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ON THE MULTIPLICATIVE STRUCTURE OF THE
DE RHAM COHOMOLOGY OF INDUCED FIBRATIONS

BY

V. K. A. M. GUGENHEIM

For a space X three types of "de Rham complex" over a field k will be
considered in this paper"

(i) Classical de Rham theory; "space" means C-manifold, k the real
numbers.

(ii) Sullivan "Pig’ de Rham theory; "space" means simplicial set or simpli-
cial complex; cf. [1], [3], or [5], k any field of characteristic 0.

(iii) Chen’s de Rham theory of "differential spaces"; cf. [2] or [7], k the
real numbers.

In each case we denote by - the category of"spaces" and by the category
of nonnegatively graded commutative differential algebras. The de Rham com-
plex is a contravariant functor A*: Y- or ’o 0 where 0, 0 are the
appropriate pointed categories (i.e., with basepoint and augmentation respec-
tively). The Stokes map is a transformation of functors p*: A* C* where C*
is the smooth normalized cochain functor; the word "smooth" having the
empty meaning in case (ii). p n(p*) is multiplicative (as follows from the
existence of P below); and, in cases (i) and (ii), p is an isomorphism. In
favorable cases the Eilenberg-Moore theorem applies, i.e., H(BA*X), where B
is the "bar" construction, is the cohomology H*(fX, k) of the loop-space fX.
Since A*X is commutative, BA*X has the structure of an algebra. We shall
prove that if the Eilenberg-Moore theorem applies at all, this is precisely the
cup-product structure of H*(tX, k).
Chen has proved a theorem expressing H*(fX, k)as H( A*)where A* is

an "algebra of iterated integrals"; cf. [2] or [7]. if one wants to use the above
result to prove that this is an isomorphism of algebras, one has to burden the
theorem with an extra hypothesis which seems hard to verify, see the remark
after Proposition 6. For this reason, we give a second proof of the multi-
plicativity of the appropriate map, which does not depend on the Eilenberg-
Moore theorem; see Proposition 5 below.
We shall deal not merely with the loop-space, but with the general case of an

Received March 31, 1977.
Supported in part by a National Science Foundation grant.

(C) 1978 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

604



THE DE RHAM COHOMOLOGY OF INDUCED FIBRATIONS 605

induced fibration. We introduce appropriate notations. Let the diagram

E g"" X"

X’ ,, +X

be a pull-back diagram in the category o. In case (iii) (Chen’s theory) the
space E is turned into a "differential space" by the requirement that : U E
is to be a "plot" if and only if g’, g" are "plots" in X’, X" respectively; cf. [2] or
[7].

Eilenberg and Moore, [4], have introduced a map, the dualization of which
we denote by

0c: Torc.x (C*X’, C*X")- HC*E H*(E, k)
(or Oc(X’, X, X")); cf. [8] or [11] for the present cohomological case. The map 0
is induced by the chain-map 0* which is the compositions

(c,x’, c,x, c,x") (c*, c*, c*) c*.

Here, B stands for the "two sided bar construction," cf. [8] or [9], a is induced
by the maps g’, g" andf’g’ f"g", and e is the "augmentation map" e[ ]e2
el w e2. In an entirely analogous way we define the map

0A: TOrA,x (A*X’, A*X") HA*E

induced by a chain map 0,.
Using the Ktinneth theorem and diagonal maps, Eilenberg and Moore in-

troduced a natural product bc in Torc,x (C*X’, C*X")(cf. [8] or [11] for the
present, cohomological case) and they proved"

PROPOSITION 1. W (Oc (R) Oc)= Oc dPc where w is the cup-product.

Remark. Originally, bc was not defined by a chain map because one of the
Eilenberg-Zilber maps us.ed in its construction is in the wrong direction. Using
maps in DASH, however, one can obtain a natural chain map

n(c,x’, c,x, c,x") (R) n(c,x’, c,x, c*x")

(c,x’, c,x, c,x").
One begins with the case where X’= X" is a point to obtain. B(c*x (R) c,x)---, B(c,x);
cf. 4.2 in [9]. Then one uses 3.7, and 3.5, of that paper and appropriate shuffle
maps to obtain .
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In an analogous way the exterior product leads to a product thA in
TOrA,x (A*X’, A*X") induced by the chain map , which is the composition

B(A*X’, A’X, A*X")(R) B(A*X’, A’X, A*X")

B(A*X’ (R) A*X’, A*X (R) A’X, A’X" (R) AX")

B(A*X’, A’X, A’X")
where , again, is defined by the evident shuffles and/ is induced by the
(commutative!) product.
Analogously to Proposition 1, one easily proves the following result by

making an appropriate diagram.

PROPOSITION 2. A(0A (R) 0A)= 0A bA where A denotes the exterior product.

In [1], [6], and [7] it was proved that the natural map

p*: A*X - C*X

could be "extended" to a natural map

P" A*X =:, C*X

of DASH, i.e., a map of coalgebras B(A*X)- B(C*X).
Thus, our pull-back diagram leads to a commutative diagram

A*X’.-A*XA*X"

C*X’ --C*X C*X"

of DASH. Using Theorem 3.7.2, of [9] we thus obtain a natural map

Po: Torh,x (A*X’, A*X") Torc,x (C*X’, C’X")
namely Po Tor,o (Po, Po; 0, 0) in the notation of that theorem.

PROPOSITION 3. If p H(p*) is the morphism induced by the Stokes map,
OcPo pOA.

Proof. We consider the diagram

B(A*X’, A’X, A*X") - B(A*E, A’E, A’E) - A*E

c,x, c*x") B(C*F , C’E, C*E
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in which P denotes the chain-map inducing Po. The construction of this map
from P] is explained in the proofs of 3.5, and 3.7.2, of [9]. The important fact is
that this chain-map itself is natural, and hence (!) is commutative.
We next prove that ) is chain-homotopy commutative" First, observe that e

and e’ are homology-isomorphisms and have the homology inverse and i’
(dotted arrows) given by e e[ ]1 where e, 1 A*E or C*E. Now, using the
explicit definition of P in [9], we see that P(e[ ]1)= p*e[ ]1. Hence,
P’d i’= ip*. Hence, p*e’ and eP] are chain homotopic, and we are done.

PROPOSITION 4. If Oc" Torc,x (C*X’, C’X") -+ H*(E, k) is a monomorphism
(e.#., the "Eilenber#-Moore theorem" applies) then the morphism

Po" TOrA,x (A*X’, A*X")- Torc,x (C*X’, C*X")
is multiplicative.

Proof This is immediate from Proposition 3 since 0A, P and Oc are
multiplicative.
The most important special case arises when X’ is a point, X"= PX the

path-space and E fX the loop space. Then one considers the commutative
diagram of spaces

point * X end point, PX

(constant path)

point + X point

which induces the commutative diagram

B(k, A’X, A*PX) o, B(k, C*, X, C*PX)

B(A*X) o,’ B(C*X)
where the vertical morphisms are multiplicative due to the naturality of the
chain-maps inducing the products; also they are homology isomorphisms.
Hence we obtain as a corollary of Proposition 4"

PROPOSITION 5. The morphism
multiplicative.

Po H(P): HB(A*X)--+ HB(C*X) is

Proof. We have only proved Proposition 5 on the hypothesis that 0c (point,
X, PX) is a monomorphism. In fact, however, we can omit this hypothesis.
Quite independently one can prove that the diagram

B(A*X) (R) B(A*X) )(R) B(C*X)

-,o,
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is homotopy commutative in the category of coalgebras; of. 3.2 in [9]. First, one
examines the corresponding diagram in the unpointed categories, replacingP
by P* and B by B (cf. [7]). Then, calling the two compositions involved U and
V, let G xU, 17 xV where x: B(C*X) C*X is the twisting function. Then
we have to find

W: B(A*X)(R) B(A*X)--+ C*X

such that W[ 1 and DW w W- W w 17 (el. 3.2.1, in [9]). This can
now be accomplished by the same aeyelie models argument by which the
existence of P was established in [1], [6]. We omit further details.

I have been unable to obtain an analogous proof of Proposition 4 without
hypothesis on Oc. The difficulties are of the kind described in Section 9 of [10].
We now apply this result to a theorem of Chen; we are in the context (iii) so

that C*X is the "smooth" cochain functor, which we shall denote by C*X for
the moment, so that C*X can stand for the usual singular functor. Now
suppose:

(i) A* c A*X is a subalgebra such that p*lA*" A* -o C*X is a homology
isomorphism, and such that dA A dAX.

(ii) The restriction map C*X C*X is a homology isomorphism (e.g., X is
a C-manifold).

(iii) 0c(point, X, PX) is an isomorphism for C*, i.e., the Eilenberg-Moore
theorem applies.

Then we consider the following sequence of chain maps: (cf. [7] for Io and
A*)

f A* B(A*) I’o., B(C*X)

B(C*X),---B(R, C’X, C*PX) Oc., C’fIX.

Each morphism induces an isomorphism of aloebras in homology and hence
we have:

PROPOSITION 6 (Chen’s Theorem). Under the above hypotheses H( A*)and
H*(fX, R) are isomorphic as aloebras.

Remark. Note that in the above we used the full strength of Proposition 5
as stated. If we had relied on Proposition 4 we would have needed the following
additional hypothesis"

(iv) 0c(point, X, PX) for C* is a monomorphism into HC*X, where
P X, fX are the "smooth" path and loop-space respectively.
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Alternatively we could replace (iii) by (iii)s, namely, 0c(point, X, PsX) for C*
is an isomorphism into H*(F X, R).

But then, our result would be about f, X and not about fX. The relation-
ship between fX and t2X appears to be obscure. If (iii), (iii) are both true,
H*(fX, R) and H*(f X, R).are isomorphic algebras.

REFERENCES

1. A. K. BOUSFIELD AND V. K. A. M. GUGENHEIM, On PL de Rham theory and rational homotopy
type, Mere. Amer. Math. Soc., vol. 179 (1976), pp. 1-94.

2. Kuo-TsAI CHEN, Iterated integrals ofdifferentialforms and loop-space homology, Ann. of Math.,
vol. 97 (1973), pp. 217-246.

3. P. DELIGNE, P. GRIFFITHS, J. MORGAN, AND D. SULLIVAN, Real homotopy theory of Kahler
manifolds, Inventiones Math., vol. 29 (1975), pp. 245-274.

4. S. EILENBERC; AND J. C. MOORE, Homology andfibrations I, Comm. Math. Helv., vol. 40 (1966),
pp. 199-236.

5. E. FRIEDLANDER, P. GRIFFITHS, AND J. MORGAN, Homotopy theory and differential forms,
Seminario di Geometria, 1972 (Firenze)(mimeographed).

6. V. K. A. M. GUGENHEIM, On the multiplicative structure of the de Rham theory, J. Differential
Geometry, vol. 11 (1976), pp. 309-314.

7. ., On Chen’s iterated integrals, Illinois J. Math., vol. 21 (1977), pp. 703-715.
8. V. K. A. M. GUGENHEIM AND P. J. MAY, On the theory and applications ofdifferential torsion

products, Mem. Amer. Math. Soc., vol. 142 (1974), pp. 1-94.
9. V. K. A. M. GUGENHEIM AND H. J. MUNKHOLM, On the extendedfunctoriality of Tor and Cotor,

J. Pure Appl. Algebra, vol. 4 (1974), pp. 9-29.
10. H. J. MUNKHOLM, The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative

maps, J. Pure Appl. Algebra, vol. 5 (1974), pp. 1-50.
11. L. SMITH, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math.

Soc., vol. 129 (1967), pp. 58-93.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE
CHICAGO, ILLINOIS


