) (gb, 9f), then, by [1],

Sign (G, B x F) Sign (G, B) (R) Sign (G, F).

2. The Atiyah-Singer invariants of free Zp-fibered manifolds

Let (E2n-l, B2m-1,17, F2k) be an oriented smooth fiber bundle where
E, B, F are closed. Let Z, p an odd prime, act smoothly and freely on E as
bundle isomorphisms such that the induced action on B is also smooth and free.
Then for each 9 e Z, 9 # 1, the Atiyah-Singer invariants #(g, E) and t(g, B)
are defined as in [1]. In this section, we will prove the following.

THEOREM 2.1. Let (E, B, p, F) be an oriented smooth fiber bundle with
free Zp action as above. Let H be the structure group. If the identity component
ofH has a finite index, then for each Z,, g 1,

t(9, E) I(f)(g, B).

Proof Let z" P --, B be the associated principal H-bundle. Then there is
an induced Zp action on P which commutes with the principal H action on P
and E is equivariant diffeomorphic to P x n F where the Z, action on P x n F
is given by g(p, f) (gp, f) for g Z,, p P andf F. Note that the induced

Z action on P is also free and thus P is a principal oriented Z, x H-manifold
[4]. For a compact Lie group K, let ).(K) be the principal K-bordism group
of Conner-Floyd [4]. By [6], we have an exact sequence.

o --, ta,(z) (R) n,(H) --, ta,(z x H) --, ta,(Z), n,(H) --, 0.

Note that ’I,(Z) tl, @ fi,(Z) and t’i,(Z) is a torsion group [4]. Since

2. *ta f2.(H) 0,

.(Z) *ta f2.(H) is a torsion group. Thus there exists a principal oriented

Z x H-manifold W such that OW kP w (=x Xi Vi) as principal

Z x H-manifolds for some k where X (respectively Vi) are principal H
(respectively Z)manifolds. Let M W x n F, N, X, n F, Q W/H,
Z X]H. Let " M Q be the induced projection. Then (M, Q, , F) is an
oriented smooth fiber bundle with Zp acting as bundle isomorphisms. By
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Corollary 1.2, Sign (g, M) I(F) Sign (g, Q). Note that z2ls," N Z are
oriented smooth fiber bundles with fiber F and structure group H. By [11],
I(N3 I(F)I(Z). It is easy to see that

By definition of Atiyah-Singer invariants, we have

Sign(g,M) ka(g, E) + a(g, N x V),
i=1

Sign (g, Q) ka(g, B) + a(g, Z x V3
i=l

a(g, Ni x V3 I(N3a(g, V3, a(g, Z, x Vi) I(Z3a(a, V).

Thus a(g, E) I(F)a(g, B). []

Remark 2.2. If dim F 2 (mod 4), I(F) is defined to be 0 as usual.

3. Surgery in a fiber bundle

For a closed oriented smooth manifold M of dimension rn let /o(M),
(G/O)M, .Lf,,,(M) be the spaces defined as in [14, p. 240]. By definition,

,(Sf(lo(M)) 5e(M x D’, M x S’-), zr,,((G/O)vt) [Z’M+, G/O-[

and
r,(oW,,,(M)) Lm+ ,(r(M))

where (M x D, M x S- 1) is the set of simple homotopy smoothings of
M x D, [EM+, G/O] is the group of normal invariants, and Lm+(rcx(M)) is
the Wall group. Then there is a homotopy fibration [14, p. 34]

,.9(/o(rrl) (G/O)M e. ,.fm(M)"

Let (E, B, p, F) be the oriented smooth fiber bundle as in the Introduc-
tion where E, B, F are closed. There are maps pt,. (;/o(B) ,.9’/o(E),
p*" (G/O) (G/O) and p*" a+,(E) such that the diagram

e/o()--. (1o)"--. ’(B)

6fo/o(E) (GIO)r’---"

commutes [14, p. 242] where b dim B and f dim F. Then we have a
commutative diagram of long exact sequences of homotopy groups- ,(e(B)) - ,_,(e/o(B)) - ,_,((10)) -. ,_ (e()) -....

,(,) ,-,(, ,-,(,.)

"- n(oW+/.(E)) rc_l(Sfa/o(E)) rq_i((G/O)r’) rq_(oLf+j,(E))
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or, equivalently,- Lb+i(Zp) - /S(B x Di-l, B x Si-2)
-[E’-B+,G/O] Lb+,](Zp) --*’’"

rti(p) ti- l(pb) ti- I(P*) ti- l(p)-- Lb+f+i(Zp)--+ ,.S(E x Di-l, E Si-2)
[,,f_,i-lE+ G/O] Lb+f+ i_ l(Zp)

It is obvious that ri(p) 0 if b + -= (mod 2) or b + f + -= (mod 2).
So we only consider the case that b + 0 (mod 2) and b + f + 0 (mod 2).
Write

Lb+i(Zp) Lb+i(1) ) b+i(Zv) and Lb+f+i(Zp) Lb+f +i(1 ) ( _,b+f+i(Zp).
By an observation of Wall [14, p. 198] that if > 0, Lb+i(1)(Lb+f+i(1), respec-
tively) acts trivially on 5S(B Di-x, B x Si-2)(qS(E Di-l, E S-2),
respectively), we can write i(p)= Pl 0)P2 and the above commutative
diagram breaks into two commutative diagrams of short exact sequences:

0---. 5PS(B x D’, B x Si-l) [ZiB+, G/O] Lb+,(1) 0

0-----* ,.fS(E x Oi, E x Si-l) IX’E+, G/O] tb+f+i(l) 0
and

0 +(Z,) ’--L-. 5P(B x D’- , B x S-) [Z’- ’B+, G/O] 0

0-----’* ffb+f+i(Zp) to...._ 5p(E x Di-1, E x si-2) .-- [Z’-’E+, G/O]---.0
The following result is due to Sullivan [14, p. 177].

THEOREM 3.1. Let [g] e[M, G/O]. Then

0([g]) a(M, g)= I(M)g*I(G/O)[M]

/f dim M 0 (mod 4) where I(M) is the total Hirzebruch class of M and
I(G/O) H4*(G/O; R) is defined as in [14, p. 177] or 0[g]) c(M, g)
W(M)g*x[M]/fdim M 2 (mod 4) where W(M) is the total Stiefel-Whitney
class ofM and x H2*(G/O, Z2) is defined as in [14, p. 178].

PROPOSITION 3.2. The map p, Lb + i(1) --, Lb + f+ i(1) is given by

O /ff 0 (mod 4),
p(x) l(F)x iff O (mod 4) and b + O (mod 4),

(7.(F)x iff 0 (mod 4) and b + 2 (mod 4).

Proof It is obvious that th reduced suspension of the fiber bundle
denoted by zi+, is (ZiE+, ziB+, Eip+, F) and if [g] [E/B+, G/O],
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Let z be the tangent bundle along the fiber of Ei +. Then

/(EiE+) l(z)(Eip+)*l(EiB+) and W(E’E+) W(z)(Ep+)*W(E’B+).
Let

I" HR(EE+; G) --. Hk-q(EiB+; Hq(F; G))
be the integration over the fiber I-2] where G R or Z2. We denote/(x) by
(x). It is easy to see that (W (z))u ;t(F) H*(EB+," Z2). Note that H is
also the structure group of Ei + whose identity component has a finite index by
assumption. By a result of Schafer [11], I(EE+) I(F)I(EB+). It follows
from a result of Borel and Hirzebruch [-2] that the total Hirzebruch class is
strictly multiplicative in Z+. Thus (l(z))’ I(F). H*(EiB+ R). It is
obvious that px(x) 0 if b + f 2 (rood 4). Next we consider the case
b + + f 2 (mod 4). There is [g] e [ZB+, G/O] such that x 01([g]).

p,(x) ptO([g])
o,(p*)([a])
0([axo+])
c(EE+, gEip+)
W(E’E+)(gEip/)*x[E’E+]
(W(z)(Ep +)*W(E’B+)(E’p+)*y*x)"[E’B+]
(w(,))w(x’a+)a*,[x’a+]
7.(F)c(EiB+, g).

If b + 0 (mod 4), then f 2 (mod 4). Since we assume F is oriented,
F is a Z2-manifold in the sense of Sullivan [10]. By an observation in [10],
;((F) 0. Thusp(x) 0. On the other hand, ifb + i-- 2(mod2), then
c(ZiB+, g) 0x([g]) x. Hence px(x) 7.(F)x. Finally, if b + f-= 0
(mod 4), we can show p(x) I(F)x in a similar way. []

PROPOSITION 3.3. The map Pz" +z(Zv) ,+’+ (Zv) is given by pz(x)
I(F)x.

Proof The diagram

,b+i(Zp) ’ .B x Di-1, B x Si-2)

"..R(Zv) R(Zv 1)
p V xI(F) III xI(F) IV f

+$+ Di-l, E x Si-2)
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(where the maps 27i, Ai, are defined as in [7], [8]) should facilitate the proof.
It has been shown in [7], [8] that the subdiagrams I, II, III are commutative.
In order to show the subdiagram IV commutes, recall the definition of A. Let
[N, hi represent an element

x 5t’(B x D-, B x S-2).
Let / be the universal covering of B and let h*(/] x Di- ) be the induced
covering over N induced by the map h. It is obvious that Z acts freely on
B x Di- and h*(B x D-). Since hi,u" 0M B x Si- is a diffeomorph-
ism, 0(h*/ x Di- ) is equivariantly diffeomorphic to B x Si-. Then A(x)
is defined to be

(a(g, h*( x Di-) 1] x Di-) -a(g,/] x Si-)).
gZp-

Let/ be the universal covering of E and let ]" h*(E Di- ) --, E Di- be
the induced map which covers h. It is clear that

[h*(E )< Oi- 1), ] T(,i x(pb)([N, hi)
and

A2([h*(g x ai- 1),
Z (O’(O’ (]*( Di-1)w if, oi-1))- if(a, si-1))

g.Zp-

It is also clear that

l*(g x D-) i x D- h*(B D-) w B x D-and
ft., )< Si-1 x Si-1

are fiber bundles with fiber F, structure group H, and with free Zp actions which
act as fiber bundle isomorphisms. Hence by Theorem 2.1,

o(#, l*( x Di-) x Di-) I(F)a(#, h*(/ x Di-) x Di-)
and

a(g, ] x Si-x) I(F)a(g, x si-1).
Then we have Azrci_l(pb)(x)= I(F)AI(x), i.e., subdiagram IV commutes.
Since the big diagram commutes, so does subdiagram V. Now our claim follows
easily from the fact that ker i( 0 [14, p. 168-].
Now the following theorem which is Theorem 0.2 in the Introduction is clear.

THEOREM 3.4. Let (E, B, p, F) be an oriented smooth fiber bundle where
E, B, F are closed. If zI(B) z(E) Zp and the identity component of the
structure group H has a finite index, then, for > O, rci(p) is given by

[(I(F)xa, I(F)x2) iff =- 0 (mod 4) and b + 0 (mod 4),
nx(P*)X (z(F)x,, I(F)xz) iff 0 (mod 4) and b + =- 2 (mod 4),

to otherwise,

where x (x, x) e Lb+i(1) @ b+i(Zp) L+i(Z).
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