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INJECTIVE DIFFERENTIAL SYSTEMS

BY

BINYAMIN SCHWARZ

1. Introduction

In this paper we consider linear differential systems of the form

w’(z) A(z)w(z). (1)
Here w(z)is the column vector (wa(z),..., w,(z)) and a(z)is the n n matrix
(a(z))"x whose elements are holomorphic functions in a given simply connected
domain D of the z-plane C (oo D). Such systems have been studied in recent
years and many geometric properties of their solutions w(z), mapping D into
C", have been considered. A solution w(z) was called oscillatory if there exist
points zl, z, in D such that Wk(Zk) 0, k 1, n; in geometric language
this means that the manifold w(z) (z D) meets the n principal hyperplanes
Wk O, k 1, n, of C". Another geometric notion, introduced by Nehari [6],
is suborthogonality. The system (1) is said to be suborthogonal in D, if, for any
nontrivial solution w(z) and any two points zx and z2 in D, angle {w(z),
w(z2)} between the vectors w(za) and w(z2) is smaller than n/2. Bounds for the
solutions of (1) were considered in [10]. The null system w’(z)= 0 has the
general solution w(z) c; this system is thus nonoseillatory (i.e., no nontrivial
solution is oscillatory) and suborthogonal in the whole plane and "small"
systems will have these geometric properties. For example, let Ilal[ be
the spectral norm; if o IIA(z)llldz <- r then the system (1)is nonoscillatory
and suborthogonal in D ([9, Theorem 3] and [6, Theorem 2.1]).
Here we consider another geometric property of the solutions w(z) of (1). We

require that each nontrivial solution w(z) is without double points: if zl 4:z2
(z, z2 D), then w(z)p w(z2). Geometrically this means that the manifold
w(z) (z D), lying in C", is without selfpenetration. This property, which clearly
does not hold for the null system, reduces in the one-dimensional case, n 1, to
the univalence of the (scalar) solution w(z). We call vector solutions w(z)
(z D) of the system (1), for which zt 4:z2 (zt, z2 D)implies w(zt)4= w(z2)
injective; and we say that the system (1) in D is injective if every nontrivial
solution w(z) is injective. The term "univalent" is used for mappings from
domains in C" to C" (see for example [8] for recent results in this area) and we
thus do not use it for mappings from domains in C to C".

In Section 2 some elementary properties of injective systems are given and
these systems are characterized in two special cases, when the matrix A(z) is
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INJECTIVE DIFFERENTIAL SYSTEMS 611

triangular and when this matrix is independent of z. In Section 3 we use a
geometric lemma of Horn [3] to obtain angular bounds for the solutions of a
differential system. As in the one-dimensional case [11], if the domain D is
convex and if the range of the derivative w’(z) lies in a halfspace (of R2") not
containing the origin, then w(z) is injective in D. The result on the bounds
(applied to w’(z)) yields thus a sufficient condition for injectivity of the given
system (Section 4). We close with a generalization to k-valency and state also
the corresponding result for real systems.

2. Some results on injective systems

Injective differential systems were defined in the introduction. Together with
the vector differential equation (1) we consider also the corresponding matrix
differential equation

W’(z) A(z)W(z), (2)
where W(z)= (wik(z). Let W(z) be any fundamental solution of (2)(i.e., W(z)
is a solution of (2) whose determinant W(z)l wz (z)Iq 0 for all z of D).
The system (1) is injective in D if and only if the determinant

W(z2)- W(zx)l 4 0 (3)

for all pairs ofdistinct points in D. Indeed, any nontrivial solution w(z) of (1) is
given by

w(z) W(z)c, (4)
where the constant column vector c (c , c,) =/= 0. For any two points z
and z2 there exists a nontrivial solution w(z) satisfying w(z a) w(z2) if and only
if the equation (W(z2) W(zl))c 0 has a solution c =/= 0, i.e., if and only if

Iw(z )- w(z )l o.
Let T be any constant nonsingular matrix, ]T[ =/= 0, and set

A(z) 7"A(z)7"- . (5)
The given system (1) and the system

(z)
are together injective or noninjective in D. This follows from the relation
v(z) Tw(z) between the solutions of the two vector equations (or--equiv-
alently-from the relation (z)= TW(z) between the solutions of the corre-
sponding matrix equations).
We also note that the injectivity of the system (1) is invariant under confor-

mal mapping of the domain D. Let z b(2) map the domain/ of the 2-plane
onto the ,given domain D of the z-plane. (1) transforms into
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where ()= w(b()) and ()= b’()A(b()). The system (1)in D and the
system () in are thus tofether injective or noninjective.
For n 1 the system (1) becomes the (scalar)differential equation w’(z)=

a(z)w(z), where a(z) is a holomorphic function (from D to C). Such an equa-
tion is injective if every solution

w(z) c exp a() d c 4 0, (6)

is uni’0alent in D. This holds if and only if

for every pair of distinct points in D. This condition can be generalized to
systems of arbitrary dimension n if the matrix A() is triangular (i.e., is such that
all the elements below--or above--the main diagonal vanish identically).

THEOREM 1. Let the triangular matrix A(z)= (aik(g))nl be holomorphic in a
simply connected domain D, q D. The differential system

w’(z) A(z)w(z) (1)
is injective in D if and only if the inequalities

2

f akk(()d( O, +_2i, +_4ri,... (7’)

hold for all diaoonal elements aRk(Z), k 1,..., n, of A(z) and for all pairs of
distinct points z and z2 in D.

Proof Let Zo be an arbitrary point in D and let W(z) be the fundamental
solution of the matrix equation (2)satisfying W(zo)= I (I (6k). The Peano-
Baker series

zo zo
A(,) d, d( +

shows that W(z) is, together with A(z), triangular. For each diagonal element
Wkk(Z) of W(z) we obtain

w(z) =1+ fz akk()d + f a() fzo zO

1 + f, akk() d + akk(’) d" +""
z .

exp(f
zo akk()d).

(6’)
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As W(z2) W(zl)l I-i] (Wkk(Z2)- Wkk(Zt))it follows that the system (1)is
injective in O if and only if all functions Wkk(Z) are univalent there, and, by (6’),
this is equivalent to the inequalities (7’).
For a bounded convex domain D of diameter d these inequalities hold if

there exist arguments k, 0 < k < 2n, k 1, n, such that

Re (akk(Z)e’) > O, Z D, k 1,..., n, (8)
and if also

la  (z) < 2=/d, z e D, k 1,..., n. (8’)
Indeed, we may now integrate along the segment from z, to zz and (8)yields
J 5 a()d 0, while (8’)implies that ]J < 2, k 1, n.
Theorem 1 and the invarianee of injectivity of the system under a similarity

transformation (5) yield the following result.

THo 2. t the constant matrix A (a)] have the eioenvalues 2 ,
2,. The system

w’(z) Aw(z)
is injective in the simply connected domain D, D, if and only

and
2mi/6D-D, k=l,...,n,m=l, 2, (9’)

(lc)

Proof By a similarity transformation A can be brought into a triangular
form, say into the Jordan normal form J TAT-1. The system v’(z) Jr(z)is
together with the given system (le) injective or noninjective in D. The diagonal
elements of J are the eigenvalues 2, 2, and condition (7’) of Theorem 1
thus becomes t,k(Z2 --Z1):: O, __2mni, k 1, n, m 1, 2, which is
equivalent to conditions (9) and (9’).
We note that if D is starlike with respect to one of its points then D D is

starlike with respect to the origin. In this case (9’)reduces to the simpler
condition

2i/2k 6 D D, k 1,..., n. (9")
For example, the system with constant coefficients (lc) will be injective in the
unit disk, z < 1, if and only if 0 < <_ n, k n.

3. Horn’s iemma and bounds for solutions of differential systems

Let R" be the real n-dimensional euclidean space with points x (x 1, x,)
and let S(= S-1) be its unit sphere,
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A spherical cap of S with central angle (0 < < n) is a set of the form
S(u, ) {x: x S, {x, u} < /2}, where u is a fixed point of S and the angle

{x, u} is, for Ilxll--Ilull 1, defined by arc cos (x, u)((x, u)= XkUk). We
state Horn’s result as:

LEMMA 1. Let F be a closed rectifiable curve on S of length/(F). If l(r) < 2a
then F is contained in an open spherical cap ofcentral angle ; ifl(F) 2 then F
is contained in a closed spherical cap of central angle , 0 < <_ n.

Horn stated this lemma for n 3 and n [3, Lemma 2]; his proof holds in
the general case and, for completeness, we bring the proof. Let P be any point
on F and let Q be the point on F such that the curve segments F PQ and
F2- QP have equal length/(r:) =/(rz) =/(r)/2. Let B be the midpoint of the
straight chord PQ (lying inside the unit ball). By a rotation of S we may assume
that B (0, 0, b), 0 < b < 1, and

P ((1 b2)1/2, 0,..., b), Q (-(1 b2)X/2,,O, b).
Let N be the north pole (0, 0, 1); then g {P, N} g {N, Q} [3/2 where
b cos (fl/2). As the points P, N, and Q lie in the (x , x,)-plane it follows that
/(F) > 2fl, hence fl _< . Set a cos (/2); then 0 < a < b < 1, a < 1. If F does
not intersect the hyperplane x, a, the conclusions follow. If F intersects this
hyperplane, then we construct the unique arc F’2 which is symmetric to F with
respect to the x,-axis,/(rl) =/(r,). The closed curve F’= F + rl has the
length/(F’) =/(F) and contains two points

(y,..., y,_,, a) and (-y,..., --Yn-, a)
whose spherical distance is a. So if F intersects the hyperplane xn a then
/(F’) =/(F) > 2t, and if F1 crosses this hyperplane to points below it then
/(F) > 2e. Thus if/(F) < 2e then F cannot intersect the hyperplane, and if
/(F) 2e, F cannot cross this hyperplane. Since the same argument applies to
F2 the lemma is proved.
We shall use this lemma for the unit sphere S {09:IIo11 1} of the complex

n-dimensional euclidean space C (so S corresponds to S2"- of R2"),

ogk k + it/k, I1 o11= = + ng).

The length/(r) of a curve F in C, given by og(t), a _< _< b, equals Ib. IIo’(t)[I at
and a spherical cap S(u, ) is now given by

S(u, a)= {o9:09 e S, arc cos Re (o, u)< a/2}.
Here u is a fixed point on S and (r, &) is the inner product in C, hence
Re (o, (5)= ’I (k k -" /’/k k)"
The complex differential system will now be written in the form

v’(z) B(z)v(z). (10)
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As before, I[BI] denotes the spectral norm of the complex matrix B (b,k)], i.e.,
[IBII is induced by the euclidean vector norm IIo11, IIBII-- supoo (IIBII/IIII)o
We state the following theorem in a somewhat restricted form which, however,
is sufficient for the later applications to injectivity.

THEOREM 3. Let the matrix B(z) be holomorphic in a closed region D whose
boundary is an analytic Jordan curve 7. If

f I[n(z)ll Idol 2k, 0 _< k _< re, (11)

then for every nontrivial solution v(z) of (10)there exists a unit vector u u(v) in
Cn, such that

Re (v(z), u) k
(12)arc cos

ii(z)l[ <
holds for all z in D.

Proof.
st

Then

We note a special case, needed in the sequel. If k < r then

Re (v(z), u)> O, z D. (12’)

Let y be given by z(t), 0 < < T. For a given solution v(z) of (10) we

v(z(t)) r(t)= (oax(t), on(t)), 0 < < T. (13)

dz
v’(z), 0 < < T. (14)o’(t) i

For 0 _< _< T, oa(t) describes a closed curve F in C (not going through the
origin). The projection of F on the unit sphere is given by

co(t) co(t)/llco(t)ll, o <_ <_ T. (15)
For the length 1(’) of " we have

T T

1(’): fo ][&’(t)l dt< fo [Ic’(t)ll IvIIo(t)ll
dt

Ilv(e)[I dzl.
Here the inequality sign follows from a well known property of the projection
on the unit sphere and the last equality sign follows from (13)and (14). By (10)
and (11)

f Ilv’(z)llllo(z)ll Idzl _< f IIB(z)l[ Idzl 2k

and we thus obtain l(i") < 2k. By Lemma 1, applied to the unit sphere S of
there exists a vector u, Ilull 1, such that arc cos Re (&(t), u) < k/2, 0 < < T.
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By (13) and (15) this implies

Re (v(z), u) k
(16)arc cos

iiv(z)ll
< ,

or,

Re (v(z), u)- (cos (k/2))llv(z)l > O, (16’)
for all z
The function Re (v(z), u)= Re ( v(z)+ ...+ ,v,(z)) is harmonic in /,

and the norm II (z)ll is subharmonie there. As 0 _< k/2 _< /2 it follows that
Re (v(z), u) (cos is superharmonic in/ and thus attains its mini-
mum at the boundary /. Hence, (16’) and (16) hold for each z /and we have
completed the proof of the theorem.
By a standard limit procedure it can be shown that this theorem remains

valid for an arbitrary simply connected domain D (o D). The assumption
(11) has then to be interpreted in the usual Hx sense and the conclusion (12)
holds now for all z in D. This improves a previous result which stated that
assumption (11) (for 0 < k < ) implies that for every nontrivial solution v(z) of
(10) and for every pair of points z and zz in D the inequality

Re (v(z), v(g2)
<karc cos

holds [10, Theorem 3]. A simple example established the sharpness of this
former result and yields thus also the sharpness of the present, stronger, result.

4. A sufficient condition for injectivity

Let the matrix A(z) be holomorphic in a domain D and let (1) and (2) be the
corresponding differential systems. For given Zo in D, the condition
]A(zo)[ 4:0 is equivalent to the fact that, for every nontrivial solution w(z)of
(1), w’(zo)4O, and that, for every fundamental solution W(z) of (2),
W’(zo)[ 4: 0. These conditions imply local injectivity at Zo; it is thus not

surprising that in a sufficient condition for injeetivity it is assumed that the
holomorphic matrix a(z)is nonsingular (i.e., [A(z)[ 4: 0)in D.

THEOREM 4. Let D be a convex domain, D, and assume that the matrix

A(z) (ak(Z))] is holomorphic and nonsinoular in D. If

[]A(z) + A’(z)A(z)-Xl[ [dzl <- 2,
D

then the differential system

w’(z) A(z)w(z)

(17)

(1)
is injective in D.
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Proof. We denote

A(z) + A’(z)A(z) B(z). (18)
First let O be the unit disk. The assumption (17) thus means that B(z) is of class
H and that o2= IIB(e’)ll dO _< 2. As the norm IlB(z)]l is a subharmonic func-
tion in D it follows that

IIn(z)ll Idzl < (19)

for every r, 0 < r < 1.
Let w(z) be an arbitrary nontrivial solution of (1); by 0 it follows

that w’(z) g= 0 in D. We denote

w’(z) v(z). (20)
By (1), (18), and (20), this vector v(z) is a (nontrivial) solution of the differential
system

v’(z)-- B(z)v(z). (10)
Let z and z2 be two given points in zl < 1 and choose r, 0 < r < 1, such

that z < r, 1, 2. We use (19) and apply Theorem 3 to the system (10)in
the domain/ {z: z < r}. For the given solution v(z)(= w’(z))of (10)there
exists thus a unit vector u such that (12’) holds (in D,); i.e., we have

Re(w’(z),u)>0, zl <- r. (21)

Let arg (z2 za); the segment [z, z2] is given by

z= za + tei’, O < <_ [z2-za I.
We integrate along this segment (and denote the inner product by a):

a w’(z) dz, u e w’(z + te) dr, u

By (21), Re (ae-) > 0, and it thus follows that a 4= 0. Hence

w(z ) w(z ) f w,(z) dz 4: o,

and we proved the theorem for the unit disk.
For an arbitrary convex domain O ( D) the assumption (17) has to be

interpreted as the limit, for r 1, of integrals taken along the level fines 7,,
0 < r < 1, of the function ( q(z) which maps D onto I(I < 1. Given z and
z2 we can find rso near to 1, that the segment [z, z2] lies in the interior D, ofy,.
(17) implies that the corresponding integral along is smaller than 2n and the
proof continues as in the case of the unit disk. This completes the proof of
Theorem 4.
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In the last part of this proof, we could not obtain the validity of the theorem
for an arbitrary convex domain/ from its validity in a special case D(Iz < 1)
by conformal mapping z b() from/ to D. The corresponding systems (1)
and (]’) are simultaneously injective or noninjective, but the line integral

leo I[A(z) + A’(z)A(z)- ’ll ldz

on the left-hand side of (17) is not invariant under conformal mapping (except
for 4()= a + b).
We do not claim that Theorem 4 is sharp; the constant 2n on the right-hand

side of (17) may not be the best one. However, in the given statement of the
theorem, i.e.,for all convex domains, the constant 2zr in (17)cannot be replaced by
any constant larger than 4ft. For any given convex domain D, 2rr in (17) cannot be
replaced by any constant larger than 2rl/d, where is the length ofOD and d is the
diameter of D. Note that for convex domains 2 <//d < n. Here equality is
attained in the second inequality sign for sets ofconstant width, while lid --, 2 as
D converges to a segment [2]. The above italicized statements follow by choos-
ing A(z) 21, 2 4: 0. The system (lc) becomes w’(z)= 2Iw(z)with the solution
w(z) e’c, and the system is noninjective if (2ni/2) D D. Hence, for any
e > 0, there exists a value 2, 121 (2rr/d) + e, so that the corresponding system
is noninjective in D, and the value of the integral in (17)is 1211 ((2n/d) + e)l.
We now express this result in a form which does not explicitly mention

differential systems.

THEOREM 4’. Let D be a convex domain, o D, and assume that the matrix
W(z) (Wik(Z))q is holomorphic in D and that its derivative W’(z) is nonsin#ular
in D. If

f w"(z)W’(z)- llldz -< 2, (22)
D

then every vector function w(z) defined by

w(z) W(z)c, c O, (4’)
is injective in D.

This form is more general than the previous one. Indeed, if W(z) is a fun-
damental solution of the differential system (2), then A(z)l 4:0 implies
W’(z)l 4:0 and A(z)+ A’(z)A(z)-X= W"(z)W’(z)-a. So Theorem 4’ implies

Theorem 4. However, in Theorem 4’ it is not assumed that W(z) 4 0 in D, so
the n parameter family w(z) given by (4’) is not necessarily the general solution
of a differential system with holomorphic coefficients. For example, the matrix
W(z) zC, C (Ck)], CI 4: 0, yields, by (4’), vector functions which are injec-
tive in the whole plane; the coefficient matrix of the corresponding differential
system is given by A(z)= (1/z)I. For the proof of Theorem 4’, denote
W"(z)W’(z)- B(z) and w’(z)= v(z). It follows that v(z)is a solution of the
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system (10) and, as v(z) W’(z)c, W’(z) 4: 0, c 4: 0, it is a nontrivial solution
of this system. (22) implies (21) and the proof continues as before.
We state the one-dimensional case of Theorem 4’ as a corollary.

COROLLARY 1. Let D be a convex domain, o D, and assume that thefunc-
tion w(z) (from D to C1) is holomorphic in D and that w’(z) 0 in D. If

foo w"(z)/w’(OII dz -< 2rr, (23)

then w(z) is univalent in D.

By our proof, this is a consequence of the Wolff-Noshiro univalence condi-
tion (Re (w’(z)ei) > 0 for z in a convex domain [11]); the corresponding case of
Horn’s lemma is a trivial statement about closed curves lying on the unit circle
[z 1. Note that if (23) is replaced by the proper inequality

fo w"(z)/w’(z)l dz < 2n, (23’)

then the inequality w’(z) 4= 0 in D follows, and has thus not to be stated as an
assumption. We remark that for the unit disk Corollary 1 follows from a
stronger result of Becker: if w(z) is holomorphic in zl < 1, w’(0) 0, then

w"(z) 1

12, zl <1Zw’(z) -<l-[z
implies univalence of w(z) in z < 1 [1, Korrolar 4.1]. For a generalization of
Becker’s result to n-dimensional univalence see Pfaltzgraff [8].

5. k-valent systems and real systems

A holomorphic vector function w(z) (wl(z),..., w,(z))is said to be at most
k-valent in D if, for every given vector a, the equation w(z) a has at most k
solutions w(zl) W(Zk)= a, zl,..., Zk D. (Here k > 1 and the k points
need not be distinct.) The following generalization of Theorem 4’ holds.

THEOREM 5. Let D be a convex domain, D, and assume that the matrix

W(z) (W,k(Z))] is holomorphic in D and that,for a oiven inteoer k, k > 1, the kth
derivative 14Ak)(z) is nonsinoular in D. If

o + )(z)’(z) 111dz 2, (24)

then every vector function w(z) defined by

w(z) w()c, c 4: 0, (4’)
is at most k-valent in D.
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Proof. Let w(z) be a given vector function, defined by (4’), and denote

As 4: 0, c 4: 0, it follows that v(z)4 O, z D. v(z) is a nontrivial
solution of the system

v’(z) B(z)v(z), (10)
where now B(z)= 14k+ )(Z)I4k)(z)-. It follows that for the given function
w(z) and for any given domain D,-bounded by the level line 2,, 0 < r < 1, of the
Riemann mapping function ( if(z)from D onto < 1--there exists a unit
vector u(= u(w, r)) such that

Re (w(k)(z), Ig) " O, Z r" (26)
We define divided differences for vector functions in the usual way.

1
w[, ] (w(z)- w()),

z z

1
w[z, zx, z,] (w[z, zx, zt-x] w[z, z2, zt]), l= 2,..., k.

Z Z

Hermite’s formula [7, p. 9] states that

wtz, f f + +...+ tkZk) dtl dtk. (27)

Here the integration is over the k-dimensional simplex > 0, i= 0, k,
ti 1, and the point to z + t: z: + + k Zk varies in the convex hull H of

the k + 1 points z, zx,..., Zk.
Now let these k + 1 points be given in D and let r, 0 < r < 1, be so near to 1

that/r contains the convex hull H of these points. As the volume element of the
integral in (27) is positive, it follows from (26) and (27) that

Re (w[z, zx,..., Zk], U)> 0

hence w[z, zx, Zk] 4: O. This excludes the equality w(z) w(z ) W(Zk)
and thus proves the theorem.
The generalization of the Wolff-Noshiro condition to k-valency was, for

n 1, proved by Lavie. If w(z) is holomorphic in a convex domain D and
Re (w(k)(z)ei) > O, Z D, for some , 0 < < 2n, then w(z)is at most k-valent
in D [4, Lemma 2].
For real valued matrices Y(x)= (y(x), defined on a compact segment of

the real line, the following analogue of Theorem 5 holds.

THEOREM 6. Let the integer k > 1, be 9iven and let the real valued matrix
r(x) (Yik(X))] be ofclass Ctk + X)[a, b], oo < a < b < oo, and assume that the
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kth derivative Ytk)(x) is nonsingular in [a, b]. If
b

fa r+ ’(x)y’k’(x) 1[ dx <

then every vector function y(x) defined by

y(x Y(x)c, c real and O,

is at most k-valent in [a, b].

(24’)

(4")

The proof is similar to the proof in the complex case. Instead of Horn’s
lemma we use the obvious assertion that an arc F on the unit sphere S of
length/(F) < n lies in an open hemisphere. (24’) implies the existence of a unit
vector u such that (ytk(x), U) > O, a < x < b, and the result follows by
Hermite’s formula.
For real systems there exists a simple connection between the kth derived

system s’(x) (y(k+ 1)(x)y(k)(x)- 1)S(X and the n parameter family y(x) given by
(4"). If the kth derived system is nonoscillatory in [a, b] then every vector
function y(x) is at most k-valent in [a, b]. By a result of Nehari, the assumption

b

f IIA (x)l] dx < rr/2, (28)
a

implies that the real system y’(x)= A(x)y(x)is nonoscillatory in [a, b] [5,
Theorem 3.3]. This result is sharp and its sharpness was shown by a system
with a constant matrix A(x)= A. As for a constant matrix the given system
coincides with all its derived systems, it follows from (24’) and the sharpness of
(28) that there exist systems which are injective in a given interval and all their
derived systems have oscillatory solutions in that interval.
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