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THE DISTRIBUTION OF THE GALOIS GROUPS
OF INTEGRAL POLYNOMIALS

BY

S. D. CoEN

1. Introduction and notation

Using the large sieve in an argument of van der Waerden [18], P. X.
Gallagher [12] has shown that the number E,(N) of polynomials

F(X) X + a,_lX’-1 +. + ao
with integer coefficients and height (= whose
Galois group over Q is less than the symmetric group is <<N’’-I/:z log N,
where the implied constant depends only on n. Indeed, a refinement of the
basic argument yields a slight improvement to En(N)<< N"-I/:log-’N,
where 0 < 3’ 1/2,rrn as n---. For n 3 see [20].

In this paper we suppose that some of the coefficients ai are fixed and that
only members of a given set of s(_>l) coefficients are allowed to vary.
Provided only that s-> 2 and with the obvious exceptions mentioned below
we show that the number of such polynomials of height <-N which have
Galois group less than the symmetric group is <<Ns-t/2 log N. The excep-
tional cases occur when all the polynomials concerned are divisible by X or
belong to Z[Xr] for some r > 1. However even in these cases or in the case
s 1 we prove that all but <<Ns-/:z log N such polynomials have the same
Galois group (which we describe explicitly when s >-2). We draw particular
attention to the fact that, if s-> 2, then the above estimates are uniform in F
of given degree, i.e. do not depend on the fixed ai. If s 1, the implied
constant depends on F.
By way of comparison, it follows from results stated by Fried [11] in the

case s 1 that the number of merely reducible polynomials F of height <-N
with one varying coefficient is <<N/’. See also D6rge [7] for further
estimates, generally inferior, but not as dependent on the fixed coefficients.

In the sequel we shall make some modifications to the situation as
described. In particular, our method requires us to examine Galois groups
over a normal extension of Q rather than Q itself. Accordingly, we shall
assume that the coefficients are integers in an algebraic number field k and
consider Galois groups over K, where K/k is a finite normal extension. Next,
let us say that any polynomial f(X) is primitive if f(X) g(Xr) for any
polynomial g and any r> 1. Then instead of considering an arbitrary
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136 s.D. COHEN

polynomial of fixed degree n, we shall, equivalently, assume that F is
primitive of degree n and look at F(Xr) for arbitrary r-> 1. Finally we shall
not restrict ourselves to monic polynomials.

Notation. For convenience, we list most of the notation to be used here.
k,K algebraic number fields with K[k normal.
E,L general fields.
G(L/E) (where E_ L) the Galois group of L over E.
Zk integers o k.
la] (where a Zk) height of a

lal (where a (a l, as) Z) maxl,_<s

Zk(N) the set of integers in k of height -<N if k Q; in general, any
maximal subset whose members are non-associate or differ by a root

unity.
;3 prime ideals in k; K.

kq;k-q (where q is a prime power) the finite field of order q; its

algebraic closure.
ko the residue class field of 0 in k (thus
f a polynomial of degree n in L[X] (where L is a specified field),

possibly involving a set of parameters A {ao,...,
ft;, (where t is an ordered set of s indeterminates and aLs) ]: as

above but in L(t)[X]; the same polynomial under the specialisation t---at. (If
s 1, write ft ;f.)

F;Ft (where tA) the particular polynomial Y.’_oaX; the same
polynomial with the members of t regarded as indeterminates.
/(T,) (where T_A, L) the set of polynomials [ obtained by

letting the members of T vary in .
[ the polynomial f(X’).

([, r, L); r/= 1() the least divisor of r such that ao/an is an
r/-th power in L, where [(X)= a,,X +... + (-1)"ao; (ao/a.)/

1-lr:/ (x); Mr/k (Ft, x) the set of all 0 with 10[ <- x which split completely
in K; the subset for which 01ao or such that Ft (mod 0) is not primitive of
degree n.

x, x (Xl,.. x,) a root and the set of roots o ]:(X) 0 (or ft(X) 0).
(No confusion could arise with the use of x in II/k(x), etc.)

y, y= (y,..., y,) a root and a set of n roots of [(X’)=0 such that
y= x, i=l,...,n.

G([, L) the Galois group of f over L regarded as a group of permuta-
tions of x.

nr(f, L) G(f(), L(x)). (Thus G(f, L)- G(f(), L)/H(f, L).)
D(f) the discriminant of f= a2n-2I-[(x-x), where a is the leading

coefficient of f.
Sn, An the symmetric and alternating groups of order n.

C a cyclic group of order d., a primitive rth root o unity (in the appropriate field).
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2. Statement of main results

Let k be an algebraic number field and K a finite, normal extension
(possibly with K k). Our principal result concerns the distribution of the
Galois groups over K of polynomials in Zk[X] for which a prescribed set of
coefficients vary in Zk(N).

THEOREM 1. Let Ft(X)(=.,=ootiXi) be a primitive polynomial in
Zk[t, X], where t is a prescribed subset of {ao, an} of cardinality s >- 1 and
aoan O. Let r >- 1 and G(Fr), K(t)). Then the number of polynomials in
F(t, Zk(N)) for which G(F(r)/K) is not isomorphic to is <<Ns-1/2 log N.
Here, if s >-2 and provided only that

IM/(F,, N/=) -< 1/21n, (N/=)I, (1)

the implied constant depends only on rn and K. If s 1, the implied constant
is independent of N.

Further, if s >- 2, ,5 ,5(Ft, r, K()) and e [K(): K] (thus e b(r)), then
is a group of order n!rn-Se which is such that

c/g Sn x G(K(,)/K), where C’- x C.

Notes. (i) Of course, IF(t, ZQ(N)) (2N+ 1) while, in general,

IF(t, Zk(N)[-- ckN as N---o.

(ii) Trivially, 8(F,, r, K())= r if ao or an t.
(iii) In fact, 3 G(F[,), K(t’)), where t’ is obtained from t by adding the

non-zero members of {ao,..., a,}\t (but excluding ao and an if they
both t).

(iv) The restriction (1) is very mild. In particular, if only polynomials of
height -<N are being considered it can be omitted since in that case

IM:/k (F,, N/) << log N.

(v) If s=l, the group , in general, depends on F even if r= 1.
However, in many cases it can be shown, using a test such as Lemma 8
below, that, if F is primitive, then G(F, K(t))= S,. In this connection,
Hering [14] has shown that, if F is a primitive trinomial of the form
anX + auX + ao, where is ao, au or an, then G(Ft, Q(t))= Sn.

(vi) In the case s-> 2, r 1 the estimate for the number of exceptional
polynomials in Theorem 1 can be improved to <<Ns-1/2 log-N, where

7 >0, as in [12]. We omit the details.
When s 1, Theorem 1 is a special case of the following more general

result in which f(X) is an arbitrary polynomial in Zk[t, X], not necessarily
irreducible.

THEOREM 2. Let f,(X)Z[t,X]. Then the number of a in Z(N) for
which G(f, K) G(.f, K(t)) is Ofi.rc(N/2 log N).
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3. Preliminary results

We need a version of the large sieve in Z:. For each prime ideal 0 of k, let
W(p) be a subset of ZSk/OZ (= k) of cardinality to(p) so that 0-< to(0)-<lOl.
For each at eZ let P(at, x) denote the number of 0 with 101 -< x for which at

(mod 0)e W(0) and put P(x) lolx t(0)/10l s. The following result extends
Lemma A of [12] to general algebraic number fields.

LEMMA 1. For N >- x2, we have ,lalN (P(at, x) P(x))2 << Nsp(x), where
the implied constant depends only on k and s.

Proof. A combination of the method of Lemma A of [12] with that used,
for example, by Wilson [19] in proving the general large sieve inequality
gives the result. Accordingly, we indicate only a brief outline of the proof.
For any 0 in k and /in Z/0Z, put

S(’l/O) c(at)e[(Trat /*)/p],

where the c(at) are complex numbers, at./ is the inner product in Z, Tr
denotes the trace taken over Q, e(x)= exp (2rix/p) and /* ( Z) is defined
by /* =/(mod 0), /* =0 (mod P/O), P being the rational prime divisible by
0. Then, with reference to [19], as in 7 but applying the results of 4 with
S(x) an exponential form in sn variables, we obtain

in which / is summed over ZSk/oZ. Now apply the argument of [12, p.
93-94] with tko(at) the characteristic function of W(0) (so that

say) and

to get the result.

bo(at) ’, c(/)e[(Trat /*)/p],

c(a) I /o
c(l)e[(Tra /*)/p]

We now describe the situation which prevails for the principal application
of the lemma. First we define a concept which was used in [6] and [12]. If a
polynomial f in ’L[X] of degree n factorises into a product of distinct,
irreducible factors in L[X], there being hi factors of degree i, i=
1, 2,... (Y. i,X n), we shall say that is of splitting type or has (factor) cycle
pattern h =(1xl, 2x2,...) (o degree n), where we usually shall omit those
for which hi 0. We write this as h () . For example, if ]: splits completely
in L, then h0)= (1").
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Let t= (h,..., ts) and ft(X) be a square-free polynomial in Zk[t, X] so
that D(/:t) # 0. Let at k and O be such that f,,(X) (mod O) also has degree n
and O D(f). Then the splitting type of f,(X) in k[X] of degree n is
defined. Call it hp(f,). Clearly ho(f) depends only on at (mod p) and can be
interpreted as the splitting type (in the obvious sense) of O in k(x) where
f,(x) 0. Indeed, if K/k is a normal extension and p splits completely in K
with [p, then, since K k, )to(f,,) is also the splitting type of in K(x).
Moreover, the incidence of a given splitting type h among h(f,,) as at and p
vary depends on G(ft, ko(t)) and G(f,,, K) respectively. Our method involves
the former dependence (in the shape of Lemma 2 below) together with an
application of Lemma 1 with, for any h,

at Z,/Z,, h(f,,) is defined and equals h}
Wx()= if splits completely in K, (2)

b otherwise.

The next result is the (ebotar.v density theory for function fields as given
in [6, Prop A.3]. (See also [3], [4], [10].)

LEMMA 2. Let ft(X)kq[t,X] have splitting field E over kq(t) where
El kq t) is galois. Put

G* G*(ft, kq(t) {tr G(ft, kq(t))" kq f’l E kq},
where E is the fixed field of tr. Let h be a splitting type or cycle pattern
degree n and let G*x denote the subset of G* comprising elements with cycle
pattern h. Then the number of a in kq for which f, has splitting type h (or,
equivalently, for which the Frobenius class

is a subset of G’x) is

([ l/l o*l)q /
where the implied constant depends only on the degree and genus of E/kq (t).

Note. The genus if E/kq(t) is bounded by a constant depending on the
total degree of ft(X).
The reader should observe that G* (and not G) occurs in Lemma 2. This

is a complicating factor which particularly causes difficulties when s 1 or
when r > 1. Moreover, our desire to achieve as uniform a result as possible
(when s-> 2) also compels us to take extra care.

4. The case s = 1

We require two lemmas before embarking on the proof of Theorem 2.
The first enables us to replace K by K, its algebraic closure in L{t} K(t, x),
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thus ensuring that L{t}/K(t) is a regular extension and making for an easier
application of Lemma 2.

LEMMA 3. Let L{t} be the splitting field of a square-free polynomial [t(X)
in Zr[t], where K is an algebraic number field (or, more generally, any field
of characteristic 0). Denote the algebraic closure of K in L{t} by_. K and
suppose that the specialisation t-,a takes L{t} onto L{a}. Then K_L{a}
except [or a number o values of a bounded by a constant depending only on
the total degree o[

Proof. Let xl,..., xn be the roots of ft(X)= 0. By a standard argument
based on the bounded number of fields between K(t) and K(t, xl, x2), it
ollows that, or some bounded integer a, K(t, x, x2) K(t, x + aXE). An
induction argument shows that L{t}= K(t,x)= K(t, z), where z=__ aixi
for certain bounded integers ai. Let g be the minimal polynomial of z over
K(t). Then g is irreducible o bounded degree (= m, say) and height and
hence D(g) has bounded degree in t. Suppose that (t-a),(D(g) (so that
t-a is unramified in L{t} and the leading coefficient of g does not vanish
when t=a). Then (see e.g. [8, III 1.4]), the conjugates Zl,..., z,, of z
have distinct Puiseux expansions

z,(t) z, ,j(t-a), i= 1,..., m, , K([3,o).
i=O

Specialising t--->a and noting that the z(a) are distinct members of L{a}
since t-a is unramified, we see that the /30 ( L{a}) are not fixed by any
non-identical automorphism in G(K/K). Hence KK(/3x0,...,/3,,o)=
L{a}.
A special case of the next lemma occurs in [1]. See also [11].

LEMMA 4. In the situation of Lemma 3, suppose that L{t}/K(t) is a regular
extension (so that K K). Then, for almost all in K,

G(ft, K(t)) G(ft, K(t)).

Proof. Suppose that D(f3 is non-zero (mod) (which is the case for
almost all ). Then, by Galois theory there exists z L{t} such that

G(f, K(t))- G(L{t}/K(t, z)).
Also suppose that z has minimal polynomial g, over K(t) of degree > 1.
Then gt(X) is absolutely irreducible in K(t, X) but is reducible in K(t, X).
By Noether’s lemma ([15, III Prop 7] or [11, Lemma 11]) this can happen
for only finitely many .

Note. It would be useful to apply a quantitative version of Noether’s
lemma. This would yield an estimate for the number of exceptional f in
Theorem 2 involving a constant dependent only on the total degree and
height of f, and on K.
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Proof of Theorem 2. It is obvious that ft may be assumed to be square-
free. Let k be the algebraic closure of k in L{t}, the sp_litting field of ft over
k(t). Suppose, in fact that the theorem is true when k_ K. We could then
derive the general case as follows. Put K Kk. Then the number of a in
Zk(N) for which G(f/g,) G(f/I(t)) is <<Na/2 log N. Moreover, by Lemma
3, for almost all a, K

_
KL{a}. Ap._art from these exceptional a, it is clear

that G(f,/K) G(f/K(t)) since G(K/K) G(K(t)/K(t)).
It suffices therefore to assume that kK (= K). Thus KL{t}/K(t) is a

regular extension. We apply Lemma 1 with s 1 and Wx(p) given by (2)
with h (1"). By the prime ideal theorem in K{a},

Px (a, x)" m- IIIr/k(x)l (dm)-l(x/log x), (3)

where m G(f, K) and d [K" k].
We now estimate Px (x). Suppose that 0 splits completely in K and that

IP. By Lemma 4, for almost all O, G([, K(t)) G(, K(t) G([t, kv(t)).
Apart from these exceptional 0, we have, by Lemma 2,

tox () m-lq + 0(ql/2), where q I1 and m IG(f, K(t) I.
Hence, by the prime ideal theorem

Px (x)--. (md)-l(x/log x), (4)

since lolx [01-1/2<< xl/2" Suppose a is such that m < m. Combining (3) and
(4) we have for x N1/2 and N sufficiently large

Px (a, N1/2) Px (N1/2) > (2 dnl)-lPx (N1/2), (5)

since m--< n!. But Lemma 1 and (4) imply that (5) can hold for at most
<<N1/2 log N values of a and the theorem follows.

Note. If K=Q and G(f,Q(t)) is known to be S,, we could have
proceeded as in [12, p. 98] making our appeal to the prime ideal theorem
unnecessary. However, we shall require this alternative approach in 5 for
s_>2.

5. The case s _> 2

We begin with two lemmas whose proofs are deferred to 6-8. The first,
a purely field-theoretical result, is included to deal with the case r > 1 and
involves a general field L which, for convenience, is assumed to contain all
r-th roots of unity for a given r. The reader is referred to 1 for details of
the notation.

LEMMA 5. Let F(X) (= Y,7--o aiXi) in L[X], where L(r) L and aoa, # O,
be such that G(F, L)= S,. Suppose that char L ’ r and that 8(F, r, L),

This step can only be justified on the Generalized Riemann Hypothesis. However, the
theorem is true unconditionally; an effective version should appear in a future paper.
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ri ri ). Then, either

c- x GO) H,(I. L) C;’- x C/
if is odd or v/riD(F) : L,

if iS is even and /riD(F) L,

or
(ii) for some prime p r, if F(P)(y) 0, then Hp(F, L(y)) is trivial.

LEMMA 6. Suppose that char kq > nr where n >-2. Let "r ={v, u,...} be a
subset of {0, 1,..., n} of cardinality s >-2 written in increasing order (so that
0 <- v < u <- n) and such that - {v, n} with v > O. Put

{X+X if v>0
f(X)= c,X’+aog(X), where g(X)=

,=o 1 if v=0

and assume that, if t {ai, e r}, then fi is primitive of degree n in kq[t, X].
Then for all but On(qs-3/2) polynomials ft in ft(t-{ao}, kq) (where t= a), the
following properties hold"

(i) G(f,, kq ( t)_) S,
(ii) D(f,) in kq(t) has a non-repeated linear factors t;

(iii) for all primes pit, nff,, f(t, y)) is non-trivial.

Note. If v >0, our proof shows that actually (i)-(iii) hold with at most
O,(q-2) exceptions.

Proof of Theorem 1 (s >- 2).We may suppose that, if a, t, then so does ao,
for otherwise we could consider X"F(1/X). Assume first of all that K(r)=
K. The result is then trivial if n=l and 4,r. If n=l and 4Ir, then
G(x- a, K)= 3 unless a or -4a is a d-th power, where d r, d > 1 and the
result is clear. So assume n > 1. We write the subscripts of the members of t
as,r in Lemma 6.
By Lemma 5, G(F, K) d for F in F(t, Zk) unless one of the following

(I)-(IV) holds:
(I) G(F, K) S.;

(II) ,K, where n ri(S(F, r, K));
(III) for some p r, Hp(F, K(y)) is trivial for some y with F(P(y)= 0;
(IV) ao or a, t and (F, r, K) < r.
Now (IV) occurs for at most

0(Ns-1 ;. N/a) O,,(N-/u)
d>l

polynomials F in F(t, Z(N)) and so can be disregarded. The incidence of
cases (I)-(III) will be estimated by three distinct applications of Lemma 1
with x N/u. We may describe the various sets W(O) as follows. Put

1/21-I:/ (N \ (MK/k (Ft, N/2) 1,3 {p, char ko <- nr}).
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Suppose p e. Then, for any cycle pattern A of degree n, define

w(0)(= w(0)) (a zy0z: x(i.) x). (8)

Similarly, put

W2(O) {: rID(F,,,) (mod 0) is not a square in ko}, (9)

where r(8(F,,, r, K)), recalling that K= kp so that kp. Finally, for
any prime p r, take the ft of 3 to be Ft and Fp) in turn and define

W3(p) (= W(3P)(p)) {a: A,(F,,,) (1") but h0(F()) (1x 1, pXp),

where l<hp<n-1 and hl+pho=pn}. (10)

To complete these definitions, let W(p)= k if p 5e. The following observa-
tion is important. With f as in Lemma 6 and p e we have f(t, ko) F(t, k)
so that (8)-(10) are unaltered if we replace F by f in them. We may
therefore use Lemma 6 to evaluate oi(p), i= 1, 2, 3 (defined as in 3), for
each p

In particular, by Lemma 6(i) and Lemma 2 we have

o.,() c,q + (11)

where q=lol and
Next, to estimate o(), consider any [ [(t-{c}, k) (t= c) which is

not one of the exceptions to Lemma 6. By Lemma 6(ii), if rl rl((, r, k)),
then rlD(f) is not a perfect square in k(). Hence, if we now regard a as an
element of/. (/%) and rl rl((f., r, k.)), the number of u in/. for which
lD(f,,,o) is not a square is 1/2q+ 0,(ql/2), by a result of Perel’muter [16]. It
follows by Lemma 6 that

,o(o) 1/2q* + o.(qs-’=), o e (12)

To complete this stage we estimate oP)(O). This is more difficult. Again
consider any , f,(t-{av}, ko) which is not an exception to Lemma 6. Taken
together, all three conclusions of Lemma 6 imply that, in Lemma 5, (6) must
hold, i.e. that

where

while

H(f,, -(t))= c$-’ c,,

’= (f,, p, k,,)=
if v 0 (so certainly if n 2),
if v 0,

H,,(f,, k,,(t))= C,-’ x C,,,

(13)

(14)
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where

8"= 8(ft, p, kp)=
1 if v > 0 and ((-1)"Cto/a,)
p otherwise.

Now, if fP(y)= 0, (13) and (14) clearly imply that

Hp(ft, k(t, y))= C-2x C8, and Hp(f, k(t, y))= C-2x C8,,.

By [4, Lemma 1] and invoking the notation of Lemma 2, we therefore have

IHp(f,, kp(t, y)I"l G*(f,,
n-1

(p- 1)p"-
>1.

Observe that a non-identical member of H,(f, k(t, y), has cycle pattern
(lX, px), where 1--Xo--n-1, yet is trivial when restricted to k(t, ). We
may conclude from Lemma 2 and (15) that

if v 0,
if v > 0 and ((-1)"ao/a)1/ kp,
otherwise

(5)

to(3P)(p) > (n! p,,)-lqS + Onr(qS-1/2). (16)

We are now almost ready to apply Lemma 1. For each i= 1, 2, 3 define
P,(ot, x), P,(x) as in the lemma. In each case, by (11), (12), (16), we have

P, (N1/2) > c Isel + R, (17)

where c (nl p")- and ]RI , N, IOI-’== .(NTM) Moreover, our
hypothesis (1) implies that IH / (N )1 O(1). Employing these esti-
mates in (17) together with the prime ideal theorem, we obtain

P(N/2) >cd-(N/2/log N), d [K: k], (18)

provided N> No(K, nr).
We deduce from (18) by Lemma 1 that, for i= 1, 2, 3, P(e, N1/2) 0 for

at most N 1/2 log N values of e with lal--< N. In particular, for each , this is
true for P. The argument on p. 98 of [12] yields the conclusion that
possibility (I) above occurs for at most N-1/2 log N members of F(t, Zk (N)).
Next, taking i=2, note that P2(ot, N1/2)#O implies that, for some p,
r(,(F,,, r, K))D(F,,) is not a square in K and so, a priori, not a square in K.
Thus (II) does not hold. Similarly, if Pa(ot, N/2) 0 then (III) is not the case.
This proves the theorem in the case K K(,).
The deduction of the general case is not difficult. Put K1 K(,). By the

above and since K1 is determined by K and r, we have that with
OK,m(Ns-l log N) exceptions, all members F of F(t, Zk(N)) satisfy

G(F, K)= S, and H(F, K)= C,"-1 x C,
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where 6 6(Ft, r, K1). Since K1 is contained in the splitting field of F
over K, the theorem follows.

6. Proof of Lemma 5

Clearly we can assume that r > 1 and also that n > 1 for then (ii) holds.
First note that since L(r) L, for any 0 L a subfield of L(O1/) has the
form L(Od/) where d lr. The first part of the proo[ is based on an argument
of Richards [17]. As defined in 1, let F(X)=(X-xl)... (X-x,), where
y= xi, i= 1,..., n. Observe that (y... y,)d L if and only if ld.
Now, if the conclusion (6) of the lemma holds then, for each m 0,..., n

we have

1 m=0,

G(L(x, Yl, y,,)/L(x)) C7’-, 1 -< m < n, (19)

C"- x C, m=n.

Suppose, in fact, that (6) is false and fix m (0<_m-<n-1) as the largest
integer for which (19) is true. Then the fact that L()= L means that

d L(x,y,.. y,)Ym+l

for some d r with d < r. Indeed, if m n- 1, then d with d < . Assume
for the time being that m >0. Let denote any integral vector (],...,
where 0-<]i -< r-1, i= 1,..., m and YJ the typical monomial y{1.., y. By
(19), the set of all YJ forms a basis of the extension L(x, Yl,..., y,,)/L(x).
Hence there exist h(x)e L(x) such that

ye,+ . hl(x). (20)

Suppose |’ |" are such that hr(x)hr,(x) 0 with ][ ], say. Now (19) implies
that there exists an automorphism G(L(y)/L) such that

(Yl) Yl, (Yi) Yi, 2,..., m, (x,) x,, m <i n,

where , a primitive rth root of unity. In particular, (Y+I)= ey+l for
some integer e. Applying to (20) we get

0 ey+-(y+)
(e ’)hrYr
+( ;)hr,Yr’ + (terms in Y for each i’, i"). (21)

However, -’, and -; are not both 0; hence (21) contradicts the fact
that the Y form a basis of L(x, y,..., y)/L(x). Consequently, there exists
such that

+ h(x)
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and hence that
xm+l (22)

From (22) we deduce the existence of integers d1,..., d, not all 0 with
O<-di<-r-1 (i=l,...,n-1),0-<d,<-6-1 such that

x xa" Lr(x)= {rth powers in L(x)} (23)

Further (23) remains valid when m 0.
Suppose that in (23) not all the d’s are equal with dl # d2, say. Since

G(L(x)/L) S,, this group contains the transposition (r (xax2). Application
of o- to (23) yields

(x/x2)’-a Lr(x), 0-< dx, d2-< r- 1. (24)

If follows from (24) that for some u lr with u < r we have (xx/xa)" L(x).
Since G(L(x)/L) is certainly 2-transitive, we deduce that (xi/x) L(x) for
any pair of roots x, xr Hence (y/y)eL(x) and (ii) holds for any prime
p (r/u).

It remains to discuss the case in which dl d, (<8) in (23). In fact,
if d is now the least positive integer for which (x... x,)e eLf(x), then
certainly diS. Equivalently, we have (Yl"’" Y,)dL(x) and so /3=
((-1)’to/t,)a/ e L(x)L. By Galois theory

(G(L(x)IL))I(G(L(x)/L([3))) G(L([3)/L)

where 6/d>-2. But G(L(x)/L= S, has A, as its commutator subgroup
whence G(L(x)/L)= A,. On the other hand G(L(x)/L(x/D(F)))= A,. Ac-
cordingly, 2d and L(ffD(F))= L(t) from which it follows easily that
x/D(F)/[3 L and hence that D(F)= r/() (square in L) which implies that
(7) holds. This completes the proof.

7. Some results on algebraically closed fields

Our goal in this section is to provide some results concerning the
algebraically closed field kq(t) necessary for a proof of Lemma 6. In fact, we
shall consider the general situation in which L is an arbitrary algebraically
closed field and n is an integer with char L> n. (This restriction on
characteristic could easily be weakened but it suffices for our purpose and
facilitates the discussion.) The work is related to material in [1], [5] and [13].

It is convenient to use a concept of the cycle pattern or splitting type of a
polynomial differing from that introduced in 3. Suppose that the polyno-
mial f(X) of degree n in L[X] has a prime decomposition involving /xi
(linear) factors of multiplicity for each i= 1, 2, 3,... so that Y i/x n. We
shall say that f has (repeated) cycle pattern/x (1, 2,...) of degree n and
write/x(f) =/x. Indeed, even if g(X) (0) L[X] has degree d < n, introduce
an element and define /x(g) to be the cycle pattern of (X-)"-eg(X).
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LEMMA 7. Let g, h be relatively prime polynomials in L[X] with n
deg g > deg h >- O. Put ]’t g + th and [ora L’ L U{} extend the meaning
o]: ]’, to L’ by defining ]’oo h. Then each a L’ induces a permutation tr in
G(]:t, L(t)) having cycle pattern IX(I:,,). Moreover, ]:or any t in L’, G(]t, L(t))
can be generated by the set o’ try, a [3.

Pro@ At various points this involves the theory of local fields for which
we refer to [2, Chapter 1].
For a L let P denote the prime divisor of L(t) corresponding to t-a

and let Po be the "infinite" prime. Suppose/t(x)- 0 and let {ei}, say, be the
set of ramification numbers (included in accordance with their multiplicity)
of the ramified primes in L(x). Since all ramification is tame and L(x) has
genus 0, it follows from the Hurwitz genus formula that

(ei- 1)= degree of the different of L(x)= 2n- 2.

On the other hand t-a =-L(x)/h(x) (a L) and so P is ramified to at
least the extent that f,,(x) has repeated factors in L[x]. Similarly, the
ramification of Poo is at least as great as the cycle pattern of/oo(x) h(x).
Moreover, if {el} is the set of all multiplicities of the factors (including
infinite factors) in any f,(a L’), then, by considering the formal derivative
(g/h)’ and taking into account the multiplicity of x-% we see that

(el- 1) (n + deg g 1) + (n deg g 1) 2n 2.

Accordingly, the ramification of P in L(x) can be read off from /x(]’).
Furthermore, if L,(t) denotes the P,-adic completion of L(t) (the field of
formal power series in t-a or 1/t if a ) then h(ft) the splitting type (in
the original sense) of ft over L, (t) is the same as /x(f).
Next consider the extension L(x), where x is a complete set of roots of

f(X)- 0. Then P is ramified in L(x) if and only if it is ramified in L(x). Let
be a ramified prime in L(x) such that divides P, in L(t) and denote by

L(x) the -adic completion of L(x). Then the ramification number of
over L(t) is given by e =[L(x): L,(t)] and, in fact, L,(x)=L,(t, (t-a)/e).
Thus G(L, (x)/L,(t)) is cyclic being generated by try: (t-a)lie -- e(t-a)/.Obviously, tr acting on the roots of ft over L,(t) has cycle pattern
)t(ft) (=/x(f) as shown above). Since clearly G(ft, L,,(t)) can be regarded as
a subgroup of G(f, L(t)), the existence of tr is established.
For the remaining part, without loss of generality, we set/3 o and let H

be the subgroup of G(f,, L(t)) generated by the decomposition groups of all
the ramified primes of L(x) not dividing P, i.e. H is generated by
{try, a /3}. Let E be the fixed field of H. The only prime of L(t) which can
ramify in E/L(t) is Poo. By the Hurwitz formula, 2gv.-2=-2m+degE,



148 s.D. COHEN

where m =[E: L(t)] and gt and v. are the genus and different of E. Let
el,..., e, be the ramification numbers of all primes of E dividing
Since all ramification is tame

m-u= (ei -1) deg E 2gE 2 + 2m.
i=1

Therefore m + u 2- 2gv.. Since gn -> 0 then m u 1. Hence E L(t) and
the proof is complete.
The above proof has been adapted from the work of Hayes [13]. Alterna-

tively, we could have derived the lemma along the lines of [1] but employing
the abstract Riemann surface for ft(x) over L(x) and Puiseux expansions, cf.
[9]-[11].
For the next two lemmas we require a definition. A polynomial f(X)e

L[X] will be called simple if it is square-free apart, possibly, from a linear
factor of multiplicity 2, i.e. if /x(f)= (1") or (1"-2, 2). (In [5], in place of
simple the term normal was used.)

LEMMA 8. In the situation of Lemma 7, suppose f is simple for all (finite)
a L. Then G(f, L(t)) S,, and D(ft) is square-free.

Proof. By Lemma 7 with /3 =, G(f, L(t)) is generated by transposi-
tions. It is, of course, a transitive group and consequently must be S,. The
rest is clear since any prime in L(x) can have ramification number at most 2.

The main application of the next lemma (which is a modification of results
in [5]) is to show that under certain conditions G(Ft, L(t))=Sn. We define a
concept used in its statement. A set of polynomials go,..., gs (s>_ 1) in
L[X] is totally composite if there exist polynomials ho,..., hs e L[X] with
d maxi deg hi > 1 and a rational function tb (tkl/tk2), where the, b2 e L[X]
with max (deg the, deg tk2)> 1, such that gi tb2hi(tb), i= 0,..., s.

LEMMA 9. Let go,..., gs (s--> 2) be a set of relatively prime polynomials in
L[X], linearly independent over L, not totally composite and with

n max deg g > deg g -> 0.

Assume that the highest common factor (go-/3og, gs--/3s-go) is simple
for all 1=(/3o,...,

_
) e L except possibly I]=0. Then for all

(, a_) not belonging to a certain set of hyperplanes in L- (bounded in
number by a constant dependent only on n), the polynomial

f (go + agl +" + a_g_)+ ags

is simple if a eL\{0} while fo/g (where g (go,..., g-l)) is simple, indeed
square-free, if et is not also on a curve of bounded degree.

Proof. Basically the proof is a straightforward modification of Lemmas 6
and 7 of [5] with the simplification here that char L > n. The fact that g need
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not be simple means only that we may have to exclude from consideration
throughout values of x for which gi(x)=0 simultaneously for all i=
0,..., s- 1. Since (g, gs)= 1 this only affects fo. Observing that all the error
terms O(qs-2) in [5] arose from consideration of t on a bounded number of
hyperplanes, we obtain the results on simplicity.

Further fo/g is square-free unless D(fo/g) 0. But when (x is regarded as a
set of indeterminates fo/g is clearly square-free so that D(fo/g)= 0 deter-
mines a curve as required.

8. Proof of Lemma 6

Assume that char kq > nr throughout. We write L for kq and use the
results of 7.
We discuss first the case v >0; thus we consider the set

b= f,(t-{ao}, kq) where f,(X)= aiX’ + t(X +XV),
i=0

(where u# n). Apply Lemma 9 with

go(X) aiX, g(X)= X’, where r\{u, v}={wl,..., Ws-2},

g_(x)=x", gs(X)=X"+X, v>0.

Since X ’ (go-/3gs) for all/3 L and that part of 3,XU+ 8X prime to X is
square-free then (go-/3og g_l-/3_g) is square-free and so simple
for all (/3o,...,/3_) in Ls. The other conditions of Lemma 9 are clearly
satisfied. By Lemmas 8 and 9, G([,, L(t))= S, and D(f,) is square-free for all
but O,(qS-:)[ in f, i.e. certainly (i) and (ii) of Lemma 6 hold.
To establish (iii) of Lemma 6, let p be a prime dividing r. Suppose that f is

one of the non-exceptional members of b for which (i) and (ii) hold. By
Lemma 5, if (iii) does not hold, then Hp(f, L(t, y)) is trivial. We show that
the latter is not the case by considering the permutation croo G(fp), L(t))
constructed in Lemma 7. Since Xp’ + Xp (Xp(’-) + 1)Xpv and Xp(-) + 1
is square-free, croo has cycle pattern (1p(-), pv, p(n-u)) (where possibly
v >-n-u) while p (which is defined to be r restricted to G(f, L(t))) has
cycle pattern (1u-v, v, n-u). Let the roots x of f(X)= 0 be numbered so
that

t,= (x.. xo)(x._.+.., x.).
1/p and a primitive pth root of unity can be chosen in such aThen yi x

way that

cr (YIY r,-y)(y2Y2 (-)Y2),
where Y1 y. yo, Y2 Y,+ Y, and 1<---< p- 1. Put

m 1.c.m. {v, n- u}
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so that p X (re m/(n- u)). Then o-’ fixes L(x). On the other hand tr’" fixes

Yu but does not fix at least one of Yl or y,. Hence Hp(f, L(yu)) is not trivial.
This completes the proof in this case.
To the extent that we could, by means of Lemmas 7-9, show directly that

(i)-(iii) of Lemma 6 hold simultaneously, the above argument is fortuitous.
Unfortunately when v 0 this does not seem possible and we are compelled
to modify the discussion. We employ a final lemma. It contains the device of
appealing to the distribution of (n-1)-cycles to overcome the difficulty of
dealing with (possibly) non-regular extensions.

LEMMA 10. Suppose Ff.,o)(X) (= Y.=o ax) in kq[So, su, X] is primitive
of degree n. Then all but O, (q/2) members F of F({a}, kq) (t Oto) satisfy"

(i) G(F. L(t))=
(ii) the part of D(Ft) prime to is square-free,
(iii) the part of Fo prime to X is square-free.

Proof. Case (i) u n. In Lemma 9 put

go(X)
i--1

iu

gl(X) 1, gg.(X) X.

Then (go-/3og2, gl-/3tg2) is square-free for all (/30,/3t)e L2 and the other
conditions of Lemma 9 are obviously satisfied. Hence, if ft go+ So-tg
then G(f, L(t)) Sn for all but On(l) members f of f(so, kq). We conclude
using Lemma 2 that the number of F in F({so, s}, kq) for which the
splitting type h (F) (1, n 1) is

q2ln(n- 2)! + O,,(q3/2). (25)

The estimate (25) has been established by first fixing So and letting s
vary and then letting So vary. To obtain our result we perform this
procedure in the opposite order and compare the answer with (25). Specifi-
cally, apply Lemma 9 with go as before but with g(X)= X, g2(X)= 1. Then
(go-/30, g-/3) is square-free provided (/30,/30 (0, 0). Consequently for
all but O,(1) values of a in kq, go(X)+aX +ao is simple for all ao0
while go(X)+ a,X is square-free apart from a factor X where X’=
(go(X),X) so that l<-w<-u<-n-1. So in the first place assertion (iii)
holds. Moreover, by Lemma 7, for a non-exceptional au, if t= So, then
D(F,) is square-free apart from a factor ’- and G(F, L(t)) is generated by
transpositions along with a w-cycle. In particular assertion (ii) of the lemma
is valid. Further, since

G(Ft, kq(t))
_

G(Ft, L(t))

the former group contains a transposition. Now G(F, kq(t)) may or may not
contain an (n- 1)-cycle. First, suppose that it does. Then, being transitive in
addition to possessing an (n-1)-cycle and a transposition, it follows by a
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simple, well-known argument that G(Ft, kq(t))= S,. In this case, G(Ft, L(t))
being a normal subgroup of G(F, kq(t)) if not Sn must be A, which is
impossible by (ii). (An exceptional case (which occurs when n =4) that
G(F, L(t)) is a dihedral group can be ruled out by Theorem 1 of [9] or by
easy direct arguments.) We conclude that kq(x)/kq(t) is a regular extension
with G(F,, kq(t)) Sn and consequently that for such an F, h(Fo (1, n- 1)
for

q/n(n- 2)! + On(q1/2) (26)

values of ao. On the other hand, if G(F,, kq(t)) does not contain an
(n-1)-cycle then h(Fo) (1, n-1) for all ao. Comparison of (25) and (26)
then implies that G(F,, kq(t)) must contain an (n-1)-cycle for all but
On(q 1/2) values of au, whence G(F, L(t))= Sn for all but O,(q/2) values of
O

Case (ii) u n. This time in Lemma 9, take

go(X) X
i=1

Then (Xn-/3og2, 1-/3192) divides /31Xn-/30 but is prime to X and so is
square-free. Therefore for all but On(l) values of a0,

G(X" + ao + tg2(X), L(t)) Sn.
Hence the number of pairs (ao, an) for which (Xn+a0+angz(X))
(1, n--1) is given by (25). It is easy to see that (25) is therefore also a valid
estimate for the number of F in F({ao, an}, kq) for which A(F)= (1, n-1).
The remainder of the proof follows exactly as in case (i).

Finally we give the proof of Lemma.6 for the ease v 0. It follows from
Lemma 10 (and Lemma 6 of [5]) that, if ft =[’=,ieu aiX+ t, as in the
statement of Lemma 6, then ft satisfies assertions (i) and (ii) for all but
O(qs-3/2) members of ft(t-{a0}, kq). Moreover, by Lemma 10(iii), for some
w with 1 <--w-< n-1, fo/X is square-free and prime to X. To demonstrate
the non-triviality of Hp(,L(t, y)) for any p r, consider the permutation
roE G(f}p), L(t, y)) constructed in Lemma 7. We have, for an appropriate

/P andchoice of y x
cro= (YCY CP- Y), Y= y yw.

Hence o’’ E Hp,(f,, L(t, Yn)) but o-’(y) y. Consequently Hp(f,, L(t, y)) is
non-trivial and the proof is completed as in the case v > 0.
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