CUBIC FIELDS WHOSE CLASS NUMBERS ARE NOT
DIVISIBLE BY 3

BY
FrRANK GERTH III

1. Main results

In this paper we describe a procedure for finding the discriminants of all
cubic extensions L of the rational numbers Q such that 3 } /;, where 4, is the
class number of L. We first consider the case where L/Q is Galois. In this case
L/Q is a cyclic cubic extension, and the following result is well known (cf. [4,
Theorem 1 and Corollary to Theorem 41]).

THEOREM 1. For D = 9% and D = p?, where p is any rational prime =
1 (mod 3), there is a unique cyclic cubic extension L|Q whose discriminant is D.

These fields are the only cyclic cubic extensions of Q whose class numbers are not
divisible by 3.

We now consider the case where L/Q is not Galois. We let K denote the
normal closure of L/Q, and we let F be the quadratic subfield of K. We let D
denote the discriminant of L/Q. The following results are known (cf. [3] and

[6D).

LeMMA 1. D = df?, where d and f are rational integers, d is the discriminant
of F|Q, and f is the conductor of the cyclic cubic extension K|F. Furthermore, if p
is a rational prime dividing fandp # 3, then p decomposesin F/Q ifp = 1 (mod 3),
and p is inert in F/Q if p = —1 (mod 3). Also p® ¥ f for any rational prime
p #3,and3 ) f.

We now specify all non-Galois cubic extensions L/Q such that 3 } 4,.

THEOREM 2. Let F be a quadratic extension of Q with discriminant d. Let Sg
denote the 3-class group of F. In each part below, we give the discriminants D of
the non-Galois cubic extensions L|Q such that F is contained in the normal closure
of L/Q and 3 } h, where hy is the class number of L. Unless otherwise indicated,
there is a unique L (up to conjugacy) with the specified discriminant D.

(@) Sy is not cyclic. Then no such L exists.

(b) Sy # {1} but Sg is cyclic. Then L has discriminant D = d.

() Sp = {1}. Let A be the set of rational primes = —1 (mod 3) which are
inert in F. Let e be a primitive cube root of unity if d = —3; let e be the funda-
mental unit of F when d > 0; and let e = 1 otherwise. Let

A, = {p € 4| eis a cubic residue (mod pOr)},
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where Oy is the ring of integers of F, and let
A, = {p € A| e is not a cubic residue (mod p0Op)}.

(Note that A, = A and A, is empty when e = 1.) If d = —1 (mod 3), let
B = {3} if e is a cubic residue (mod 90y), and let B be empty if e is not a cubic
residue (mod 90g). If d = +3 (mod9), let B = {3} if e is a cubic residue
(mod 30y), and let B be empty if e is not a cubic residue (mod 30y). Then the L
such that 3 ¥ hy have the following discriminants:

(i) D = dp® where p is any element of A, ;

(i) D = dp?p? where p, and p, are any distinct elements of A,;
(iii) D =d-9%ifd= —1 (mod 3) and 3 € B;
iv) D =d-9% -p*ifd = —1 (mod 3), 3 ¢ B, and p is any element of A,;
(v) D=4d-3%ifd=3(mod9)and3eB;
(vi) D =4d-3%-p?ifd= 3 (mod9), 3¢ B, and p is any element of A,;
(vi) D =4d-3%ifd = —3 (mod9)and3 e B;
(viiiy D =d-3%-p?ifd= —3(mod9), 3 ¢ B, and p is any element of A,;
(ix) D = d- 9% (for three nonconjugate L) if d = —3 (mod 9) and 3 € B;
x) D=d - 9%ifd= —3(mod9)and3 ¢ B,

(xi) D = d-9%- p? (for two nonconjugate L) if d = —3 (mod 9), 3 ¢ B,
and p is any element of A,.

Remark. Assume d = —3. Then e is not a cubic residue (mod 30;).
Furthermore e is a cubic residue (mod p@y) if p = 8 (mod 9), and e is not a
cubic residue (mod p0Oy) if p = 2 or 5 (mod 9). Then it is easy to see that our
results in Theorem 2 agree with the results in [5] for the case d = —3.

In Sections 2 and 3, we shall prove Theorem 2.

2. Necessary conditions for D

We let L be a non-Galois cubic extension of Q, K the normal closure of L,
and F the quadratic subfield of K. We first prove the following lemma (cf.
[1, Lemmas 4.7 and 4.8]).

LEMMA 2. Ifp is a rational prime which ramifies totally in L|Q and decomposes
in F|Q, then 3 | hy, where h; is the class number of L.

Proof. By Lemma 1, either p = 3 orp = 1 (mod 3). Let M/Q be the cyclic
cubic extension with discriminant 92 if p = 3 and with discriminant p? if
p = 1 (mod 3). Then M - L is a cyclic cubic extension of L. We shall show
that M - L is unramified over L, and hence 3 | A, by class field theory. Let p be
the unique prime of L above p. Since only p ramifies in M/Q, it suffices to show
that p is unramified in M - L/L. Let Q, denote the field of p-adic numbers, and
let L, = L-Q,. Since p decomposes in F/Q, then F-Q, = Q,, and hence
L,=L-F-Q,= K-Q, Since K/F is a cyclic cubic extension in which the
primes above p ramify, then L,/Q, is a cyclic cubic extension in which p ramifies.
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Let My = M -Q,. Then My/Q, is also a cyclic cubic extension in which p
ramifies. Now if p ramifies in M- L/L, then My L, is a totally ramified
extension of Q, with Galois group isomorphic to Z/3Z ® Z/3Z. By local class
field theory there is no such extension. Hence p must be unramified in M - L/L,
and then 3 | 4;.

The following result is proved in [2, Theorem 3.5].

LemMMA 3. Let Sy (resp. Sg) denote the 3-class group of L (resp. F). Then
rank S, =r+t—-1—-—2z—w
where r = rank S, t = number of ramified primes in K/F,
z = rank of a certain subgroup of Sg/S},
w = rank of a certain matrix of norm residue symbols.

Also 0 < z < min (r, u), where u is the number of rational primes which ramify
totally in L|Q and decompose in F|Q. Furthermore, the matrix has t — 1 rows
andr + u — z + 1 columns.

Note. In Lemma 3, the rank of an abelian 3-group S (e.g., rank S}, rank Sp)
is defined as follows: rank S = dimg, (S/S?), where Fj is the finite field of 3
elements. This rank is also called the 3-rank of S.

Remark. w=0ift < 1.

Now assume 3 } ;. By Lemma 2, u = 0. Hence z = 0 in Lemma 3. Then
from Lemma 3, we get

rank S, =r+¢t—-1-—-w )

where w is the rank of a certain matrix with ¢ — 1 rows and r + 1 columns.
We first suppose that » > 0. If we also suppose that ¢ > 0, then w < ¢t — 1,
and Equation 1 implies

rank S, =r+t—-1—-w>r>0,

which contradicts 3 ¥ h;. So we cannot have 3 } A, if both» > O and ¢ > 0.
Next we suppose r > 0 and ¢t = 0. Then w = 0, and rank S, =r — 1. So
3 ) hy if and only if » = 1. Hence when r > 0 (which means Sy # {1}), we
have proved that 3 ¥ &, if and only if r = 1 (which means Sy is cyclic but
Srg # {1}) and ¢ = O (which means that K/F is unramified, and hence the dis-
criminant of L is D = d- 12 = d). This proves Theorem 2 (a-b), provided
there exists a unique (up to conjugacy) non-Galois cubic field with discriminant
D = d when Sy is cyclic but Sy # {1}. Now by class field theory, when Sj is
cyclic and Sy # {1}, there is a unique cyclic cubic unramified extension K of F,
and K/Q is Galois with Galois group isomorphic to the symmetric group on
three letters. K contains three conjugate subfields of degree 3 over Q, and each
has discriminant D = d. Hence there exists a non-Galois cubic extension
L of Q with discriminant D = d, and L is unique up to conjugacy.
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We must still prove Theorem 2 (c)(i-xi). So we suppose Sy = {1}, which
means ¥ = 0. By class field theory r = 0 implies that K/F cannot be unramified,
and hence ¢t > 1. Then from Equation 1,

rank S, =¢t—1—w

where wis the rank of a (# — 1) x 1 matrix. Sow = Oor 1. Then 3 4 A4, if and
onlyift = landw = 0,0or¢z = 2and w = 1. Let e be defined as in Theorem
2 (c). Then by [2, Corollary 3.7], w = 0 if e is a local norm at each prime of
F which ramifies in K, and w = 1 otherwise. We note that¢ = 1 implies w = 0
by the product formula for norm residue symbols, and if ¢t = 2, the product
formula implies that e is a local norm at both of the ramified primes of K/F or
at neither of them. Furthermore, if 3 } A;, then Lemmas 1 and 2 imply that the
primes of F which ramify in K must be either rational primes p = —1 (mod 3),
3 (if 3 is inert in F/Q), or the unique prime of F above 3 if 3 ramifies in F/Q.
Also it is easy to see that e is a local norm at a prime p = —1 (mod 3) if and
only if e is a cubic residue (mod p@p). Correlating the above results for the case
where S = {1}, we obtain the following restrictions for the discriminants D of
the non-Galois cubic fields L/Q such that 3 } 4;.

LemMA 4. Let notations be as in Theorem 2. If Sy = {1}, then 3 } h, if and
only if the discriminant D of L has one of the following forms:
(i) D = dp*withpe Ay;
(i) D=d-3%ord-9%;
(iii) D = dp?p? with p, and p, distinct elements of A,;
(iv). D=d-3%-p*ord-9% p?withpe A,.

Remark. D is restricted to dp?, d- 3% and d-9%2 when t = 1 (and w = 0),
and D is restricted to dp?p2, d-3%-p*, and d-9%-p* whent = 2and w = 1.
However we have not proved that there exists an L for each of the possible
values of D; what we have proved is that if there is an L with discriminant D,
then 3 ¥ h, if and only if D has one of the above forms. In the next section we
determine for which of the possible values of D there exists an L with discrim-
inant D.

3. Completion of proof of Theorem 2(c)

We first review some results on ideal class groups. Let F be a finite extension
field of Q, and let m be an integral ideal of F. Let I(im) denote the group of all
fractional ideals of F which are relatively prime to m, and let

P(m) = {a0p |« € F* and a = 1 (mod* m)},

where O is the ring of integers of F, F* = F — {0}, and “a = 1 (mod*m)”
means “for every prime p | m, « is a p-unit and a = 1 (mod m,) in the p com-
pletion of F”’. (When dealing with integral elements of F, we shall usually write
mod m instead of mod* m.) For m = O, we let I denote I(0f) and P denote
P(Of). Then I/P is the ideal class group, and for arbitrary integral ideals m of F,
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I(m)/P(m) is called the ideal class group modulo m. For a given m, it is known
that each element of 7/P can be represented by an ideal which is prime to m;
hence there is a natural surjection ¥: I(im)/P(m) — I/P. The kernel of  is
(I(m) n P)/P(m). Let ay,..., o, € Op be a set of representatives for (0z/m)*,
where (0y/m)* denotes the group of invertible elements of Or/m. Then (;) €
I(m) n P for each i, where («;) denotes o;0p. If B,,..., B, is another set of
representatives for (0p/m)* with 8; = «; (mod m) for each i, then (8,; ') € P(m).
So the image of (f;) in (/(m) n P)/P(im) is the same as the image of («;) in
(I (m) n P)/P(m). So there is a well-defined map

At (Op/m)* - (I(m) N P)/P(m).

It is easy to see that A is surjective. Now (a;) € P(m) if and only if o;e =
1 (mod m) for some unit ¢ of Fif and only if «; = ¢~ (mod m) for some unit
¢ of F. So kernel A = E/E,,, where E is the group of units of F, and E,, =
{e € E| & = 1 (mod m)}. From the exact sequences

1 — (I(m) A P)/P(m) — I(m)/P(m) —— IJP — 1
and
1 — EJE,, > (Og/m)* —— (I(m) A P)/P(m) — 1
we get the exact sequence
1 > (O/m)*/(E/E,,) — I(m)/P(m) — I/P — 1. )

We now return to the case where F is quadratic with discriminant d, and the
3-class group Sy = {1}. We want to find all non-Galois cubic fields L/Q with
discriminants df2, where fis a rational integer, such that 3 } &, where h; is the
class number of L. Let C(m) = I(im)/P(m), and let o be the generator of
G = Gal (F/Q). If we assume m’ = m, then C(im) is a G-module. Let S(m) =
C(m)/(C(m))®. Then S(m) is a G-module, and it is straightforward to check
that

S(m) = Sm)* x S(m)~

where S(m)* = {ae S(m) | a° = a} and S(m)” = {ae S(m)|a® = a”'}. By
class field theory S(m) is isomorphic to the Galois group of the abelian extension
M of F of exponent 3 which is the composition of all cyclic cubic extensions of
F whose conductors divide m. Let M * be the compositum of F and all cyclic
cubic extensions of Q contained in M. Let M ~ be the compositum of the normal
closures K of all non-Galois cubic extensions L of Q that are contained in M.
Then (M */F) =~ S(m)*, and Gal (M ~/F) =~ S(m)~.

Our goal is to consider the m which are associated with the discriminants in
Lemma 4 and determine when S(m)~ # {1}. From Lemma 4, we see that we
need to consider the following m:

m = (p) withpe 4,, m = (3) and (9),
m = (p,p,) with p; and p, distinct elements of 4,,
m = (3p) and (9p) with p € 4,.
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We note that m? = m for all of these m, where o is the generator of Gal (F/Q).
Hence the results of this section apply to these values of m. To determine when
S(m)~ # {1}, we shall exploit the exact sequence (2). We let Y(m) = (Op/m)*/
(E/E,) and T(m) = Y(m)/(Y(m))3. Since the 3-class group of F is trivial by
assumption, the exact sequence (2) implies S(im) = 7(m).

We first consider m = (p) with p € 4,. Let e be defined as in Theorem 2.
We note that (0/(p))* is a cyclic group of order p? — 1 and 3| (p? — 1).
Also e is a cubic residue mod (p) since p € 4,. Hence S(p) = T(p) = Z/3Z.
Also S(p)* = {1} since there is no cyclic cubic extension of Q with conductor
p for pe A;. So S(p)” = S(p) = Z/3Z. This implies that there is a unique
(up to conjugacy) non-Galois cubic field L with discriminant dp?. This fact and
Lemma 4(i) imply Theorem 2(c)(i).

Next we consider m = (p,p,) with p, and p, distinct elements of 4,. Then
(0/(p.p,))" is the product of cyclic groups of order p? — 1 and p% — 1 with
3](p? — 1) and 3| (p3 — 1). Also e is not a cubic residue mod (p,p,) since
D1, P2 € A,. Itis then easy to see that S(p,p,) & Z/3Z. Since there is no cyclic
cubic extension of Q with conductor p,p, for p,, p, € 4,, then

S(pp2)™ = {1} and S(p,p,)~ = S(pyp,) = Z/3Z.

So there is a unique (up to conjugacy) non-Galois cubic field L with discriminant
dp?p?. This fact and Lemma 4(iii) imply Theorem 2(c)(ii).

In the remaining cases (3) | m. We first note that we do not need any cases
where d = 1 (mod 3), since then 3 would decompose in F and would ramify
totally in L, and hence 3 would divide 4; by Lemma 2.

We now consider d = —1 (mod 3). Then 3 is inert in F. For m = (3),
(0r/(3))" is a cyclic group of order 8, and hence S(3) is trivial. Furthermore
S(3p) = {1} for p e A,. Now let m = (9). Then

SO) = TO) =~ Z/3Z & Z/3Z or Z/3Z,

according as e is a cubic residue mod (9) or not. We note that SO)* =~ Z/3Z
since there is a unique cyclic cubic extension of Q with conductor 9. So S(9)~ =~
Z/3Z or {1}, according as e is a cubic residue mod (9) or not. In the notation
of Theorem 2, S(9)” =~ Z/3Z or {1}, according as 3 € B or 3 ¢ B. So when
3 € B, there is a unique (up to conjugacy) non-Galois cubic field L with dis-
criminant d - 92. When 3 ¢ B, it can be checked that S(9p)~ =~ Z/3Z if p € A4,.
Hence when 3 ¢ B and p € 4,, there is a unique (up to conjugacy) non-Galois
cubic field L with discriminant d - 9% - p2. When 3 € Band p € A4,, it is also true
that SOp)~ = Z/3Z. However, since S(9)” =~ Z/3Z when 3 € B, the cubic
extension associated with S(9p)~ is the one associated with S(9)”. So no new
cubic field occurs in this case. The results of this paragraph and Lemma 4(ii and
iv) imply Theorem 2(c)(iii-iv).

Now we consider d = 3 (mod 9). In this case S(3) =~ Z/3Z or {1}, according
as e is a cubic residue mod (3) or not, according as 3 € B or 3 ¢ B (using the
notation of Theorem 2). Since there is no cyclic cubic extension of Q with
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conductor 3, then S(3)” =~ Z/3Z or {1}, according as 3 € Bor 3 ¢ B. So there
is a unique (up to conjugacy) non-Galois cubic field L with discriminant d - 32
when 3 € B. If 3 ¢ B, then it can be checked that S(3p)” = Z/3Z if p € A,,
and hence there is a unique (up to conjugacy) non-Galois cubic field with
discriminant d - 3% - p>. When 3 € B and p € 4,, then S3p)” =~ Z/3Z. How-
ever S(3)” = Z/3Z when 3 € B, and hence no new cubic field is associated with
S(3p)~. Next we consider m = (9). We note that the Sylow 3-subgroup of
(0F/(9))* is isomorphic to Z/3Z @ Z/9Z. So

SO) =~ Z3Z ® Z/3Z or ZJ3Z.

If 3e B, then SO9) = Z/3Z @® Z/3Z with SO9)* =~ Z/3Z (since there is a
unique cyclic cubic extension of Q with conductor 9) and S(9)” =~ Z/3Z.
However, since S(3)” =~ Z/3Z when 3 € B, no new cubic field is associated with
S(9)”. When 3 ¢ B, it can be checked that S(9) =~ S(9)* =~ Z/3Z and S9)~ =~
{1}. If pe A4,, then SO9p)~ =~ Z/3Z. However no new cubic field occurs
because S(3)” =~ Z/3Z when 3 € B, and S(3p)” =~ Z/3Z when 3 ¢ B. The
results of this paragraph and Lemma 4(ii and iv) imply Theorem 2 (c) (v—vi).

Finally we let d = —3 (mod 9). Then S(3)* = {1}, and S3)~ =~ S(3) =~
Z/3Z or {1}, according as 3 € B or 3 ¢ B. So when 3 € B, there is a unique
(up to conjugacy) non-Galois cubic field with discriminant - 32, It can be
checked that S(3p)~ =~ Z/3Z when 3 ¢ B and p € 4,, and hence there is a
unique (up to conjugacy) non-Galois cubic field with discriminant d - 3% - p2.
Also S(3p)” = Z/3Z when 3 € Band p € A4,, but no new cubic field occurs since
S(3)” = Z/3Z when 3 € B. We now take m = 9. The Sylow 3-subgroup of
(0F/(9)) is isomorphic to

Z/3Z ® Z/)3Z ® Z)3Z.

Then SO9)* =~ Z/3Z, and SO~ = Z/3Z @® Z/3Z or Z/3Z, according as
3e Bor3¢ B. When SO~ =~ Z/3Z ® Z/3Z (i.e., 3 € B), there are four non-
conjugate non-Galois cubic fields associated with S(9)~. One of them is the cubic
field associated with S(3)”. So there are three non-conjugate non-Galois cubic
fields with discriminant d- 9% when 3 € B. If 3 ¢ B, then S©9)~ = Z/3Z, and
hence there is a unique (up to conjugacy) non-Galois cubic field with discrim-
inant d- 92, If 3 ¢ Band p € 4,, then it can be checked that SOp)~ =~ Z/3Z @
Z/3Z. So there are four nonconjugate non-Galois cubic fields associated with
S(9p)~. One of these is associated with S(3p)~ and another with S(9)”. So
there are two nonconjugate non-Galois cubic fields with discriminant d - 9% - p?
when 3¢ B and pe 4,. For 3e B and pe 4,, SOp)” =~ Z/3Z @ Z/3Z =~
S(9)~. So no new cubic fields occur in this case. The results of this paragraph
and Lemma 4 (ii and iv) imply Theorem 2 (c) (vii—xi).
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