CUBIC FIELDS WHOSE CLASS NUMBERS ARE NOT DIVISIBLE BY 3

by Frank Gerth III

1. Main results

In this paper we describe a procedure for finding the discriminants of all cubic extensions L of the rational numbers \mathbf{Q} such that $3 \not\mid h_L$, where h_L is the class number of L. We first consider the case where L/\mathbf{Q} is Galois. In this case L/\mathbf{Q} is a cyclic cubic extension, and the following result is well known (cf. [4, Theorem 1 and Corollary to Theorem 4]).

THEOREM 1. For $D = 9^2$ and $D = p^2$, where p is any rational prime $\equiv 1 \pmod{3}$, there is a unique cyclic cubic extension L/\mathbb{Q} whose discriminant is D. These fields are the only cyclic cubic extensions of \mathbb{Q} whose class numbers are not divisible by 3.

We now consider the case where L/\mathbb{Q} is not Galois. We let K denote the normal closure of L/\mathbb{Q} , and we let F be the quadratic subfield of K. We let D denote the discriminant of L/\mathbb{Q} . The following results are known (cf. [3] and [6]).

LEMMA 1. $D = df^2$, where d and f are rational integers, d is the discriminant of F/\mathbb{Q} , and f is the conductor of the cyclic cubic extension K/F. Furthermore, if p is a rational prime dividing f and $p \neq 3$, then p decomposes in F/\mathbb{Q} if $p \equiv 1 \pmod{3}$, and p is inert in F/\mathbb{Q} if $p \equiv -1 \pmod{3}$. Also $p^2 \nmid f$ for any rational prime $p \neq 3$, and $p \neq 3$, and $p \neq 3$, and $p \neq 3$.

We now specify all non-Galois cubic extensions L/\mathbb{Q} such that $3 \nmid h_L$.

Theorem 2. Let F be a quadratic extension of \mathbf{Q} with discriminant d. Let S_F denote the 3-class group of F. In each part below, we give the discriminants D of the non-Galois cubic extensions L/\mathbf{Q} such that F is contained in the normal closure of L/\mathbf{Q} and $3 \not\nmid h_L$, where h_L is the class number of L. Unless otherwise indicated, there is a unique L (up to conjugacy) with the specified discriminant D.

- (a) S_F is not cyclic. Then no such L exists.
- (b) $S_F \neq \{1\}$ but S_F is cyclic. Then L has discriminant D = d.
- (c) $S_F = \{1\}$. Let A be the set of rational primes $\equiv -1 \pmod{3}$ which are inert in F. Let e be a primitive cube root of unity if d = -3; let e be the fundamental unit of F when d > 0; and let e = 1 otherwise. Let

$$A_1 = \{ p \in A \mid e \text{ is a cubic residue } (\text{mod } p\mathcal{O}_F) \},$$

Received June 6, 1975.

CUBIC FIELDS 487

where \mathcal{O}_F is the ring of integers of F, and let

$$A_2 = \{ p \in A \mid e \text{ is not a cubic residue } (\text{mod } p\mathcal{O}_F) \}.$$

(Note that $A_1 = A$ and A_2 is empty when e = 1.) If $d \equiv -1 \pmod{3}$, let $B = \{3\}$ if e is a cubic residue $\pmod{90_F}$, and let B be empty if e is not a cubic residue $\pmod{90_F}$. If $d \equiv \pm 3 \pmod{9}$, let $B = \{3\}$ if e is a cubic residue $\pmod{30_F}$, and let B be empty if e is not a cubic residue $\pmod{30_F}$. Then the L such that $3 \nmid h_L$ have the following discriminants:

- (i) $D = dp^2$ where p is any element of A_1 ;
- (ii) $D = dp_1^2 p_2^2$ where p_1 and p_2 are any distinct elements of A_2 ;
- (iii) $D = d \cdot 9^2$ if $d \equiv -1 \pmod{3}$ and $3 \in B$;
- (iv) $D = d \cdot 9^2 \cdot p^2$ if $d \equiv -1 \pmod{3}$, $3 \notin B$, and p is any element of A_2 ;
- (v) $D = d \cdot 3^2 \text{ if } d \equiv 3 \pmod{9} \text{ and } 3 \in B$;
- (vi) $D = d \cdot 3^2 \cdot p^2$ if $d \equiv 3 \pmod{9}$, $3 \notin B$, and p is any element of A_2 ;
- (vii) $D = d \cdot 3^2$ if $d \equiv -3 \pmod{9}$ and $3 \in B$;
- (viii) $D = d \cdot 3^2 \cdot p^2$ if $d \equiv -3 \pmod{9}$, $3 \notin B$, and p is any element of A_2 ;
 - (ix) $D = d \cdot 9^2$ (for three nonconjugate L) if $d \equiv -3 \pmod{9}$ and $3 \in B$;
 - (x) $D = d \cdot 9^2$ if $d \equiv -3 \pmod{9}$ and $3 \notin B$;
- (xi) $D = d \cdot 9^2 \cdot p^2$ (for two nonconjugate L) if $d \equiv -3 \pmod{9}$, $3 \notin B$, and p is any element of A_2 .

Remark. Assume d=-3. Then e is not a cubic residue (mod $3\mathcal{O}_F$). Furthermore e is a cubic residue (mod $p\mathcal{O}_F$) if $p\equiv 8\pmod 9$, and e is not a cubic residue (mod $p\mathcal{O}_F$) if $p\equiv 2$ or 5 (mod 9). Then it is easy to see that our results in Theorem 2 agree with the results in $\lceil 5 \rceil$ for the case d=-3.

In Sections 2 and 3, we shall prove Theorem 2.

2. Necessary conditions for D

We let L be a non-Galois cubic extension of \mathbb{Q} , K the normal closure of L, and F the quadratic subfield of K. We first prove the following lemma (cf. $\lceil 1, \text{Lemmas } 4.7 \text{ and } 4.8 \rceil$).

LEMMA 2. If p is a rational prime which ramifies totally in L/\mathbb{Q} and decomposes in F/\mathbb{Q} , then $3 \mid h_L$, where h_L is the class number of L.

Proof. By Lemma 1, either p=3 or $p\equiv 1\pmod 3$. Let M/\mathbb{Q} be the cyclic cubic extension with discriminant p^2 if p=3 and with discriminant p^2 if $p\equiv 1\pmod 3$. Then $M\cdot L$ is a cyclic cubic extension of L. We shall show that $M\cdot L$ is unramified over L, and hence $3\mid h_L$ by class field theory. Let \mathfrak{p} be the unique prime of L above p. Since only p ramifies in M/\mathbb{Q} , it suffices to show that \mathfrak{p} is unramified in $M\cdot L/L$. Let \mathbb{Q}_p denote the field of p-adic numbers, and let $L_{\mathfrak{p}}=L\cdot \mathbb{Q}_p$. Since p decomposes in F/\mathbb{Q} , then $F\cdot \mathbb{Q}_p=\mathbb{Q}_p$, and hence $L_{\mathfrak{p}}=L\cdot F\cdot \mathbb{Q}_p=K\cdot \mathbb{Q}_p$. Since K/F is a cyclic cubic extension in which the primes above p ramify, then $L_{\mathfrak{p}}/\mathbb{Q}_p$ is a cyclic cubic extension in which p ramifies.

Let $M_{\mathfrak{P}} = M \cdot \mathbf{Q}_p$. Then $M_{\mathfrak{P}}/\mathbf{Q}_p$ is also a cyclic cubic extension in which p ramifies. Now if \mathfrak{P} ramifies in $M \cdot L/L$, then $M_{\mathfrak{P}} \cdot L_{\mathfrak{P}}$ is a totally ramified extension of \mathbf{Q}_p with Galois group isomorphic to $\mathbf{Z}/3\mathbf{Z} \oplus \mathbf{Z}/3\mathbf{Z}$. By local class field theory there is no such extension. Hence \mathfrak{P} must be unramified in $M \cdot L/L$, and then $3 \mid h_L$.

The following result is proved in [2, Theorem 3.5].

LEMMA 3. Let S_L (resp. S_F) denote the 3-class group of L (resp. F). Then

$$\operatorname{rank} S_L = r + t - 1 - z - w$$

where

 $r = \operatorname{rank} S_F$, $t = \operatorname{number} \operatorname{of} \operatorname{ramified} \operatorname{primes} \operatorname{in} K/F$,

 $z = rank \ of \ a \ certain \ subgroup \ of \ S_F/S_F^3$

w = rank of a certain matrix of norm residue symbols.

Also $0 \le z \le \min(r, u)$, where u is the number of rational primes which ramify totally in L/\mathbb{Q} and decompose in F/\mathbb{Q} . Furthermore, the matrix has t-1 rows and r+u-z+1 columns.

Note. In Lemma 3, the rank of an abelian 3-group S (e.g., rank S_L , rank S_F) is defined as follows: rank $S = \dim_{\mathbb{F}_3} (S/S^3)$, where \mathbb{F}_3 is the finite field of 3 elements. This rank is also called the 3-rank of S.

Remark. w = 0 if $t \le 1$.

Now assume $3 \nmid h_L$. By Lemma 2, u = 0. Hence z = 0 in Lemma 3. Then from Lemma 3, we get

$$rank S_L = r + t - 1 - w \tag{1}$$

where w is the rank of a certain matrix with t-1 rows and r+1 columns. We first suppose that t>0. If we also suppose that t>0, then $w \le t-1$, and Equation 1 implies

rank
$$S_L = r + t - 1 - w \ge r > 0$$
,

which contradicts $3 \not\mid h_L$. So we cannot have $3 \not\mid h_L$ if both r > 0 and t > 0. Next we suppose r > 0 and t = 0. Then w = 0, and rank $S_L = r - 1$. So $3 \not\mid h_L$ if and only if r = 1. Hence when r > 0 (which means $S_F \neq \{1\}$), we have proved that $3 \not\mid h_L$ if and only if r = 1 (which means S_F is cyclic but $S_F \neq \{1\}$) and t = 0 (which means that K/F is unramified, and hence the discriminant of L is $D = d \cdot 1^2 = d$). This proves Theorem 2 (a-b), provided there exists a unique (up to conjugacy) non-Galois cubic field with discriminant D = d when S_F is cyclic but $S_F \neq \{1\}$. Now by class field theory, when S_F is cyclic and $S_F \neq \{1\}$, there is a unique cyclic cubic unramified extension K of F, and K/\mathbb{Q} is Galois with Galois group isomorphic to the symmetric group on three letters. K contains three conjugate subfields of degree 3 over \mathbb{Q} , and each has discriminant D = d. Hence there exists a non-Galois cubic extension L of \mathbb{Q} with discriminant D = d, and L is unique up to conjugacy.

We must still prove Theorem 2 (c)(i-xi). So we suppose $S_F = \{1\}$, which means r = 0. By class field theory r = 0 implies that K/F cannot be unramified, and hence $t \ge 1$. Then from Equation 1,

$$\operatorname{rank} S_L = t - 1 - w$$

where w is the rank of a $(t-1) \times 1$ matrix. So w = 0 or 1. Then $3 \nmid h_L$ if and only if t = 1 and w = 0, or t = 2 and w = 1. Let e be defined as in Theorem 2 (c). Then by [2, Corollary 3.7], w = 0 if e is a local norm at each prime of F which ramifies in K, and w = 1 otherwise. We note that t = 1 implies w = 0by the product formula for norm residue symbols, and if t = 2, the product formula implies that e is a local norm at both of the ramified primes of K/F or at neither of them. Furthermore, if $3 \nmid h_L$, then Lemmas 1 and 2 imply that the primes of F which ramify in K must be either rational primes $p \equiv -1 \pmod{3}$, 3 (if 3 is inert in F/\mathbb{Q}), or the unique prime of F above 3 if 3 ramifies in F/\mathbb{Q} . Also it is easy to see that e is a local norm at a prime $p \equiv -1 \pmod{3}$ if and only if e is a cubic residue (mod $p\mathcal{O}_F$). Correlating the above results for the case where $S_F = \{1\}$, we obtain the following restrictions for the discriminants D of the non-Galois cubic fields L/\mathbb{Q} such that $3 \nmid h_L$.

LEMMA 4. Let notations be as in Theorem 2. If $S_F = \{1\}$, then $3 \nmid h_L$ if and only if the discriminant D of L has one of the following forms:

- (i) $D = dp^2$ with $p \in A_1$;
- (ii) $D = d \cdot 3^2 \text{ or } d \cdot 9^2$;
- (iii) $D = dp_1^2 p_2^2$ with p_1 and p_2 distinct elements of A_2 ; (iv) $D = d \cdot 3^2 \cdot p^2$ or $d \cdot 9^2 \cdot p^2$ with $p \in A_2$.

Remark. D is restricted to dp^2 , $d \cdot 3^2$, and $d \cdot 9^2$ when t = 1 (and w = 0), and D is restricted to $dp_1^2p_2^2$, $d \cdot 3^2 \cdot p^2$, and $d \cdot 9^2 \cdot p^2$ when t = 2 and w = 1. However we have not proved that there exists an L for each of the possible values of D; what we have proved is that if there is an L with discriminant D, then $3 \nmid h_L$ if and only if D has one of the above forms. In the next section we determine for which of the possible values of D there exists an L with discriminant D.

3. Completion of proof of Theorem 2(c)

We first review some results on ideal class groups. Let F be a finite extension field of Q, and let m be an integral ideal of F. Let I(m) denote the group of all fractional ideals of F which are relatively prime to m, and let

$$P(\mathfrak{m}) = \{\alpha \mathcal{O}_F \mid \alpha \in F^x \text{ and } \alpha \equiv 1 \text{ (mod* m)}\},$$

where \mathcal{O}_F is the ring of integers of F, $F^x = F - \{0\}$, and " $\alpha \equiv 1 \pmod{m}$ " means "for every prime $p \mid m$, α is a p-unit and $\alpha \equiv 1 \pmod{m_p}$ in the p completion of F". (When dealing with integral elements of F, we shall usually write mod m instead of mod* m.) For $m = \mathcal{O}_F$, we let I denote $I(\mathcal{O}_F)$ and P denote $P(\mathcal{O}_F)$. Then I/P is the ideal class group, and for arbitrary integral ideals m of F, $I(\mathfrak{m})/P(\mathfrak{m})$ is called the ideal class group modulo \mathfrak{m} . For a given \mathfrak{m} , it is known that each element of I/P can be represented by an ideal which is prime to \mathfrak{m} ; hence there is a natural surjection $\psi \colon I(\mathfrak{m})/P(\mathfrak{m}) \to I/P$. The kernel of ψ is $(I(\mathfrak{m}) \cap P)/P(\mathfrak{m})$. Let $\alpha_1, \ldots, \alpha_s \in \mathcal{O}_F$ be a set of representatives for $(\mathcal{O}_F/\mathfrak{m})^x$, where $(\mathcal{O}_F/\mathfrak{m})^x$ denotes the group of invertible elements of $\mathcal{O}_F/\mathfrak{m}$. Then $(\alpha_i) \in I(\mathfrak{m}) \cap P$ for each i, where (α_i) denotes $\alpha_i \mathcal{O}_F$. If β_1, \ldots, β_s is another set of representatives for $(\mathcal{O}_F/\mathfrak{m})^x$ with $\beta_i \equiv \alpha_i \pmod{\mathfrak{m}}$ for each i, then $(\beta_i \alpha_i^{-1}) \in P(\mathfrak{m})$. So the image of (β_i) in $(I(\mathfrak{m}) \cap P)/P(\mathfrak{m})$ is the same as the image of (α_i) in $(I(\mathfrak{m}) \cap P)/P(\mathfrak{m})$. So there is a well-defined map

$$\lambda \colon (\mathcal{O}_F/\mathfrak{m})^x \to (I(\mathfrak{m}) \cap P)/P(\mathfrak{m}).$$

It is easy to see that λ is surjective. Now $(\alpha_i) \in P(\mathfrak{m})$ if and only if $\alpha_i \varepsilon \equiv 1 \pmod{\mathfrak{m}}$ for some unit ε of F if and only if $\alpha_i \equiv \varepsilon^{-1} \pmod{\mathfrak{m}}$ for some unit ε of F. So kernel $\lambda \cong E/E_{\mathfrak{m}}$, where E is the group of units of F, and $E_{\mathfrak{m}} = \{\varepsilon \in E \mid \varepsilon \equiv 1 \pmod{\mathfrak{m}}\}$. From the exact sequences

$$1 \longrightarrow (I(\mathfrak{m}) \cap P)/P(\mathfrak{m}) \longrightarrow I(\mathfrak{m})/P(\mathfrak{m}) \xrightarrow{\psi} I/P \longrightarrow 1$$

and

$$1 \longrightarrow E/E_{\mathfrak{m}} \to (\mathcal{O}_F/\mathfrak{m})^x \stackrel{\lambda}{\longrightarrow} (I(\mathfrak{m}) \cap P)/P(\mathfrak{m}) \longrightarrow 1$$

we get the exact sequence

$$1 \to (\mathcal{O}_F/\mathfrak{m})^x/(E/E_\mathfrak{m}) \to I(\mathfrak{m})/P(\mathfrak{m}) \to I/P \to 1. \tag{2}$$

We now return to the case where F is quadratic with discriminant d, and the 3-class group $S_F = \{1\}$. We want to find all non-Galois cubic fields L/\mathbb{Q} with discriminants df^2 , where f is a rational integer, such that $3 \nmid h_L$, where h_L is the class number of L. Let $C(\mathfrak{m}) = I(\mathfrak{m})/P(\mathfrak{m})$, and let σ be the generator of $G = \operatorname{Gal}(F/\mathbb{Q})$. If we assume $\mathfrak{m}^{\sigma} = \mathfrak{m}$, then $C(\mathfrak{m})$ is a G-module. Let $S(\mathfrak{m}) = C(\mathfrak{m})/(C(\mathfrak{m}))^3$. Then $S(\mathfrak{m})$ is a G-module, and it is straightforward to check that

$$S(\mathfrak{m}) \cong S(\mathfrak{m})^+ \times S(\mathfrak{m})^-$$

where $S(\mathfrak{m})^+ = \{a \in S(\mathfrak{m}) \mid a^{\sigma} = a\}$ and $S(\mathfrak{m})^- = \{a \in S(\mathfrak{m}) \mid a^{\sigma} = a^{-1}\}$. By class field theory $S(\mathfrak{m})$ is isomorphic to the Galois group of the abelian extension M of F of exponent 3 which is the composition of all cyclic cubic extensions of F whose conductors divide F m. Let F be the compositum of F and all cyclic cubic extensions of F contained in F. Let F be the compositum of the normal closures F of all non-Galois cubic extensions F of F that are contained in F. Then F is F contained in F and F contained in F con

Our goal is to consider the m which are associated with the discriminants in Lemma 4 and determine when $S(\mathfrak{m})^- \neq \{1\}$. From Lemma 4, we see that we need to consider the following m:

$$\mathfrak{m}=(p)$$
 with $p\in A_1$, $\mathfrak{m}=(3)$ and (9) , $\mathfrak{m}=(p_1p_2)$ with p_1 and p_2 distinct elements of A_2 , $\mathfrak{m}=(3p)$ and $(9p)$ with $p\in A_2$.

CUBIC FIELDS 491

We note that $\mathfrak{m}^{\sigma} = \mathfrak{m}$ for all of these \mathfrak{m} , where σ is the generator of Gal (F/\mathbb{Q}) . Hence the results of this section apply to these values of \mathfrak{m} . To determine when $S(\mathfrak{m})^- \neq \{1\}$, we shall exploit the exact sequence (2). We let $Y(\mathfrak{m}) = (\mathcal{O}_F/\mathfrak{m})^x/(E/E_{\mathfrak{m}})$ and $T(\mathfrak{m}) = Y(\mathfrak{m})/(Y(\mathfrak{m}))^3$. Since the 3-class group of F is trivial by assumption, the exact sequence (2) implies $S(\mathfrak{m}) \cong T(\mathfrak{m})$.

We first consider $\mathfrak{m}=(p)$ with $p\in A_1$. Let e be defined as in Theorem 2. We note that $(\mathcal{O}_F/(p))^x$ is a cyclic group of order p^2-1 and $3\mid (p^2-1)$. Also e is a cubic residue mod (p) since $p\in A_1$. Hence $S(p)\cong T(p)\cong \mathbb{Z}/3\mathbb{Z}$. Also $S(p)^+=\{1\}$ since there is no cyclic cubic extension of \mathbb{Q} with conductor p for $p\in A_1$. So $S(p)^-\cong S(p)\cong \mathbb{Z}/3\mathbb{Z}$. This implies that there is a unique (up to conjugacy) non-Galois cubic field L with discriminant dp^2 . This fact and Lemma 4(i) imply Theorem 2(c)(i).

Next we consider $\mathfrak{m}=(p_1p_2)$ with p_1 and p_2 distinct elements of A_2 . Then $(\mathcal{O}_F/(p_1p_2))^x$ is the product of cyclic groups of order p_1^2-1 and p_2^2-1 with $3\mid (p_1^2-1)$ and $3\mid (p_2^2-1)$. Also e is not a cubic residue mod (p_1p_2) since $p_1,\,p_2\in A_2$. It is then easy to see that $S(p_1p_2)\cong \mathbb{Z}/3\mathbb{Z}$. Since there is no cyclic cubic extension of \mathbb{Q} with conductor p_1p_2 for $p_1,\,p_2\in A_2$, then

$$S(p_1p_2)^+ = \{1\}$$
 and $S(p_1p_2)^- \cong S(p_1p_2) \cong \mathbb{Z}/3\mathbb{Z}$.

So there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $dp_1^2p_2^2$. This fact and Lemma 4(iii) imply Theorem 2(c)(ii).

In the remaining cases (3) | m. We first note that we do not need any cases where $d \equiv 1 \pmod{3}$, since then 3 would decompose in F and would ramify totally in L, and hence 3 would divide h_L by Lemma 2.

We now consider $d \equiv -1 \pmod{3}$. Then 3 is inert in F. For $\mathfrak{m} = (3)$, $(\mathcal{O}_F/(3))^x$ is a cyclic group of order 8, and hence S(3) is trivial. Furthermore $S(3p) = \{1\}$ for $p \in A_2$. Now let $\mathfrak{m} = (9)$. Then

$$S(9) \cong T(9) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$$
 or $\mathbb{Z}/3\mathbb{Z}$,

according as e is a cubic residue mod (9) or not. We note that $S(9)^+ \cong \mathbb{Z}/3\mathbb{Z}$ since there is a unique cyclic cubic extension of \mathbb{Q} with conductor 9. So $S(9)^- \cong \mathbb{Z}/3\mathbb{Z}$ or $\{1\}$, according as e is a cubic residue mod (9) or not. In the notation of Theorem 2, $S(9)^- \cong \mathbb{Z}/3\mathbb{Z}$ or $\{1\}$, according as $3 \in B$ or $3 \notin B$. So when $3 \in B$, there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d \cdot 9^2$. When $3 \notin B$, it can be checked that $S(9p)^- \cong \mathbb{Z}/3\mathbb{Z}$ if $p \in A_2$. Hence when $3 \notin B$ and $p \in A_2$, there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d \cdot 9^2 \cdot p^2$. When $3 \in B$ and $p \in A_2$, it is also true that $S(9p)^- \cong \mathbb{Z}/3\mathbb{Z}$. However, since $S(9)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \in B$, the cubic extension associated with $S(9p)^-$ is the one associated with $S(9)^-$. So no new cubic field occurs in this case. The results of this paragraph and Lemma 4(ii and iv) imply Theorem 2(c)(iii-iv).

Now we consider $d \equiv 3 \pmod{9}$. In this case $S(3) \cong \mathbb{Z}/3\mathbb{Z}$ or $\{1\}$, according as e is a cubic residue mod (3) or not, according as $3 \in B$ or $3 \notin B$ (using the notation of Theorem 2). Since there is no cyclic cubic extension of \mathbb{Q} with

conductor 3, then $S(3)^- \cong \mathbb{Z}/3\mathbb{Z}$ or $\{1\}$, according as $3 \in B$ or $3 \notin B$. So there is a unique (up to conjugacy) non-Galois cubic field L with discriminant $d \cdot 3^2$ when $3 \in B$. If $3 \notin B$, then it can be checked that $S(3p)^- \cong \mathbb{Z}/3\mathbb{Z}$ if $p \in A_2$, and hence there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 3^2 \cdot p^2$. When $3 \in B$ and $p \in A_2$, then $S(3p)^- \cong \mathbb{Z}/3\mathbb{Z}$. However $S(3)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \in B$, and hence no new cubic field is associated with $S(3p)^-$. Next we consider m = (9). We note that the Sylow 3-subgroup of $(\mathcal{O}_F/(9))^x$ is isomorphic to $\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z}$. So

$$S(9) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$$
 or $\mathbb{Z}/3\mathbb{Z}$.

If $3 \in B$, then $S(9) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ with $S(9)^+ \cong \mathbb{Z}/3\mathbb{Z}$ (since there is a unique cyclic cubic extension of \mathbb{Q} with conductor 9) and $S(9)^- \cong \mathbb{Z}/3\mathbb{Z}$. However, since $S(3)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \in B$, no new cubic field is associated with $S(9)^-$. When $3 \notin B$, it can be checked that $S(9) \cong S(9)^+ \cong \mathbb{Z}/3\mathbb{Z}$ and $S(9)^- \cong \mathbb{Z}/3\mathbb{Z}$. However no new cubic field occurs because $S(3)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \in B$, and $S(3p)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \notin B$. The results of this paragraph and Lemma 4(ii and iv) imply Theorem 2 (c) (v-vi).

Finally we let $d \equiv -3 \pmod 9$. Then $S(3)^+ = \{1\}$, and $S(3)^- \cong S(3) \cong \mathbb{Z}/3\mathbb{Z}$ or $\{1\}$, according as $3 \in B$ or $3 \notin B$. So when $3 \in B$, there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 3^2$. It can be checked that $S(3p)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \notin B$ and $p \in A_2$, and hence there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 3^2 \cdot p^2$. Also $S(3p)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \in B$ and $p \in A_2$, but no new cubic field occurs since $S(3)^- \cong \mathbb{Z}/3\mathbb{Z}$ when $3 \in B$. We now take m = 9. The Sylow 3-subgroup of $(\mathcal{O}_F/(9))^x$ is isomorphic to

$$\mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$$
.

Then $S(9)^+ \cong \mathbb{Z}/3\mathbb{Z}$, and $S(9)^- \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ or $\mathbb{Z}/3\mathbb{Z}$, according as $3 \in B$ or $3 \notin B$. When $S(9)^- \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ (i.e., $3 \in B$), there are four nonconjugate non-Galois cubic fields associated with $S(9)^-$. One of them is the cubic field associated with $S(3)^-$. So there are three non-conjugate non-Galois cubic fields with discriminant $d \cdot 9^2$ when $3 \in B$. If $3 \notin B$, then $S(9)^- \cong \mathbb{Z}/3\mathbb{Z}$, and hence there is a unique (up to conjugacy) non-Galois cubic field with discriminant $d \cdot 9^2$. If $3 \notin B$ and $p \in A_2$, then it can be checked that $S(9p)^- \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$. So there are four nonconjugate non-Galois cubic fields associated with $S(9p)^-$. One of these is associated with $S(3p)^-$ and another with $S(9)^-$. So there are two nonconjugate non-Galois cubic fields with discriminant $d \cdot 9^2 \cdot p^2$ when $3 \notin B$ and $p \in A_2$. For $3 \in B$ and $p \in A_2$, $S(9p)^- \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z} \cong S(9)^-$. So no new cubic fields occur in this case. The results of this paragraph and Lemma 4 (ii and iv) imply Theorem 2 (c) (vii-xi).

REFERENCES

- T. CALLAHAN, The 3-class groups of non-Galois cubic fields II, Mathematika, vol. 21 (1974), pp. 168-188.
- 2. F. GERTH, Ranks of 3-class groups of non-Galois cubic fields, Acta Arith., to appear.

- 3. H. HASSE, Arithmetische Theorie der kubischen Zahlkörper auf Klassenkörpertheoretischer Grundlage, Math. Z., vol. 31 (1930), pp. 565-582.
- 4. C. S. Herz, "Construction of class fields," in *Seminar on complex multiplication*, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966.
- 5. T. HONDA, Pure cubic fields whose class numbers are multiples of three, J. Number Theory, vol. 3 (1971), pp. 7-12.
- H. REICHARDT, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatshefte Math. Phys., vol. 40 (1933), pp. 323–350.

THE UNIVERSITY OF TEXAS
AUSTIN, TEXAS