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A MATRIX CRITERION FOR NORMAL INTEGRAL BASES

BY

DONALD MAURER

Let K IF be a finite Galois extension of an algebraic number field F. In
certain circumstances it is known that the ring of integers (9 has a normal
integral basis. The uniqueness of such a basis has been studied in [2] and [3]. In
this paper we give a characterization of the structure constants of an order,
over an integral domain, having a normal integral basis. As an example these
results are then applied to cyclic cubic extensions" we obtain an explicit charac-
terization of the normal orders of such extensions in terms of their diserimin-
ants; and when F is the rational field Q, we are able to characterize
discriminants of tamely ramified cyclic cubic extensions, and explicitly con-
struct all such fields having a given discrirninant. It is known (e.g., class-field
theory) that each cyclic extension of Q is determined by a complex-valued
Dirichlet character with the property that for almost all primes p, X(p)= 1 if
and only if p splits completely in the extension. For quadratic extensions the
character is known explicitly in terms of the diseriminant. For higher degree
extensions the corresponding character is no longer determined by the dis-
erimant, but there is still a very strong connection which our results make
explicit.

Structure constants

Throughout this section R will denote an integral domain with an identity
1R, and G a finite group of order n. If B: RG x RG R is an R-bilinear form on
the group ring RG, the equation

(1) x y Z B(zx, "cy)’c- , x, y R,

defines a binary operation which, together with the ordinary R-module struc-
ture, makes RG into an R-algebra which we shall denote by F Fn. In general
this algebra is not necessarily commutative or associative; although, via the
ordinary group ring multiplication, G acts as a group of R-automorphisms.

Suppose that R (gv and G Gal (K IF). An R-order (9 in K is normal if it
has a basis of the form {r()} for some (9. A normal order is evidently
isomorphic to RG as an RG-module. Now let c,, s R be defined by the
relations
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then for each o G, apply to both sides of the equation to obtain c,,, co- I,o- .
If we let B’ denote the bilinear form on (9 determined by the conditions
B’(cr(), or(z)) c,,x then for all x, y (9 we have

E
peg

We can define a bilinear form B on RG by setting B(cr, ) B’(cr(), z(c)); then
the RG-module isomorphism (9 - RG is extended to an algebra isomorphism
b" (9 g FB (note that alp(or(x)) or. ok(x), where the multiplication indicated on
the right hand side is the group ring multiplication). Conversely, if B has been
chosen so that FB is a commutative integral domain with identity, and K is its
quotient field, then K IF has Galois group G and Fn is a normal order in K.
This establishes a bijection between normal R-orders in Galois extensions ofF
and forms B for which Fn is a commutative integral domain with identity. The
purpose of this section will be to classify those B for which Fn is an integral
domain with identity.
We fix an enumeration lo a, o2, 0" of the elements of G. Then each
G defines a permutation by the equation trt) ztr; we also define v(i) by

at) try- a. For each z G we define the form B(x, y) B(zx, zy); and denote
its matrix, relative to the normal basis r, a,, by M (m). It is a con-
sequence of the Galois action that mj mt),tj) (mj =mf); thus there are at
most n2 distinct structure constants relative to the above basis and they occur
as the entries ofthe matrix M (m). If F is commutative, then M is symmetric
so that there are at most n(n + 1)/2 distinct structure constants. These remarks
hold for the matrices of B relative to any basis of the form 0 x, 0. where
0 tr 0 (the right side is multiplication in the group ring).
Suppose that 0’ also generates a normal basis. If 0’-- w 0, then

where the (i,j)th position of W contains wu,.i, and u(i,.j) is defined by
truth,j) tr7 lcrj. The matrix W is called a 9roup matrix [3] for G; if the rows sum
to one, we say W is normalized.
We now consider conditions under which F has an identity. Suppose 1 r is an

identity and 0 generates a normal basis. Then alr l r (all cr G) implies
lr rs(O), where r R, and s(O)= 01 +’"+ 0,. The condition lr lr lr
implies that r is a unit so 0’= rO also generates a normal basis. Whence
lr s(O’). Finally the conditions 01 lr 0 (1 < < n) imply that

if/= 1
if/> 1

where Bo is the uniquely determined form satisfying

x y Bo(x, y)crti)O.
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Conversely if 0 is any element which generates a normal basis and satisfies
(2), then s(O) is an identity for F. There is no loss in generality if we assume
0 1; then (2) can be expressed in matrix terms by

(3) mij
j=l if/> 1.

Now let BG= EG/r, with corresponding matrix Ma= (m,). If we define,
for x RG, trace (x)= s(la)x, then it is straightforward to see that B(x, y)=
trace (x y). The R-algebra F is separable if the trace-form Ba is nondegenerate
(i.e., det M :/: 0). We will be concerned with separable algebras throughout.
Note that (3)implies

(4) m=l forl<i<n.
j=l

We now consider associativity and the existence of zero divisors. We say that
F splits completely if F F1’" Fs, where each F R. If F splits com-
pletely it is evident that it is commutative, associative and semisimple (since R
contains no nilpotent elements). Moreover it has an identity. Our next lemma
characterizes complete splitting. Assume that F has an identity lr s(la).

LEMMA. Suppose R is a field. Then F splits completely if and only if

(i)
and

(ii)

the polynomial (x)= det (M xM)factors into linearfactors over R,

the zeros 1, , ofM can be ordered so that

M W ".. W W denotes transpose of W)

where W-1 is the normalized roup matrix whose first row is 1,

Proofi Suppose F splits completely. Then it is straightforward to show that
s n and each F Re where ej e is a normal basis. Since e e 0 if
i=/:j, we see that the matrices of B and B with respect to el,..., en are
diagonal. If

then W is a normalized group matrix, and we have

MG= WW, M ’W diag (1, n)W,

for some 1,..., , e R. The first of these relations requires explanation. Since
tW- MaW is the matrix of Ba with respect to e, e, it must be diagonal.
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Let e ex so that e tri e. Then we find that the form Be wjB% where
w, w, is the first row of W. Hence Be B (W is normalized). It follows
that W-MW must satisfy (4), whence it must be I..

Since F is separable, tI) is of degree n, and evidently its zeros are just (,
(,. This proves the necessity of (i).

Finally, e e e implies

ei Z B(eti), eti))z E (ti)z-*,

and this proves the necessity of (ii).
Conversely (i) and (ii) imply that e, e as defined by the equations

e 6 (ti z- give a system of orthogonal idempotents.

Remarks. When R is an algebraic number field there is an algorithm [5] for
factoring polynomials in R[x] which can be applied to . Therefore there is an
effective procedure for determining whether the conditions of the lemma are
satisfied.

Suppose that S R is an integral domain and l s la. We can define an
S-algebra Fs on the group ring SG by (1); and there is a natural embedding
F Fs. erefore if Fs splits completely for some extension S R, F is
commutative, associative and has an identity. We can prove the converse. Let F
be associative with an identity. Separability implies the existence of an element
( s F such that B(x, y)= trace (( x y). is leads to the factorizations

(5) M ’WW, M ’W diag (x, .)W (x ),
where W- is the (normalized) group matrix whose first row is
Therefore, if we define a normal basis w,..., Wm by

we have, for each e G, N(w, w) 0 when j.
Now, the associative condition can be reduced to

16o(ofl)=(16o)ofl, for all,flG.

IfM (m(w)) is the matrix of B with respect to wx, w,, this condition
can be expressed as

(6) E m,,mo,-
zG G

for all , fl, 0 G, where we have set m,, m(w). In view of (5) we obtain

if=z

6 if v.

Now sum (6) over all 0 and use (7) to obtain m,,o m-,-,. Letting fl we
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have m, m,_ 1,1. Since m(w) 0 if 4: j, we now see that mu(w) 0 if > 1.
Therefore w w= w, so that w,..., w, is a system of orthogonal
idempotents for Fs.
Then if we take S to be any extension field of the quotient field of R contain-

ing the entries of W- we obtain the splitting Fs F 03"" 03 F.; Fi Fw.
Consideration of dimensions gives F S.

We now summarize our classification in"

THEOREM 1. Let B be 9iven. The R-algebra F FB is separable, associative,
commutative and has an identity ifand only ifthere exist nonzero elements 1,, (in some fixed algebraic closure of the quotient field F of R) such that

where W- exists and is the normalized 9roup matrix whosefirst row is 1,

In this case 1,..., are the zeros of (x); and if tbl,..., is the
factorization of over Fix], then F FI’" Fs where F is an inteoral
domain with identity whose quotient field is the splittin9 field of 0.

Proof We have just seen that if F is separable, associative and has an
identity, then M has a factorization of the form (8).

Conversely, suppose we have such a factorization. Let 1,
, be given

such that W is the normalized group matrix whose first row is tx), t,).

Then trace (i j)-- 0ij. Since mij trace (( i ) (where (= (1), we see
that M satisfies condition (3) so F has an identity. Moreover, straightforward
calculations show Ma WW; therefore F is separable. Also, (() 0 for all i.
We may without loss of generality assume R to be a field and then apply the
lemma.
Now suppose is irreducible over Fix]. We show that F is an integral

domain. Let K be the splitting field of , so that Fr splits completely. Whence
F is semisimple. Therefore if F has nontrivial zero divisors, there is a nontrivial
decomposition F F q) F2 as R-algebras. If e (j 1, 2, ...) is an R-basis for
Fi, then/r(e j, e2K) 0 for all z e G and j, k. So the matrices ofB and BG with
respect to the basis {ej} are in block diagonal form. Hence we obtain a non-
trivial factorization x2. It follows that Fv is a Galois extension of F
with group G. By separability, there is a 2 e Fv such that

trace (2o ,o j)= trace (o ,o j).
Thus ; ( e Fv. It follows that Fv is the splitting field of . If

where F are indecomposable, then F are integral domains, and we have a
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corresponding factorization 1, tI)s. Now if F is an integral domain,
then is irreducible since G acts transitively on (, (,.

This completes the proof. Note that as in the comment following the lemma,
the factorization of can be determined if R is a ring of algebraic elements.

Remarks. (1) The factorization in (8) determines G uniquely, for if there is
a factorization of M with (, (’ and a group G’ then F and F’ are isomor-
phic as R-algebras so G Autg (F)= Autg (F’)= G’.

(2) {(i} and {i} are dual bases with respect to the trace-form. So if R (gF is
the ring of integers in a number field F, and F 60 r then (1, (n is a basis for
the inverse different of K IF (e.g., this occurs if F Q and K IQ is tamely
ramified, abelian).

Cubic extensions

In this section we assume that R is an integral domain with characteristic
different from 2 or 3. We apply the results of the preceeding section to the case
n 3. Then G is cyclic of order 3 and tr22 tr3.

Suppose M is symmetric and satisfies (3), then F is an R-algebra with iden-
tity, and we have the relations

m12 1/2(1 mll m22 + m33),

m13 1/2(1 mll + m m33),

mz3 1/2(- 1 + mll mz2 m33).
Therefore, in view of (3), M is uniquely determined by m,m and m33. If we
set x mll + m + m33 then

x if i=j

lmx
ifij,

2

and D det M (1 3p)2, where x 1 2p.
In order to construct integral domains F we must choose M so that (8) holds,

and is irreducible. Since D 4: 0, can be replaced by W D- 1. Then W has
the form

W(x)= x3 x2 +- x --, p’, q’

Assume that a nonzero element tO 1 3p (p R) is given. We try to find an
M satisfying these conditions and so that D 02. Of course, we should not
expect a unique solution.

If such an M exists, and (1, (2, (3 are the zeros of W, then it is easy to see that
det W-1 1 3p’/D; and so we must have tO (1 3p’/D)-1, or

(9) p’ -p(R).
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Thus p’ is determined by D. We must determine q’ so that

M=tW 2 W, where W-X= 2 (X
3 3 2

is an R-matrix; and W is irreducible. Evidently M is an R-matrix if and only if
mii R (i 2, 3). But a calculation shows that W is the normalized group
matrix determined by (R)(i + p (i 1, 2, 3); and so we find

m22 4- p- D((x ( / (2( + (3(22), m33 4- P---- D((x ( 4- (2( 4- (3 ()2
This leads to the following equation for q’:

27q’2 4- 2bq’ 4- c O,

where b 19(3 19) and c A2 p2(1 4- p)( for some A R. The solubility
of this latter equation can be shown to be equivalent to the condition

(10) 4(R) 27A2 4- B2, A, B R.

For if 3 is a unit in R, this is a consequence of the quadratic formula, and

(11) q’= 7(+B- b).
If 3 is not a unit, then we must further show that it is possible to choose the sign
of B in (11) so that q’ R. However, in determining the discriminant of the
quadratic equation defining q’, we see that B2= b2 (mod 27). Now if both
B b and B + b are divisible by 3, then b 0 (mod 3). This cannot happen;
therefore one of these factors is prime to 3 and so there is exactly one choice of
sign so that q’ R.

Suppose that the coefficients of F have been determined as above. Then ifF
factors, it factors completely. We must have a criterion for its irreducibility. For
this we may assume R is a field. Let R* R(x//3), so R* contains the cube roots
of 1. Then F factors over R if and only if it factors over R*. Let p be a
primitive cube root of unity and let (p, () (x + P(2 4- p2(3 be the Lagrange
resolvent. For A and B as defined in (10) we then set (R)(A, B) (p, )3. A direct
computation using our previous relations gives the formula

1 (B+3Ax//-3),n)=

and F is irreducible if and only if (R)(A, B) is not a cube in R*.
We now specialize to the case where R is a local or global number field. If v is

a prime divisor of R and v* a prime divisor of R* dividing v (v =/= v*), then in
terms ol the cubic power residue symbol
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where v-* is the conjugate of v*. Hence we have proved that if v is any prime not
dividing 3(R), then W factors locally at R if and only if

1/2(B +-3Ax/)V 3

We have:

THEOREM 2. Let R be a ring ofintegers in a local or global numberfield. Then
there is a normal cubic R-order F with discriminant )2 if and only if 19 R
satisfies the following:

(ii)
(iii)

(R)=1 (mod3);
419 27A2 + B2, A, B e R;
1/2(B + 3Ar-S-)is not a cube in R*.

Moreover, if these conditions are satisfied, then a normal basis is given by
{(R)(i + (1 (R))/3}i= 1,2,3, where (i are the roots of O.

Proof. Everything has been proved except the last statement. Since
(1 (R))/3 p, we note that y (R)( + (1 0)/3 (i 1, 2, 3) is the first row of
the matrix W. So if v, v2, v3 is the normal basis corresponding to M,
trace (vi vj)= trace (, yj) from which we see that y v (i 1, 2, 3).

Remarks. (1) IfR is global and (R) R is a unit satisfying the conditions of
Theorem 2, then the class number of the quotient field of R is divisible by three.

(2) If R Z, then (R) > 0; so if 19 were a unit then we would have 19 + 1.
But then W(x) x3 x2, which is not irreducible. This shows that every cyclic
cubic over Q must ramify because Z does not contain "enough" units.

Suppose that R is a number field. Then the normal basis theorem implies
that any cyclic cubic extension of R is of the form F for some M. If F corre-
sponds to the triple (19, A, B) we define a character ;t on the free group gen-
erated by those primes which do not divide 3(R) by

(12) z(m)= (1/2(B + 3Ax//-3))m 3

Our results imply that for almost all primes v, ;t(v)= 1 if and only if v splits
(completely) in F. Since a normal extension is determined by the primes which
split completely in it, Z is uniquely associated to F; and the number of distinct
cubic cyclic fields corresponding to a given (R) is equal to the number of distinct
triples ((R), A, B), satisfying (ii) of Theorem 2, such that for any pair ((R), A, B)
and (19, A’, B’),

(B + 3Ax/r--)/(B + 3A’x//- 3) R.3

Finally we consider tamely ramified cyclic cubic extensions of Q. It is known
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that such extensions have a normal integral basis; and hence correspond to
Z-algebras for some M. We have"

THEOREM 3. An integer D is the discriminant ofa cyclic tamely ramified cubic
number field if and only if it has the form D (R)2, where (R) is square free, and
4(R) 27A2+ B2 is soluable in integers. If D satisfies these conditions (R) is
uniquely determined and the number of distinct extensions of discriminant D is
given by 1/2r((R)), where r((R)) is the number ofdistinct solutions of4(R) 27A2 + B2

in integers.

Proof It is clear that D must be of the stated form, and that (R) is uniquely
determined. That (R) is square-free follows from the definition of tame
ramification. Conversely these conditions imply (R) satisfies the hypotheses of
Theorem 2, so we can find a normal Z-order (9 with diseriminant D. Let K be
the quotient field of (9, it is necessary to show that (9 is the ring of integers in K.
Since (R) is square-free we have the factorization

1/2(B + 3Av/-3 ha, n, (in Q*)
where n are distinct primes. If (9 is a proper subring of the integers (.9, then
there exists a (R)’ dividing (R) and such that (.9 corresponds to some triple
((R)’, A’, B’). Our remarks concerning the character defined in (12) imply that

(B + 3Ax)/(B’ + 3a’x//--). Q*;
therefore we have the factorization

1/2(B’ + 3A’x/r)= e:,
where, is a unit. Since (R) is square-free, Norm (n) 1 (rood 3) all i. That is,

1/2(x + 3y x/- 3). Comparing both sides of the above equation, we see that, 1. Hence by the unique factorization, this is a contradiction unless (R)’ = (R),
A’=A, andB’=B.

Finally we have seen that to each pair (A, B) satisfying (10) there is exactly
one choice of _+ B in (11) giving an integral q’. Thus, in view of the previous
paragraph, there are 1/2r((R)) cyclic extensions with diseriminant D.
We suppose that K IQ is a tamely ramified cyclic cubic extension with

corresponding to ((R), A, B). It is easy now to generalize our results to give a
characterization of the orders (9 (gr having a normal Z-basis. They corre-
spond to triples ((R)’, A’, B’) satisfying the following conditions"

(i) 4(R)’= 27A’2 + B’2, A’, B’ Z,
(ii) B’ + 3a’x/ B + 3A- (mod Q,a).

Thus their determination is reduced to the calculation ofcubic residues in Q,3.

Summary and further remarks

The preceeding section has been devoted to an application of our results to
constructions in the ease n 3. Although the arithmetic of eyelie cubic exten-
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sions has been treated elsewhere [1] in extensive detail, the methods presented
here are more direct and apply, with obvious modifications, to general integral
domains. Moreover, a consideration of the similarity between quadratic and
cubic constructions lead to the conjecture that the discriminant (at least when
G is cyclic) is essentially the norm of the nth power of a Lagrange resolvent of
the zeros of . This would provide the key to extending the constructive
procedures discussed in this paper.
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