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1. Main results

In this paper we describe a procedure for finding the discriminants of all
cubic extensions L of the rational numbers Q such that 3 ,( hL, where hL is the
class number of L. We first consider the case where L/Q is Galois. In this case
L/Q is a cyclic cubic extension, and the following result is well known (cf. [4,
Theorem and Corollary to Theorem 4]).

THEOREM 1. For D 92 and D p2, where p is any rational prime
(mod 3), there is a unique cyclic cubic extension L/Q whose discriminant is D.

Thesefields are the only cyclic cubic extensions ofQ whose class numbers are not
divisible by 3.

We now consider the case where L]Q is not Galois. We let K denote the
normal closure of L/Q, and we let F be the quadratic subfield of K. We let D
denote the discriminant of L/Q. The following results are known (cf. [3-1 and
[6]).

LEMMA 1. D df2, where d andf are rational integers, d is the diseriminant
ofF/Q, andfis the conductor of the cyclic cubic extension K/F. Furthermore, ifp
is a rationalprime dividingfandp 3, thenp decomposes in F/Q ifp (rood.3),
and p is inert in F/Q ifp -1 (mod 3). Also pZ Xffor any rational prime
p 3, and 33
We now specify all non-Galois cubic extensions L/Q such that 3 ’ hL.

THZORZM 2. Let F be a quadratic extension ofQ with discriminant d. Let Se
denote the 3-class group ofF. In each part below, we give the discriminants D of
the non-Galois cubic extensions L/Q such that F is contained in the normal closure
ofL/Q and 3 X hL, where hL is the class number ofL. Unless otherwise indicated,
there is a unique L (up to conjugacy) with the specified discriminant D.

(a) Se is not cyclic. Then no such L exists.
(b) Se - { } but Se is cyclic. Then L has discriminant D d.
(c) Se { }. Let A be the set of rational primes -1 (mod 3) which are

inert in F. Let e be a primitive cube root of unity if d -3; let e be the funda-
mental unit ofF when d > 0; and let e otherwise. Let

A1 {p A e is a cubic residue (mod poe)},

Received June 6, 1975.

486



CUBIC FIELDS 487

where (9F is the ring of integers of F, and let

A2 {p A e is not a cubic residue (mod p(ge)}.

(Note that A A and A2 is empty when e 1.) /f d-- -1 (mod 3), let
B {3}/f e is a cubic residue (mod 9(9e), and let B be empty if e is not a cubic
residue (mod 9(9F). If d _+ 3 (mod 9), let B {3} /f e is a cubic residue
(mod 3(9e), and let B be empty if e is not a cubic residue (mod 3(9e). Then the L
such that 3 X h. have the following discriminants"

(i) D dp2 where p is any element ofA
(ii) D dpp2 where pl andp2 are any distinct elements ofA2;
(iii) D d" 92 ifd -= (mod 3) and 3 B"
(iv) D d-92"p2ifd= -1 (mod3),3B, andp is any element ofA2
(v) D d" 32 ifd 3 (mod 9) and 3 B"
(vi) D d" 32. p2 if d 3 (rood 9), 3 B, andp is any element of A2;
(vii) D d.32 if d-- -3(mod9) and3eB;
(viii) D d" 32. p2 if d -3 (mod 9), 3 q B, andp is any element ofA2;
(ix) D d" 92 (for three noneonjugate L) if d -3 (mod 9) and 3 B;
(x) D d" 92 if d -3 (mod 9) and 3 q B;
(xi) D d" 92. p2 (for two nonconjugate L) if d-- -3 (mod 9), 3 B,

and p is any element of A2.

Remark. Assume d -3. Then e is not a cubic residue (mod 3(9e).
Furthermore e is a cubic residue (mod poe) if p 8 (mod 9), and e is not a
cubic residue (rood P(gF) if p 2 or 5 (mod 9). Then it is easy to see that our
results in Theorem 2 agree with the results in [5] for the case d -3.

In Sections 2 and 3, we shall prove Theorem 2.

2. Necessary conditions for D

We let L be a non-Galois cubic extension of Q, K the normal closure of L,
and F the quadratic subfield of K. We first prove the following lemma (cf.
[1, Lemmas 4.7 and 4.8]).

LEMMA 2. Ifp is a rationalprime which ramifies totally in L/Q and decomposes
in F/Q, then 31hL, where hL is the class number of L.

Proof By Lemma 1, either p 3 or p (mod 3). Let M/Q be the cyclic
cubic extension with discriminant 9z if p 3 and with discriminant p2 if
p (mod 3). Then M. L is a cyclic cubic extension of L. We shall show
that M. L is unramified over L, and hence 3 h by class field theory. Let p be
the unique prime of L above p. Since only p ramifies in M/Q, it suffices to show
that p is unramified in M. L/L. Let Qp denote the field ofp-adic numbers, and
let Lo L.Qp. Since p decomposes in F/Q, then F. Qp Q, and hence

Lo L. F. Q K.Q. Since K/F is a cyclic cubic extension in which the
primes above p ramify, then Lo/Qp is a cyclic cubic extension in whichp ramifies.
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Let M M.Qp. Then MiQp is also a cyclic cubic extension in which p
ramifies. Now if ramifies in M.L/L, then M.Lo is a totally ramified
extension of Qp with Galois group isomorphic to Z/3Z @ Z/3Z. By local class
field theory there is no such extension. Hence p must be unramified in M. L/L,
and then 31hL.

The following result is proved in [2, Theorem 3.5].

LEMMA 3. Let SL (resp. SI) denote the 3-class group ofL (resp. F). Then

rankSL r + t- z- w

where r rank Sv, number of ramified primes in K/F,

z rank of a certain subgroup of Sv/S,
w rank of a certain matrix ofnorm residue symbols.

Also 0 < z <_ min (r, u), where u is the number of rational primes which ramify
totally in L/Q and decompose in F/Q. Furthermore, the matrix has rows
and r + u- z + columns.

Note. In Lemma 3, the rank of an abelian 3-group S (e.g., rank SL, rank Sv)
is defined as follows: rank S dimly3 (S/$3), where F3 is the finite field of 3
elements. This rank is also called the 3-rank of S.

Remark. w 0ift < 1.

Now assume 3 y hL. By Lemma 2, u 0. Hence z 0 in Lemma 3. Then
from Lemma 3, we get

rankSL r + t- w (1)

where w is the rank of a certain matrix with rows and r + columns.
We first suppose that r > 0. If we also suppose that > 0, then w < 1,
and Equation implies

rankSL r + t- w > r > O,

which contradicts 3 y h. So we cannot have 3 y h if both r > 0 and > 0.
Next we supposer > 0and 0. Then w- 0, andrankSz- r- 1. So
3 y h/: if and only if r 1. Hence when r > 0 (which means Sv -# {1}), we
have proved that 3 y h if and only if r (which means Sv is cyclic but
Sv { }) and 0 (which means that K/F is unramified, and hence the dis-
criminant of L is D d-12 d). This proves Theorem 2 (a-b), provided
there exists a unique (up to conjugacy) non-Galois cubic field with discriminant
D d when S is cyclic but SF -# { }. Now by class field theory, when Sv is
cyclic and Sv 4: { }, there is a unique cyclic cubic unramified extension K of F,
and K/Q is Galois with Galois group isomorphic to the symmetric group on
three letters. K contains three conjugate subfields of degree 3 over Q, and each
has discriminant D d. Hence there exists a non-Galois cubic extension
L of Q with discriminant D d, and L is unique up to conjugacy.
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We must still prove Theorem 2 (c)(i-xi). So we suppose SF {1 }, which
means r 0. By class field theory r 0 implies that K/Fcannot be unramified,
and hence >_ 1. Then from Equation 1,

rankSL t-- w

where w is the rank of a (t 1) x matrix. So w 0 or 1. Then 3 hL if and
only if and w 0, or 2 and w 1. Let e be defined as in Theorem
2 (c). Then by [-2, Corollary 3.7], w 0 if e is a local norm at each prime of
Fwhich ramifies in K, and w otherwise. We note that implies w 0
by the product formula for norm residue symbols, and if 2, the product
formula implies that e is a local norm at both of the ramified primes of K/F or
at neither of them. Furthermore, if 3 hL, then Lemmas and 2 imply that the
primes of F which ramify in K must be either rational primes p (mod 3),
3 (if 3 is inert in F/Q), or the unique prime of F above 3 if 3 ramifies in F/Q.
Also it is easy to see that e is a local norm at a prime p (mod 3) if and
only if e is a cubic residue (mod p(9D. Correlating the above results for the case
where SF { }, we obtain the following restrictions for the discriminants D of
the non-Galois cubic fields L/Q such that 3 /hL.

LEMMA 4. Let notations be as in Theorem 2. IfSF { }, then 3 X hL ifand
only if the discriminant D ofL has one of the following forms:

(i) D dp2 with p A
(ii) D d" 32 or d" 92;
(iii) D dpEp with pa andp2 distinct elements of A2;
(iv) D d- 32 p2 or d" 92 p2 with p A2.

Remark. D is restricted to dp2, d. 32, and d. 92 when (and w 0),
and D is restricted to 2 2 32 .92 p2dPlP2 d p2, and d when 2 and w 1.
However we have not proved that there exists an L for each of the possible
values of D; what we have proved is that if there is an L with discriminant D,
then 3 hL if and only if D has one of the above forms. In the next section we
determine for which of the possible values of D there exists an L with discrim-
inant D.

3. Completion of proof of Theorem 2(e)

We first review some results on ideal class groups. Let F be a finite extension
field of Q, and let m be an integral ideal of F. Let I(m) denote the group of all
fractional ideals of F which are relatively prime to m, and let

P(m) {(gv F and (mod* m)},

where (gv is the ring of integers of F, F F- {0}, and " (mod*m)"
means "for every prime p[m, is a p-unit and (mod m) in the p com-
pletion of F". (When dealing with integral elements of F, we shall usually write
rood m instead of mod* m.) For m (gv, we let I denote I((gv) and P denote
P((gv). Then I/P is the ideal class group, and for arbitrary integral ideals m of F,
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I(m)/P(m) is called the ideal class group modulo m. For a given m, it is known
that each element of I/P can be represented by an ideal which is prime to m;
hence there is a natural surjection " I(m)/P(m) I/P. The kernel of is
(I(m) n P)/P(m). Let al,..., as (gF be a set of representatives for (g%/m)x,
where ((9v/m) denotes the group of invertible elements of (gF/m. Then (a3
I(m) n P for each i, where (ai) denotes ai(gF. If ill,..., fls is another set of
representatives for ((gF/m)X with fit ai (mod m) for each i, then (flta 1) P(m).
So the image of (fli) in (I(m) n P)/P(m) is the same as the image of (a3 in
(I(m) n P)/P(m). So there is a well-defined map

2" ((9r/m) (I(m) n P)/P(m).
It is easy to see that , is surjective. Now (ai) P(m) if and only if ate =_

(mod m) for some unit e of F if and only if at e- (mod m) for some unit
e of F. So kernel 2 - E/E,, where E is the group of units of F, and E,
{e E le (mod m)}. From the exact sequences

(I(m) n P)/P(m)---. I(m)/P(m) I/P---,
and

E/E. ((9/m) (I(m) n P)/P(m)---.
we get the exact sequence

--+ ((.9r/m)X/(E/E.) -+ I(m)/P(m) -+ I/P --+ 1. (2)
We now return to the case where F is quadratic with discriminant d, and the

3-class group SF (1 }. We want to find all non-Galois cubic fields L/Q with
discriminants df2, wherefis a rational integer, such that 3 y h., where hL is the
class number of L. Let C(m) IOn)/P(m), and let a be the generator of
G Gal (F/Q). If we assume rrt* m, then C(m) is a G-module. Let S(m)
C(m)/(C(m))3. Then S(m) is a G-module, and it is straightforward to check
that

s(m) - so.) + x S(m)-
where S(m) + {a e S(m) a a} and S(m)- {a S(m) a a-l}. By
class field theory S(m) is isomorphic to the Galois group of the abelian extension
M of F of exponent 3 which is the composition of all cyclic cubic extensions of
F whose conductors divide m. Let M + be the compositum of F and all cyclic
cubic extensions ofQ contained in M. Let M be the compositum of the normal
closures K of all non-Galois cubic extensions L of Q that are contained in M.
Then (M+/F) S(m) +, and Gal (M-/F) - S(m)-.
Our goal is to consider the m which are associated with the discriminants in

Lemma 4 and determine when S(m)- - {1 }. From Lemma 4, we see that we
need to consider the following m:

m (p) with p A 1, m (3) and (9),
m (PIP2) with Pl and P2 distinct elements of A2,

m (3p) and (9p) with p A2.
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We note that m" m for all of these m, where a is the generator of Gal (F/Q).
Hence the results of this section apply to these values of m. To determine when
S(m)- {1}, we shall exploit the exact sequence (2). We let Y(m) ((Prim)X/
(E/E,,) and T(m) Y(m)/(Y(m))3. Since the 3-class group of F is trivial by
assumption, the exact sequence (2) implies S(m) - T(m).
We first consider m (p) with p A1. Let e be defined as in Theorem 2.

We note that ((gF/(p)) is a cyclic group of order p2 and 3](p2 1).
Also e is a cubic residue mod (p) since p A1. Hence S(p) T(p) ’ Z/3Z.
Also S(p) + { } since there is no cyclic cubic extension of Q with conductor
p for p A1. So S(p)- - S(p) Z/3Z. This implies that there is a unique
(up to conjugacy) non-Ga|ois cubic field L with discriminant dp2. This fact and
Lemma 4(0 imply Theorem 2(c)(i).
Next we consider m (PIP2) with pl and P2 distinct elements of ,42. Then

((9r/(pp2)) is the product of cyclic groups of order p2 and p2 with
3](p2 1) and 3](p22 1). Also e is not a cubic residue mod (PP2) since
Pa, P2 6 A2. It is then easy to see that S(plp2) Z/3Z. Since there is no cyclic
cubic extension of Q with conductor pip2 for Pl, P2 ,4 2, then

S(pap2) + {1 } and S(pap2)- - S(pp2) - Z/3Z.

So there is a unique (up to conjugacy) non-Galois cubic field L with discriminant
2 2dplp2. This fact and Lemma 4(iii) imply Theorem 2(c)(ii).
In the remaining cases (3) m. We first note that we do not need any cases

where d _-- (mod 3), since then 3 would decompose in F and would ramify
totally in L, and hence 3 would divide hL by Lemma 2.
We now consider d= -1 (mod3). Then 3 is inert in F. For m (3),

((9F/(3)) is a cyclic group of order 8, and hence S(3) is trivial. Furthermore
S(3p) {1} for p A2. Now let m (9). Then

S(9) T(9) Z/3Z O)’Z/3Z or Z/3Z,

according as e is a cubic residue rood (9) or not. We note that S(9) + Z/3Z
since there is a unique cyclic cubic extension ofQ with conductor 9. So S(9)-
Z/3Z or {1}, according as e is a cubic residue mod (9) or not. In the notation
of Theorem 2, S(9)- - Z/3Z or {1}, according as 3 B or 3 q B. So when
3 B, there is a unique (up to conjugacy) non-Galois cubic field L with dis-
criminant d" 91. When 3 B, it can be checked that S(9p)- Z]3Z ifp Az.
Hence when 3 B and p e Az, there is a unique (up to conjugacy) non-Galois
cubic field L with discriminant d" 9z pZ. When 3 e B and p Az, it is also true
that S(9p)- - Z/3Z. However, since S(9)- - Z/3Z when 3 B, the cubic
extension associated with S(9p)- is the one associated with S(9)-. So no new
cubic field occurs in this case. The results of this paragraph and Lemma 4(ii and
iv) imply Theorem 2(c)(iii-iv).
Now we consider d 3 (mod 9). In this case S(3) Z/3Z or { }, according

as e is a cubic residue mod (3) or not, according as 3 B or 3 B (using the
notation of Theorem 2). Since there is no cyclic cubic extension of Q with
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conductor 3, then S(3)- - Z/3Z or {1}, according as 3 B or 3 B. So there
is a unique (up to conjugacy) non-Galois cubic field L with discriminant d. 32
when 3 e B. If 36 B, then it can be checked that S(3p)- - Z]3Z if p A z,

and hence there is a unique (up to conjugacy) non-Galois cubic field with
discriminant d. 32. p2. When 3 B and p A2, then S(3p)- ---_ Z]3Z. How-
ever S(3)- - Z]3Z when 3 B, and hence no new cubic field is associated with
S(3p)-. Next we consider m (9). We note that the Sylow 3-subgroup of
((9](9)) is isomorphic to Z]3Z @ Z/9Z. So

S(9) Z/3Z @ Z/3Z or Z/3Z.
If 3 e B, then S(9) Z/3Z @ Z/3Z with S(9) + Z/3Z (since there is a
unique cyclic cubic extension of Q with conductor 9) and S(9)- Z]3Z.
However, since S(3)- Z]3Z when 3 e B, no new cubic field is associated with
S(9)-. When 3 B, it can be checked that S(9) S(9) + Z/3Z and S(9)-
{1}. If p e A2, then S(9p)- Z/3Z. However no new cubic field occurs
because S(3)- Z/3Z when 3 e B, and S(3p)- Z/3Z when 3 B. The
results of this paragraph and Lemma 4(ii and iv) imply Theorem 2 (c) (v-vi).

Finally we let d-- -3 (mod 9). Then S(3) + {1 }, and S(3)- S(3) -Z]3Z or {1}, according as 3eBor 36B. So when 3B, there is aunique
(up to conjugacy) non-Ga|ois cubic field with discriminant d" 32. It can be
checked that S(3p)- Z/3Z when 3 B and p e A2, and hence there is a
unique (up to conjugacy) non-Galois cubic field with discriminant d. 32-p2.
Also S(3p)- - Z/3Z when 3 e B and p A2, but no new cubic field occurs since
S(3)- Z]3Z when 3 B. We now take m 9. The Sylow 3-subgroup of
((gv/(9)f’ is isomorphic to

Z/3Z 03 Z/3Z 03 Z/3Z.
Then S(9)+- Z/3Z, and S(9)-- Z/3Z @ Z/3Z or Z/3Z, according as
3 e B or 3 q B. When S(9)- Z/3Z @ Z/3Z (i.e., 3 B), there are four non-
conjugate non-Galois cubic fields associated with S(9)-. One ofthem is the cubic
field associated with S(3)-. So there are three non-conjugate non-Galois cubic
fields with discriminant d. 92 when 3 B. If 3 B, then S(9)- - Z/3Z, and
hence there is a unique (up to conjugacy) non-Galois cubic field with discrim-
inant d. 92. If 3 B andp A2, then it can be checked that S(9p)- Z/3Z )
Z]3Z. So there are four nonconjugate non-Galois cubic fields associated with
S(9p)-. One of these is associated with S(3p)- and another with S(9)-. So
there are two nonconjugate non-Galois cubic fields with discriminant d" 92 p2
when 3 B and p e A2. For 3 e B and p e A2, S(9p)- Z/3Z @ Z/3Z
S(9)-. So no new cubic fields occur in this case. The results of this paragraph
and Lemma 4 (ii and iv) imply Theorem 2 (c) (vii-xi).
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