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FUNCTION SPACE COMPLETIONS

BY

J. W. BRACE AND J. D. THOMISON

Many problems in analysis require the introduction of a linear space G of
functions. The next step is to equip G with a norm which is appropriate for the
specific problem. This in turn leads to the necessity of constructing a complete
space ( (Banach space) by adjoining functions to G. We assume that the
domain and range spaces remain fixed. Ordinarily the norm of a function in G
will be defined in terms of the values the function assumes at points in the
domain. If the same statement cannot be made for functions in (, then it is
unlikely that G will be of much use. The purpose of this paper is to overcome
this difficulty.
We begin by describing the relationship between the norm of a function in G

and the values the function assumes at points in the domain. This can always be
done. The result appears as Theorem 1 of [4] and again in this paper as
Corollary 5.4 to Theorem 5.3. The relationship between norm and functional
values is formulated in such a way that it suggests which functions should be
added to G to form the completion. The resulting normed space H has the
property we seek. The norm of a function in H is defined in terms of its values
at points in the domain and, moreover, the definition is derived from the
manner in which norms of functions in G are related to their functional values.
On the other hand, it is not always possible to obtain a completion by adjoin-
ing functions. This fact is illustrated by Example 3.3.
Our approach to the problem of obtaining function space completions paral-

lels the treatment of Grothendieck’s completion theorem given in [8]. We also
view the problem as having two parts" First we obtain function spaces in which
the original space is dense. Secondly, we look for complete spaces among these.
Our key tool is Theorem 2.3 which generalizes the first part of Grothendieck’s
theorem and characterizes the additional functions and their norms. Grothen-
dieck’s theorem is only applicable to the special case in which the domain of the
functions in G is the continuous dual G’. Section 3 gives several sufficient
conditions for the resulting function space to be complete. The theorems are
then applied to give new characterizations of Lp spaces (1 < p < o) as com-
pletions of the space of continuous functions. The characterizations are totally
different from any we have seen in the literature.
More must be said about the relationship of the norm to the point values of

the functions. It is unrealistic to think that a norm mysteriously appears on a
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function space. Every norm must be determined by some specific properties of
the functions. If this is not the case there is no need to clutter up a discussion
with function spaces. The same behavior which suggests a norm will also
suggest a filter. The filter will be composed of sets of the domain (or the linear
space composed of finite linear combinations of points from the domain).
Convergence on the filter (see below) gives the same topology as the norm. The
norm can be obtained from the filter as described in Section 1 with the relation-
ship between filter and norm detailed in Theorem 5.3 and Lemma 5.5. The
convergence on a filter concept was first presented in [3] with applications in
[4] and [5]. Our view is that the norm should not be regarded as the only way of
obtaining a topology on a normed space, and that for some purposes a filter
may be much more useful. Consider Section 4, where a filter is constructed that
gives the Lp norm on C[0, 1], 1 < p < . The filter was suggested by the
Riemann integral which can be used to define the norm. This is the major
reason why our representation of L is so different. We could have motivated
our filter construction by looking at Lebesgue integration. This would have
given a different representation, one more akin to the usual Lz The desired
filter always exists, but it may be a test of ingenuity to explicitly construct it.
The situation is complicated by the fact that many filters may produce the

same norm. The effect on Theorem 2.3 is that distinct filters may give different
spaces in which the original space is dense. It sometimes seems best to use the
coarsest filter available. This is because we desire the new functions to be as
much like the original functions as possible. The coarser the filter the more
function properties that are preserved in the larger function space of Theorem
2.3. Filters can be constructed to preserve continuity, differentiability, integra-
bility, and/or similar properties for the derivatives of any order. Our L com-
pletion of C[0, 1] in Section 4 can be interpreted as those functions having a
kind of Riemann integrability. The construction of a filter which preserves
differentiability is suggested in a paper by R. Nielsen [9]. A filter which
preserves continuity of the functions is given in [3]. It was the first application
of the concept.
A coarse filter may not give the desired results. This is because the new

function space will not contain enough functions. A larger function space can
be obtained using a finer filter. The space obtained by means of Theorem 2.3
will now have more functions (see Lemma 5.10). It is possible that we might
obtain a complete space by using a filter which is fine enough. But, we still want
to keep the filter as coarse as possible in hopes of preserving properties of the
original space. This trade-off is thoroughly discussed in Section 5. Theorem
5.16 gives a sufficient condition for the existence of a finer filter which will give a
completion by means of Theorem 2.3. The filters constructed in Section 4
satisfy the condition. Theorem 5.16 wasn’t needed there because the com-
pletions were obtained without having to refine the filter. Refining the filter
may have the effect of decreasing the effective size of the domain. Other
approaches to our problem have noticed a similar phenomenon [1].
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Assume that there is a complete function space in which the original space is
dense, in other words a completion. Theorem 5.12 tells us that the completion
can be obtained by refining the filter, or the norm on the completion has no
usable relationship to the manner in which the norm was defined on the ori-
ginal space.

l(a). Preliminaries

Throughout this section G(S) denotes a space of scalar (real or complex)
valued functions with domain S.

1.1 DEFINITION (Convergence on a Filter) [3, p. 287, Definition 1.2]. A filter
f# in G(S) converges to a function f0 in G(S) on a filter - in S if for every
number e > 0 there is a set D in f# such that for eachfin D there is a set Fy in
with the property that If(s)-f0(s)l < e for every s FI.

The notion of convergence on a filter was originally formulated in order to
weaken the assumption of simple uniform convergence found in classical re-
suits relating convergence and continuity. The most fundamental relationship
between convergence on a filter and continuous functions is given by the fol-
lowing theorem. Its generalization is a basic result for this paper.

1.2 THEOREM [3, p. 287, Theorem 1.3]. Let fq be afilter in G(S) where S is a
topological space. Assume there is a set D in (# such that each 9 in D is continuous
at a point So ofS. Then thefilter f# converges pointwise at So to afunctionfo which
is continuous at So if and only if fq converoes tofo on thefilter ofneiohborhoods
of So.

In the improved version of this theorem the filter of neighborhoods of sois
replaced by an arbitrary filter in S. In place of functions continuous at So we
will consider the set F(S, z, ) consisting of allf Cs such that limits) fexists
for all s in {F: F }. Here F denotes the closure ofF in the z-topology and
(s) is the least upper bound of and the neighborhood filter N(s)of s. We do
not assume that limt f=f(s). Instead we associate with eachfin F(S, z, )
a new function fdefined on {F: F } by f(s)= lim() fi

1.3 THEOREM. Let f# be a filter in F(S, z, ) and let fo be a scalar valued
function defined on S. Let c denote thefilter base {{." f D}: D fg}, and assume
that every ultrafilter containing converges to a point of {F: F }. Then f9
converges to fo on if and only iffo is in F(S, z, ) and c converges to fo
uniformly on {F: F }.

Proofi Suppose that f9 does not converge to fo on the filter . Then there
exists e > 0 such that for every D in f9 there exists d D such that for every
F - there exists x F with Id(x)-fo(x)l > e. Find such a d, and let

Fa {x F: Id(x)-fo(x)l >_ e}.
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The filter base {Fa" F } contains - and is itself contained in an ultrafilter
q/. By assumption, q/converges to a point a (’] {/r. F -}. Thus

[g(a)-fo(a)[ [lim d-limfo[ [lim (d-fo)[ _> e,

and c does not converge to fo uniformly on 0 {F: F -}.
We now proceed to obtain the implication in the opposite direction. Assume

that f converges to fo on , and let s be an arbitrary point in (’] {F: F }.
Since o(s) contains o, c converges tofo on (s). Therefore, given e > 0 there
exists D f,f D and F -(s) such that

If(x) -fo(x) < el3 for all x F
and

Xvv[f(x’)-f(x")[ < e/3 for all x, e F.

The latter inequality uses the fact that f is in F(S, "c, ). It follows that

X,fo(x’)-fo(x")[ < e for all x, F.

Since the filter base {fo(E)" E -(s)} is therefore Cauchy, limt) f0 exists and
fo F(S, "c, ’). The remainder of the result is obtained by again letting e > 0
and knowing there exists D f such that for each d D there exists Fa
such that

a(x)-fo(x)l < e for all x Fd.
Let a be an arbitrary element of 0 {F: F }. Then

[if(a)-fo(a)l lim d limfol < .
(a) (a)

Thus f converges to fo uniformly on (] {F: F }.

l(b). The topology of convergence on a family of filters

Let S be a set and let G be a subspace of Cs, the space of all functions from S
into the field of complex numbers. We use V* to denote the algebraic dual of a
vector space V and V’ to denote the topological dual when V has a linear
topology. Denote by a collection of filters in S and for each " let
U(e, ) denote the set

{g e G: there exists Fo such that 10( )1 for all x Fo}.
When $ is replaced by a linear space X, denote by B(X, ) the set consisting of
all f e X* such that for every o e there exists F e such thatfis bounded
on F.

1.4 PROPOSITION [4, Proposition 1]. (i) The collection
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is a local subbasis at the zero-function for a topology on G called the O-
topology, or the :-topology when consists of a single filter ,a.

(ii) A filter in G converges to go for the -topology ifand only if it converges
to go on each filter from .

(iii) The O-topology is a linear topology for G if and only iffor each g in G
and each there exists an F in such that g is bounded on F.

(iv) The set B(X, ) is the largest linear subspace of X* on which the -topology is linear.

We observe that the concept of a -topology generalizes the more familiar
notion of a S-topology, that is, the topology of uniform convergence on a
family of sets in S [7]. The class of -topologies on a function space is very
limited. For example, under a -topology, the evaluation at any
x {U: U } is a continuous map. On the other hand, the class of -topologies is very general. The space G with the O-topology is denoted by
(G, ).

1.5 THEOREM [4, Theorem 1]. Let X be a vector swce and let G be a subspace
ofX*. Each locally convex topology on G can be obtained as a -topology, where

is a family offilters in X.

This proposition is a corollary (5.4) to the discussion of minimal filters in
Section 5. A stronger result can be proved (see Proposition 1.6, page 9 of[11]):
If is any collection of subsets of G* (not necessarily a(G*, G)-bounded), then
the -topology on G can be obtained as a O-topology for a family of filters
in X.

1.6 PROPOSITION [4, Proposition 2]. Let be a family offilters in the set S
and assume G c Cs is a locally convex space under the -topology. Then the
O-topology and the @-topology coincide if is the family of all subsets

n (e(F): F }

ofG*,formed as ranges through . Here e: S G* is the evaluation map on G
and the closures are taken in the weak topology of pointwise convergence on G.

It is convenient to list a few conventions which will be observed in the sequel.
Suppose G c Cs, is a filter in S and e: S - G* is the natural evaluation map.
Then e(F), for F , will always denote the closure, in G*, of e(F)in the weak
topology of pointwise convergence on G. Let U be a subset of V, a vector space;
then (U) will denote the linear span of U in V, and F(U)will denote the
balanced convex hull of U. With each filter 3r which generates a locally convex
topology on G we associate a pseudo-norm p defined by

p(f) sup {I f(x)l’x N {e(F)" F -}}.
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Alternatively, p(f) lim sup fl for each f in G. (Our notation involving
limits of filters follows Bourbaki. In particular, see 11.7.3 and IV.5.6 of [2].) In
Section 5, Theorem 5.3 and Lemma 5.5, it is shown that the pseudo-norm
topology and -topology coincide. We will always mean the pseudo-norm
defined above when we speak of the pseudo-norm associated with the filter -.

2. The closure of G in (X*, )
This section is devoted to a generalization of Grothendieck’s theorem. Let

the vector spaces E and H form a pairing, and let denote a collection of
a(H, E)-closed, a(H, E)-bounded, balanced and convex sets in H directed by
=. Let T: E H* denote the canonical map and let/ denote the space of all
linear functionals in H* which are a(H, E)-continuous on each member of .
We then have the fact that T(E) is dense in/ relative to the -topology on H*
(see Theorem. 16.9 of [8].) The application of this result is limited to those
topologies on E which can be obtained via uniform convergence on a family of
tr(H, E)-bounded sets in H. On the other hand, every locally convex topology on
E can be obtained via convergence on a family of filters in H (Theorem 1.5)
and we desire a theorem which is applicable in this new situation.

2.1 DEFINITION.
offilters in X.

Let X be a vector space, G a subspace ofX* and cb afamily

(i) W(X, G, )= (’: r is a filter in X, r = , for some , and
lim g exists for every g G}.

(ii) C(X, G, )= {f X*: lim f exists for each W(X, G, )}.

When t9 {} is singleton, we write C(X, G, ) for C(X, G, ). If the
O-topology is linear on G, it is also linear on C(X, G, ). In any event we will
always regard C(X, G, ) as being equipped with the O-topology. It is an
important fact, and one to which we will refer frequently in the sequel, that
C(X, G, tg) is a closed subspace of (X*, @). A formal statement follows and a
proof is contained in a small part of the argument which yielded Theorem 1.3.

2.2 PROPOSITION. Let X be a linear space with G a subset of X* and let
denote a collection offilters in X. Then C(X, G, ) is a closed subset ofX’for the
-topology.

Consider a point a G*. We denote the filter of a(G*, G)-neighborhoods of a
by ff(a). Let denote an arbitrary filter in X; -(a) denotes the least upper
bound (provided it exists) of l/(a) and the filter with base e(-) in the set of all
filters in G*.

A() {e(F)(*’): F } and ((I))= {A(): " (I)}.
We say that (I) is directed by c if for every pair of filters - and "z in (I) there
exists a filter (I) such that - r, - c . Note that when (I) is directed
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by , () is directed by =, and that if - has a filter base consisting of
balanced and convex sets, then A() is balanced and convex.

2.3 THEOREM. Let X be a vector space, G a subspace ofX* and do afamily of
filters in X inducin9 a linear topology on G. Suppose also that each filter
has a filter base consistin9 ofbalanced and convex sets, and that is directed by. Then C(X, G, dO)is the closure of G in (X*, dp).

Proof We have already observed that C(X, G, dp) is closed in (X*, ). In
order to prove that G is dense in C(X, G, d#) we first consider the case in which

{} is a singleton set. Note that (a) belongs to W(X, G, z-) for each a in
A(). Thus for.eachfe C(X, G, ), the lim-()fexists and we definer(a)=
lim.ta) f The mapf is defined only on A(-) and we must show that it can be
extended linearly over G’. The new linear map will be denoted byf. Since G’ is
the union of all scalar multiples of A(-) it is natural to define f(x)= rf(a)
where x G’ and x ra, r C, and a A() [7, p. 204, Proposition 3]. The
map j’will be single valued and homogeneous once we show that rf(a)=f(ra)
for all r C and a A() such that ra A(). The additivity offfollows after
we show that f(a+b)=f(a)+f(b) for all a, bA()such that
a + b A().

Consider the case 0 < [r with a A(). The filter r(a)is a
refinement of (ra) and thus f(ra)= limit,o)=flimto)rf= rf(a). When
[r > 1 and ra A(), the filter (ra)is a refinement of r(a) and the result
is again obtained. For the next verification consider a, b A(-) such that
a + b A(-). Observe that the filter o with a filter basis

{(F c U)+ (F2 V): F, F2 , U g’(a)and V V(b)}
is a refinement of the filter with basis

(2F 2W: F o, W 6 U(1/2(a + b))}.
Thusf(a) +f(b)= lim f= lime f f(a + b).
We turn to the general . For each a {A(): } define f(a)=

limt) f where a A(-). Since is directed by =, we may use the result just
established for singleton to show that f is singled valued and possesses a
linear extension fdefined on G’.

It is now crucial to show that f or the restriction offto A() is a(G’, G)
continuous for every - from . Consider an arbitrary a A() and let e > 0.
There is a U -(a)sueh that If(x)-f(a)l < /2 for all x in U. Assume
without harm that U is of the form F V where V is an open a(G’, G) neigh-
borhood of the point a and F ft. Let y be an arbitrary member of V A.
Note that F c V is a member of (y) and contains a point z such that
f(z) f(y) < e/2. Thus

f(y) f(a)[ <-[f(y)-f(z)l + f(z) f(a)l <

and the desired continuity is obtained.
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Choose arbitrary A(’) for some from , and let e > 0. The approxima-
tion theorem [8, p. 145, 16.8] presents us with a function g in G such that
If(x)- g(x)[ < e for all x 6 A(-). It follows that there is a filter in G con-
verging to f uniformly on every A(-). The filter also converges to f for the
-topology as is seen by applying Theorem 1.3 with the filter having basis e(’)
in the role of ’, S G*, and z a(G*, G). Thus C(X, G, ) is the closure of G
in (X*, ). 1

2.4 Remark. Let G be a locally convex Hausdorff space. Let X G’ and let
be the family of all filters in X having, for a base, a convex equicontinuous

subset of G’. The @-topology is the same as uniform convergence on the family
of convex equicontinuous sets, and thus is the original topology on G. The
linear space C(X, G, ) has now become all linear forms on G’ whose restric-
tions to equicontinuous subsets are a(G’, G)-continuous. Completeness of
C(X, G, ) is a familiar result in general topology (see Remark 1, p. 249 of [7]).
Thus we may regard 2.3 as a generalization of the Grothendieck completion
theorem, which says, in this special case, that C(X, G, ) is a completion of G.

3. Complete C(X, G, )
While C(X, G, ) yields a closure of G in X*, it may not provide a

completion. In fact, it may be impossible to find a complete linear space H such
that G c H c X* (Example 3.3). In this section we restrict our attention to
singleton = {-} and examine two situations in which C(X, G, )is
complete. The results are applied to obtain a completion of the space C[0, 1]
under the Lp norm, 1 _< p < .

3.1 THEOREM. Let (G, ) be a seminormed space, G X*, afilter in X. If
contains a linearly independent subset ofX then C(X, G, ) is complete, and

C(X, G, F()) is a completion of G. Here F(’) denotes the filter in X with a
base consisting of the balanced, convex hulls of the sets in .
Proof Let Fo - denote a linearly independent subset of X given by the

hypothesis and set H C(X, G, ’), A {e(F)" F -}. Let {h,} denote an
arbitrary Cauchy sequence in H; we will exhibit an element h H such that
h, h on o-. By Proposition 1.6 the sequence {h,} converges uniformly on A to
a a(H*, H)-continuous function ho" A C. Since A is a compact subset of the
completely regular Hausdorff space (H*, a(H*, H)) it is, in particular, a closed
subset of the Stone-Cech compactification p(H*); the Tietze extension theorem
guarantees the existence of a a(H*, H)-continuous extension h" of ho to H*.
Define, for each x Fo, h(x) (e(x)). Since F0 is linearly independent h can be
extended to a map in X*, which we will also denote by h. We claim that h, h
on . To show this we apply Theorem 1.3 with S =_H*, z a(H*, H) and with
e(-) in the role of. Note that h-.(a) h.(a)and h’(a) ho(a) for every a A.
Thus h. h" on e(-). Since contains F0 this implies that h. h on o. Since
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C(X, G, ) is closed, h C(X, G, ). The assertion about C(X, G, r()) is
now an immediate consequence of Theorem 2.3. |

Note that we do not assert that C(X, G, ) is a completion of G. The trouble
is that Theorem 2.3 only applies when the filters involved possess bases of
balanced, convex sets.

3.2 THEOREM. Let (G, ) be a normed space where G c X*, X G* and the
filter in X has a base consisting ofbalanced and convex sets. Then C(X, G, )
is complete if there exists a linear map T: X G’ with thefollowing properties"

(i) For every e > 0 and g G there exists a set F F(e, g) in such that
(rv)(g)- v(g) < e for all v F.
(ii) The filter base {TF: F } contains an equicontinuous subset of G’.

Proof. Let A {F: f }. Since G is dense in C(X, G, )it suffices to
show that an arbitrary Cauchy sequence {fn} in G has a limit in C(X, G, ).
Choose fl (G’)* such that fn-f uniformly on A. We will use fl and T to
define a candidate f for the limit off in C(X, G, )" For each x X set
f(x) =f(Tx). For convenience in applying Theorem 1.3 we may assumefhas
been defined (arbitrarily) on G*\X. Letting (S, z)= (G*, tr(G*, G))we need to
show thatf F(S, z, ) and thatfn -f, uniformly on A. Let a be an arbitrary
element of A and let q/ be an ultrafilter containing (a). We claim that
lim f=f(a). In order to prove this we need the fact that the filter base
{U TU" U q/} converges weakly to 0. To see this let e > 0 be given along
with a function g G. Choose F F(e, g)in - so that I(Tv)(g) v(v) <e for
all v F(e, g). Since - induces a linear topology on G, it contains a
tr(G*, G)-bounded set and consequently q/is a Cauchy filter. Thus there is a set

U e q/such that [u(g) v(g) < e for all pairs u, v s U . Choose U2 s q/such

that U2 s and let U U U2. If u and v belong to U,

(Tu)(g)- v(g)l (Tu)(g)- u(g) + u(g)-
<_ I(Tu)(g) u(g) / u(g) v(a)
< 2e.

This establishes the fact that the filter base {U- TU" U e q/} converges
weakly to 0. It follows that TU converges weakly to a. Since TU is, by (ii),
eventually in some multiple of A, the a(G’, G)-continuity off, on A implies that
lim f= limr fx fx (a). Thus f F(S, z, ) and, in fact, f(a) f(a) for
each a A. We can now invoke Theorem 1.3 to assert thatf,fon ’. Since
C(X, G, ) is closed, f C(X, G, ).

We close this section with an example of a vector space X and a function
space G = X* for which no complete H = X* can be found containing G as a
subspace.
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3.3 Example. Let S be the set of positive integers and let G1 G1 (S) be the
space of finite (complex) sequences. Let X (e(S) c G and regard G1 as a
space of linear functionals on X. Let G2 denote a subspace of X* complemen-
tary to G1. We will define a norm on G X* such that the resulting normed
space is incomplete. Let II1 denote the sup norm on G1, i.e.,
sup,s Ig(n)[. Let 112 denote an arbitrary norm of G2; such a norm can be
obtained via a namel basis argument. For g 6 X* define [101l Ilgl II1 / IIg2112
where g 01 + /2 is the unique decomposition of g in X* G G2. The
Cauchy sequence

h. (1, 1/2, 1/3, l/n, O, 0,...)
has no limit in (X*, I[). To see this, suppose h.---} h in X*. Let h =f+ 9
wheref G, 0 G2. Since each h. belongs to G and {h.} does not converge in
G, there exists an e > 0 such that lim sup I]h.-flJx > e. Now h.- h h.-
f- O. Hence

lim sup [Ih, hi[ lim sup (][h. -fill + 119112) > e,

a contradiction.

4. An application

Let G C[0, 1] and let X (e([0, 1])) = G* where e: [0, 1] G* denotes
the evaluation map. As usual, we regard G as a space of linear forms on X. In
this section we shall construct, for each real p, 1 _< p < , a filter in X
inducing the L-topology on C[0, 1]. We shall then show that the spaces
C(X, G, ) are complete, and thus L-completions of C[0, 1].
We will denote the conjugate index of p by p’; that is, p’= p/(p- 1) if

p (1, ) and p’= if p 1. The L,-norm on C[O, 1] is denoted by I1.
4.1 DEFINITION. Let p (1, oo); is the filter in X with base

{DR" k 1, 2,...}
where DR c X is defined by

Dk-" { ,=1
ai,ne(ti,.): n >_k, al,n, a2,n, a.,n

scalars such that [a,. 1’< n, t, +
i=1 n -To obtain we replace the above condition on the scalars a,. by

supli<, la,,.I -< 1.

4.2 Remark. Note that if
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and 0z denotes the step function defined by

then

Oz" x’-* ai n, x [.i-1 i),i 1,2,.. n,
n

IO (x) dx ( )lip’
i=1

In particular, if z Dk then 0z I1, . The mapping 0" z --* 0z is clearly linear.
It is also clear that if is any function on [0, 1] which is constant on each
interval [(i- I/n), (i/n)), i= 1, 2,..., n and satisfies I111,-< , then

for z #(t,,.)e(t,,,).
n i=1

In this case ET=, g(t,,.) <- n.
Let z (l/n) Y’2= a,,e(ti,,) and letf6 G. Then (f, z) will denote the scalar

ai,,f(t,,,).
/’/ i=1

4.3 LEMMA. Let p’ e (0, oo] and letf C[0, 1], e > 0. Suppose that N e N is
chosen so that If(x)-f(Y)l < e whenever Ix- Y < 1IN. Then

fo f(x)O(x) dx ( f, z>
whenever n >_ N and z ,7= ai,n e(ti,n) belon#s to D.

Proof. Let Ii denote the interval [(i- 1)In, i/n), i= 1, 2,..., n.

fo f(x)O(x)dx- (f, z) ft, (f(x)-f(t,,))a,,. dx
i=1 - e,ai,n

The last inequality is obtained from ’= a,. IP’_< n by means of Jensen’s
inequality [6, p. 202, 3.34]. |

4.4 LEMMA. Let p [1, oo). The and Lp topolo#ies coincide on C[0, 1].

Proof. Let e > 0 be arbitrary, and let U denote the set

{fs C[0, 11" Ilfll 1}.
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We first show that 1/2eU U(e, ), that is, that the Lctopology on C[0, 1] is
stronger than the -topology. Letfbelong to 1/2eU. Choose N sufficiently large
that Ix y[ < 1/N implies [f(x)-f(y)[ < e/2. Let n >_ N and let z l),,(p’).
By Lemma 4.3, Io* f(x)O(x)dx (f, z)[ < e/2. It follows that

fo f(x)O(x) dx

By H61der’s inequality, I f(x)O(x)dx < Ilfllll0ll, e/2. Thus
f U(e, ). For the other direction suppose that f eU. We shall show that
f U(e, -). The case where p (1, oo) is considered first. There exists 6> 0
such that [[fll p > e + 6. Since C[0, 1] is dense in Lp,[O, 1] there is a continuous
function g, I111, < I such that o f(x)g(x)dx >e + 6 (Theorem 3.14, page 68
of [10]). Since is uniformly continuous there is a positive integer N such that
whenever n > N there exists z D,,(p’) such that

IIo o= 11, < (21[fll,)- xdi.

By Lemma 4.3, there exists N2 sufficiently large such that whenever n > N2 and
z D,,(p’) we have I’of()o()a <y, >1 < /. Let N= max {N, N2}
and let n > N. Choose z D,,(p’) such that

Then

Iio 0= I1, < (2llfll)-xa.

f f(x)9(x) dx- (f, z)

+ fo f(x)Oz(x)dx (f, z)

fo f(x)(o(x) O:(x)) dx + 612.

By H61der’s inequality Ill, f(x)(o(x)- 0=(x))clxl <_ Ilfll,ll0 0:11,, < 6/2.
Consequently, I(f, z)l> e. Since every set in contains a z with this
property we see that f U(e, .p).
We now consider the case p 1. We show that f q eU impliesf U(e, ).

Choose 6 such that f IIx > e + 2 and for each positive integer n let f, denote
the function defined by f.(x)=f(ti,,) for x 6 [(i- 1)In, i/n)and i= 1, 2, n.
Choose N e N such that Ix- yl < IlN implies If(x)-f(Y)l < 612. Then
whenever n > N, it follows that

II/-/,, II, fo If(x) -/,,()1 , < 6/2.,
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We now define, for each n > N, a step function

g,(x) 1 if x [(i- 1)/n, i/n) andf,(x) _> 0,

g.(x) 1 if x [(i- 1)/n, i/n) and f.(x)< O.

Let z. (I/n) ’= g,(ti,)e(ti,.). It is clear that [Igll(R) 1,

z D.(1) and (f, z.) Xof.(x)g.(x dx I[f. []. Therefore <f, z.> [If. >
+ 36/2. Since each set in contains at least one such z., it follows that

f q U(, ).

It is now immediate from Lemmas 4.3 and Theorem 3.2 that C(X, G, ) is a
completion of G (C[0, 1], [1,). Indeed, for the map T: X G’ we may take
the map 0: z 0; conditions (i) and (ii) of 3.2 follow from Lemma 4.3 and
Remark 4.2, respectively. We observe that the filter base described in 4.1 for
does not contain a linearly independent subset of X. However, it is not difficult
to modify the sets Dk to obtain a filter " with the property, and still have the
-topology and L-topology coincide on C[0, 1]. In this case, we can obtain an
L-completion of C[0, 1] by using Theorem 3.1.

5. Best filters and optimal C(X, G, ’)
An examination of the examples of Section 3 shows that it is possible to have

many filters which give the same topology on our function spaces. This compli-
cates the situation but makes it more interesting. The space C(X, G, ) will
also change as the filter " changes. This raises questions as to the "best" filter
for a given chore and the most suitable C(X, G, ). Such questions will be
formalized by placing partial orders on both the collection of filters and the
collection of spaces of the form C(X, G, ).
Throughout this section X will be a linear space with G a linear subspace of

X*. The filters which generate topologies on G will always have a base
composed of balanced, convex subsets of X. The evaluation map of X into G*
will be denoted by the symbol e. When a linear form x in G* is evaluated at in
G we will write 9(x).

5.1 DEFINITION. Consider the collection of all filters composed of subsets of
X with a base of balanced convex sets. Two such filters, o and , will be said
to have the relation > 2 when there is a number r _> 1 such that is a
refinement of r2 {rF: F 6 2}. The filters are said to be equivalent,

2, when > and 2 > t. The reader should observe that this
partial ordering makes the collection of equivalence classes a lattice. The least
upper bound of x and is denoted by v 2 and the greatest lower bound
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by ^ 572. One representative of the class v o2 is c o2. To obtain a
representative for ^ 2 we can take the filter with base

(F(F w FE)IF , F2 }.
We now look for a greatest lower bound of all filters giving a fixed locally

convex topology on G. A candidate is defined below.

5.2 DEFINITION. A minimal filter ’ in X relative to the function space G is
determined by a subset A of G* which is balanced, convex, tr(G*, G)-closed and
bounded. The subbasis for //is all sets of the form {x e s ll o(x) -< a} where
9 e G and a > 0 satisfy o(x)l < a for all x e A. There is no need to mention A
explicitly in the notation because A 0 {e(M)IM }.

5.3 THEOREM. Let be a collection ofbalanced, convex, tr(G*, G)-closed and
bounded subsets of G*. Let be all minimal filters that can be constructedfrom
members of by means of Definition 5.2. Then the -topOlogy and the -topology coincide on G.

Proof. By Proposition 1.6, the O-topology is uniform convergence on the
collection

{{ e(M): M e ///} I/e ).
This collection coincides with . We see this by letting A be a member of and

the associated minimal filter. Observe that

{e(M) IM
{{x G* I/(x)[ < a}lg G and a > 0 satisfy [g(x) < a for all x A}.

This holds because M may be considered to be of the form

M {e-(x)lx G* and [#(x)[ < a},
and e(M)is dense in {x G*[[ #(x)[ < a} for the a(G*, G)-topology. A corol-
lary to the Separation Theorem (p. 119 of [8]) asses that the above intersec-
tions are the desired set A.

5.4 COROLLARY [4, Theorem 1, p. 711]. Every locally convex topology on G
can be represented as convergence on afamily offilters composed ofsubsets ofX.

The proof follows from 5.3 by taking to be the collection of balanced,
convex and weakly closed equicontinuous subsets of the dual.

5.5 LEMMA. O) Let be afilter in X giving a pseudo-norm on G. Then there
is a minimal filter with the same pseudo-norm.

(ii) If g is a minimal filter relative to G and gives a smaller or equal
pseudo-norm, then is a refinement of //l.
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Proof. Consider a minimal filter ’ relative to G. The proof of 5.3 showed
that {e(M) IM 6 ’} is the set A used in the definition of the minimal filter.
Part(i) is obtained by constructing the minimal filter which uses

{e(F) lF 6 -} as the set A of Definition 5.2. The pseudo-norm p for both the
filter / and -is p(f)= sup {I f(x)l Ix A} for allfin G. This is the same as
p(f) lim sups- f I= lim sup If I. For part (ii)we note that the set A
used in the definition of’ must have {e(F): F } as a subset, because of
our assumption on the relative sizes of the norms. Assume is not a
refinement of ’. Then there is an M ’ such that F\M is not empty for all F
in -. We may assume that we have a gG and a>0 such that
M- s ll _< a) where g(x)< a for all x A. Let q/be an ultrafilter
refining - and containing a set U such that U M 0. Thus I (x) > a for
any x U, but e(q/) will converge to a point of {e(F)[F } which is also a
point of A. This contradicts the requirement that a(x)l < a for any x A. |

The justification for the definition of minimal filters is in the following
proposition.

5.6 PROPOSITION. Let g be a minimal filter relative to G.

(i) If the filter gives a topology on G weaker than the g-topology then
> l.

(ii) The minimalfilter is the greatest lower bound ofallfilters giving the same
topology on G.

Proof It suffices to consider statement (i). There is a number r > 1 such
that r times the pseudo-norm for ’ gives a larger pseudo-norm than the one
obtained from -. This is because of the relative strength ofthe topologies. The
new pseudo-norm is related to the filter r’ {rMIM ’}. Note that
ry// ’. Lemma 5.5 says that " is a refinement of r///, in other words,
> r/ ’. Thus - > ’. |

5.7 LEMMA. Consider a minimal filter / relative to G and a filter in X
whose topology on G is stronger than the #-topology. The -topology need not
be linear on G. Let P be the collection ofallfilters larger than and giving the
#-topology on G. Then contains its greatest lower bound. The g.l.b, may be
taken to be a refinement of /t giving the same pseudo-norm.

5.8 COROLLARY. If and give the same topology on G, then there is a

refinement ofg which is equivalent to and has the same pseudo-norm as l.

Proofof 5.7. It is not hard to conjecture that the desired filter is equivalent
to v ’. We will proceed to show this.
Observe that a fundamental system of neighborhoods of zero for the ’-
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topology is all scalar multiples of the set

S {So G[ for every e > 0 there exists F,s c "
such that f(x)l < 1 4- e for all x c F,y}.

Assuming the natural duality between G and G*, we consider the polar S of $
in G*. We shall show that SO =_(-__{e(F) IF ’}, and S S. Let Xo SO be
arbitrary, and assume Xo n {e(F)lF }, so that there exists a convex bal-
anced set F such that Xo e(F). By the Hahn-Banach theorem, there
exists f c G such that f(x)l -< 1 for all x c e(F), and f(xo)l > 1. This is a
contradiction, and it follows that SO is a subset of the intersection. Now let
Xo c {e(F) lF c -} be arbitrary. Then for everyfin S and e > 0, f(xo) _<
1 + e, because there exists F - with f(x) < + for all x . e(F). Since e
is arbitrary, we have f(xo)l -< 1. Thus Xo so and SO {e(F)" F }. It
remains to show that S S. This will follow from the bipolar theorem (page
192 of [7]) once we have shown that S is tr(G*, G)-closed. Let

Q {fc G[ there exists Fy c - such that f(x)l < for all x c Fy};
note that S {rQlr > 1}. Thus $ is the closure of Q for the strongest locally
convex topology on G (Exercise F, page 125 of [8]). Since G* G’ for this
topology we know that the convex set S is also tr(G, G*)-closed.

Let A be the balanced, convex, tr(G*, G)-closed and bounded subset of G*
related to our minimal filter as in Definition 5.2. A fundamental system of
neighborhoods for the /-topology is all scalar multiples of A. Since the
-topology is stronger than the /-topology there exists r > 1 such that
A (1/r)S; consequently,

A rS {e(F)[F c r’}.
Let o be the filter with subbase {F M IF s r, M //}. Note that
o - v ’. We will now show that the o-topology coincides on G with the
’-topology,_thus exhibiting -o as the filter in we are seeking. We must show
that e(F c M) A for all F in r- and M in /. The definition of’ allows us
to assume that e(M) contains A in its interior and

e(M) e(X) e(M)"(*’).

Let Xo A be arbitrary and let V be a a(G*, G)-neighborhood of xo. The set
V c e(M) is also a neighborhood of Xo. Since e(F) A, there exists an x in F
such that e(x) V e(M). Thus

e(x) e(F) e(M)= e(F) e(X) e(M) e(F) e(M).
It follows that e(F M) A. |

The proof of the corollary results from showing that o is equivalent to -when the and ’-topologies coincide. By Proposition 5.6, " > ’. Thus
v/’ r- v /’ o.
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We now look at spaces of type C(X, G, ). They are of major concern
because of the important role they play in our generalization of Grothendieck’s
completion theorem (2.3). Such spaces depend on the choice of -. As we
consider refinements of the function space will become larger. This enlarging
can be effected without changing the topology on G. We again desire the "best"
C(X, G, ) for each particular purpose. The following partial order is placed
on the spaces.

5.9 DEFINITION. Consider a fixed X and G. We define C(X, G, -)>
C(X, G, ) when the second space is a linear topological subspace of the first.

The following lemma presents much of the basic structure. The space
B(X, ) was defined in Proposition 1.4.

5.10LEMMA.(i) If P/ is a minimal filter relative to G then
c(x,

(ii) If 2, then C(X, G, )=C(X, G, 2), and B(X, )=

(iii) If (G, .)= (G, ) and > , then C(X, G, -) > C(X, G, ).
(iv) Consider (G, )= (G, )with > -. Let be the collection of all

filters . such that , > and C(X, G, ,) C(X, G, ,). Then b contains its
unique (up to equivalence) 9reatest lower bound.

(v) Consider (G, x)=(G, )=(G, )with > and 33> . If
C(X, G, 3) > C(X, G, z) and , are the o.l.b.’s constructed in the proofof
(iv) relative to , then is a refinement of oivino the same pseudo-norm on
c(x,

Proof (i) It is sufficient to show that (G, #) D B(X, ///). Consider an arbi-
trary fo in B(X, /[). There is an M in ’ on which fo is bounded. We may
assume that M {x X]] f(x)l < a} for some f in G and number a > 0, or
that M is a finite intersection 7= {x 6 x If,(x)<_ at} of such sets. The
kernel offo contains the intersection of the kernels of thef’s which determine
M, becausefo is bounded on M. We conclude thatfo is a linear combination of
the fi’s (see Lemma, page 186 of [7]).

(ii) The verification is left to the reader.
(iii) The construction of the spaces is such as to make C(X, G, 2) a subset

of C(X, G, ) with the o2-topology on the first set being .stronger than the
-topology. Recall that both topologies agree on the dense subspace G. We
can obtain a fundamental system of neighborhoods at zero in C(X, G, 2) for
either topology by taking the respective closures of the closed, balanced,
convex neighborhoods of zero in G (see p. 134 of [7]). The closures are the same
because the weak topology is unchanged regardless of which topology is con-
sidered, and our sets are convex. Thus the 2-topology and -topology are
the same on C(X, G, 2) making it a linear topological subspace of
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C(X, G, ). It is concluded that C(X, G, )> C(X, G, 2) according to
Definition 5.9.

(iv) We first replace 2 by an equivalent filter giving the same pseudo-
norm on G as . To do this we let ’ be the minimal filter relative to G giving
the -pseudo-norm (5.5(i)). By 5.8 we can replace r2 by an equivalent filter
which is a refinement of’ and gives the same pseudo-norm. The symbol 2
will now denote this new filter.

Let #2 be the minimal filter relative to C(X, G, 2) giving the
-pseudo-norm (5.5(i)). Let ’ be the collection of all filters larger than
which give the 2-topology on C(X, G, ). Lemma 5.7 says that ’ contains
its g.l.b. o. The filter o can be taken as a refinement of with the same
pseudo-norm. We now have 2 > > [2.
The collection ’ contains the of statement (iv.). We must now show that
o is in in order to complete the proof. We let Gdenote the function space
C(X, G, ). From Theorem 2.3 and part (i) we can conclude that the follow-
ing three spaces are identical: C(X, G, 2), C(X, d, ) and C(X, (1, 2). The
ordering of the filters and (iii)yield C(X,,, 2)>C(X, tT, o)>
C(X, ;, ). Thus C(X, d, oo)= C(X, G, ). By using Theorem 2.3 again
we obtain C(X, (, o) C(X, G, o) because G is dense in the first space. It
follows that C(X, G, o)= C(X, G, 2) and is the g.l.b, of as well as
of ’.

(v) Assume that and have been obtained relative to in the
manner we constructed the o of part (iv). Thus 2 v’2 and
a v ’a where /’, (i 2, 3) is the minimal filter relative to C(X, G, )
giving the -pseudo-norm on G. Our hypothesis tells us that C(X, G, 2) is a
linear topological subspace of C(X, G, a). The space (G, )is dense in both
spaces with all three related pseudo-norms agreeing on G. Thus ’a gives the
same pseudo-norm on C(X, G, 2) as ’2. We can make use of 5.5 to conclude
that ’a is a refinement of ’2. Thus a v ’a is a refinement of

I
In Section 3 we were concerned with whether or not C(X, G, . )was

complete. We can broaden the question by letting’ be a refinement of and
ask when C(X, G, ") is complete. We now give a definition of a function space
completion which will serve our purpose.

5.11 DEFINITION. Consider (H, (9) and (G, ’) as two subspaces ofX* with
the fq-topology and -topology respectively. We call (H, fq) a completion of
(G, ) by functions when

(i) (H, fg)is complete,
(ii) (G, ) is a dense subspace of (H, fq) and
(iii) f > -.
The definition can be generalized to cover the case where the topology is

obtained from a family of filters.
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We now establish the relationship of the usual notion of completion to the
present one.

5.12 THEOREM. Consider a locally convex space ((3, ’). Assume (a, p) is a
subspace ofX* which is completefor the pseudo-norm p and has (G, ) as a dense
subspace. Thefollowin statements are equivalent.

(i) p)= a  omp eao of
(G, ) by functions.

(ii) The -topoloay is stronaer than the p-topology on (, p) r B(X, ).
(iii) There exists a positive real number K such that

lim sup f(x) >_ Kp(f

for allf in (a, p).
(iv) There is afilter’ > such that C(X, G, ’) is a completion of(G, )

by functions with (t, p) as a dense subspace.

In statements (i) and (iv), -’ may be taken as the t.l.b. of the filters with the
desired property. In statement (iv), C(X, G, ’) may be taken as the l.l.b. ofsuch
function spaces. All filters (except gT:) can be chosen to #ire the p-pseudo-norm on
(d, p).

Proof. We start with statement (iv) and construct a (X, G, o) which is
the required g.l.b, of such spaces. The filter o will be the g.l.b, of usable filters.

Let ’ be a minimal filter relative to ((, p) giving the p-topology (5.4 and
5.6). Let oo - v d///. Note that < ’, and thus /< o < ", where’ is
as stated in (iv). This tells us that the -topology on ( is the p-topology.
Recall that G is a dense subspace for this topology. We apply Theorem 2.3 to
see that C(X, d, o)= C(X, G, o).

Let us assume that C(X, G, ") is another space with the property .of state-
ment (iv). We use Proposition 5.6 to note that " > ’ because both give the
same topology on (. Since -" > ," > ov ’. Both filters give the same
topology on G, thus C(X, G, ") > C(X, G, o) by part (iii) of Lemma 5.10.

(i)--(iv) Since (G, -’)is dense in ((, "), their closures in (X*, ’),
C(X, G, ’) and C(X, d, ’), coincide. The implication (iv) (i) is
immediate.

(iv) (ii) Since (t, p) is a subspace of C(X, G, ’), it is a subspace of
B(X, ’), with the ’-topology giving the p-topology on ((, p). The set
B(X, ) is a linear subspace of B(X, ’) on which the ’-topology is stronger
than the -’-topology because -’> . Thus the --topology on
(d, p) B(X, ) is stronger than the p-topology.

(ii) (iv) Consider a filter d in ( converging tofo in ( on the filter . The
filter -fo converges to the zero function on and thus is eventually in
B(X, ), by definition of convergence on a filter. Thus d fo converges to 0 in
the p-topology on B(X, ) (, p), and it follows that converges tofo in the
p-topology. We conclude that the -topology on ((, p) is stronger than the
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p-topology. Let /be the minimal filter relative to ((, p) giving the p-topology.
Applying Lemma 5.7 we obtain a filter " which is the g.l.b, of all filters larger
than and ’ giving the p-topology on t.

(ii)- (iii) Recall that the pseudo-norm q related to the --topology is given
by

q(f lim sup f(x) l, f B(X, ).

Since this pseudo-norm gives a stronger topology than the pseudo-norm p, we
know there is a positive number K such that

lim sup f(x)l > Kp(f), f ((;, p) B(X, .).

If f ((, p) but fq B(X, ), the inequality holds because
lim sup f( )l oo. The implication (iii) (ii)is immediate. |

5.13 Example. Here is an example where 5.12 is not applicable. The filter "in the example cannot be refined to obtain a completion, although a very
sensible function completion exists.

Let G denote the space of polynomials on [0, 1] with the usual supremum
norm II. This space clearly has a function completion, for example, C[0, 1].
Let X (e[0, 1]) G* and regard G as a space of linear forms on X. Let G
be an algebraic complement to G in X*, so that X* G ) G is a direct sum.
Place on G1 the trivial norm q so that q(h) 0 for all h G1. Define a pseudo-
norm III III on eachf X* by setting

,Ill fill I1 11 + q(h)

wheref # + h is the unique decomposition offas an element of G G 1. Let- be the minimal filter relative to X* for this topology (Proposition 5.6). We
will show that there is no refinement -’ of for which C(X, G, ") is
complete.

Consider an arbitrary refinement " of" which induces the same topology
on G. Note that G is dense in X* for the ’-topology since it is dense for the
stronger --topology. It follows that the and " topologies coincide on X*.
Let {#} be a sequence of polynomials in G which doesn’t have a limit in G for
the supremum norm.. Suppose there exists f in X* such that #--,f in the
’-topology. Thus f= # + h, # G, h G1 and

0= lim IIIg-fill

lim IIIg g hill
lim IIg g / q(h)

lim IIg gll"

This is a contradiction.
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In looking for a completion of (G, -) by functions we must consider
refinements of -. If there is a completion of any usable kind, Theorem 5.12
asserts that it is obtained in this manner. Note that C(X, G, ") is complete
whenever -" refines an -’ for which C(X, G, ’) is complete. This is because
C(X, G, ’) is a dense subspace of C(X, G, ") (Lemma 5.10 (ii) and Theorem
2.2) and a linear space is complete when it has a complete dense subspace.
The above remarks raise the question of how large a space of type

C(X, G, ") can become. If there were maximal ones and we wanted to investi-
gate the existence of a completion, it would be best to look at these first. In fact,
these maximal spaces do exist.

5.14 THEOREM. Consider (G, ) and let 0 be the collection of all spaces
C(X, G, ) such that > and (G, )= (G, ). If 0 is given the partial
order of Definition 5.9, then it contains a maximal element.

Proof Let 0’ denote a linearly ordered subset of 0. For each C(X, G, ) in
0’, replace the filter in C(X, G, ) by the filter whose existence is established
in Lemma 5.10, (iv) and (v). Observe that the filter in the present theorem
plays the same role as the filter of the lemma. The new filters are linearly
ordered by set inclusion (Lemma 5.10 (v)). Let be the filter containing all the
new filters related to members of 0’. Then Oo refines each of these filters, and
furthermore .(G, )= (G, o)= (G, -) for each related to a member of 0.
Thus C(X, G, o) > C(X, G, )for all such filters (Lemma 5.10 (iii)). Having
exhibited an upper bound for 0’, the theorem follows from Zorn’s lemma: |

We now consider necessary conditions and sufficient conditions for (G, )
to have a completion by functions. We have seen that this is equivalent to
having a complete C(X, G, ’) with -’ > - and (G, ’).= (G, -). A readily
available necessary condition is that the dimension of GIG is less than the
dimension of X*/G where ( is the usual abstract completion. This condition is
also sufficient when the filter is minimal (Theorem 5.15 below). A specific set of
sufficient conditions is given in Theorem 5.16. This theorem is applicable to the
examples of Section 4; we didn’t need it as the filters constructed there were
themselves sufficiently fine that the spaces C(X, G, J)provided completions.
Theorems 3.1 and 3.2 are restated in the present content as Theorems 5.17 and
5.18.

5.15 THEOREM. Consider (G, //) where g is minimal relative to G. If
dim dIG < dim X*/G, where G is the abstract completion, then (G, [) has a
completion by functions.

Proof A Hamel basis argument is used to construct a complete space ((7, p)
in X*, where the p-pseudo-norm on G is the same as the /’-pseudo-norm. By
Lemma 5.10 (i), B(X, ///)= (G, k/). The present result now follows from
Theorem 5.12. |

5.16 THEOREM. Let (G, -) be a separable infinite dimensional normed space.
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If has a countable base of balanced, convex sets, then (G, ) has a completion
by functions.

Proof Denote the countable base of- by {Fi: 1, 2, ...} and assume that
Fi c Fj when < j. Let H be a dense subspace of G spanned by a countable
subset. We will use the fact that the a(H*, H)-topology on H* can be obtained
from an invariant metric d (see Theorem 1, p. 111 of [7]). Let e: X H* denote
the natural evaluation map. Note that each e(F) spans an infinite dimensional
subspace of H*, for if this subspace were finite dimensional it would be
a(n*, n)-closed and thus contain A n {e(Fj): F }. This cannot happen
because the linear span of A is the infinite dimensional space H* (see Proposi-
tion 1.6 and Proposition 3, p. 204 of [7]).

Since the set A above is a(H*, H)-compact, we can choose in each e(Fk) a
finite subset S {b, b, bk,} such that for each x in A there is a bk such that
d(x, bk) < 1/k. We will now replace each set Sk by a subset Dk e(Fk),

Dk {a, a, ank},
such that d(ak, b)< 1/k for i= 1, 2, nk and with the important property
that

(Ok" k 1, 2,...}
is linearly independent. We proceed by induction. Let V1 {0} and let
k > 2, be the linear span of D u Dz u w Dk- 1. Assume Vk is finite dimen-
sional and choose, for each 1, 2, nk, 2 (0, 1) such that d(2b, b) <
1/2k. (For simplicity of notation we omit the superscript k from the 2, b, d, r,
and ai appearing here and below.) Now choose a subset {dl, dz, dn} oi
such that its linear span intersects the linear span of Vk W S only in the origin.
This is possible because the linear span of Fk is infinite dimensional. Since the
metric topology is linear we may choose, for each i, a number r, 0 < r <
1 2, such that

d(,ib q- ridi, 2ibi) < 1/2k.

Each a 2 bi + ridi belongs to e(Fk) since this set is balanced and convex.
Now define Dk {al, a2, a,} d(ai, bi) < 1/k. Let denote the filter base, in

e(X), composed of the balanced, convex hulls of the sets { {Dk" k > m}},
m 1, 2, We will show that the -topology and the -topology coincide
on H. Here we are considering H as a space of functions with domain X and
with domain H*, respectively. We shall, in fact, show that

n {e(F)" F ,.} n {’Y: J ’’}
and invoke Proposition 1.6. Only the containment

requires proof. Let e > 0 and x {e(F): F } be arbitrary. Choose an
integer k such that 1/k < e/2. There is a b in Sk and an a Dk such that
d(x, b) < 1/k and d(b, ai) < 1/k. Thus d(x, a) < e, and it follows that

N J
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Let ’ denote the filter in X with base

{V e-X(J): F , J },

-’ being a refinement of . Note that o has e(’) as a filter base. Thus the
’-topology and At-topology coincide on H.
By Theorem 3.1, C(e(X), H, ) is complete, which is the same as

C(X, H, ’)’s being complete. The space H is dense in G for both the -topology and ’-topology. The topologies coincide on H. Because the
’-topology is weaker they must also coincide on G. By Theorem 2.3 we can
now conclude that C(X, G, ’)= C(X, H, ’) is the desired completion of
(G, -) by functions. |

5.17 THEOREM. If the filter from (G, ) has a refinement which contains a
linearly independent set and 9ives the original topology on G, then (G, ) has a
completion by functions.

5.18 THEOREM. The linear topolooical space (G, ) has a completion by
functions if there is a filter ’ > (’ havin9 a base of balanced convex sets)
and a linear map T" X - G’ with the properties"

(i) For every e > 0 and g G there exists a set F F(e, g) in ’ such that
I(Tv)(9) v(9) < e for all v F.

(ii) The filter base {T(F)" F ’} contains an equicontinuous subset of G’.
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