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ON THE "STABLE" HOMOTOPY TYPE
OF KNOT COMPLEMENTS

BY

PHILIP S. HIRSCHHORN

1. Introduction

This paper is concerned with knots of codimension two, that is, embed-
dings of the (q-2)-sphere Sq-2 in the q-sphere Sq. By Alexander duality, the
complement C of the knot (see Paragraph 2) has the same homology groups
as the circle S1, and Levine [7], Its] has proved that if q#4, then C is
homotopy equivalent to S if and only if the knot is trivial. We will consider
those knots for which there is a positive integer n such that 7riC riS for
i_< n. Thus, all fundamental groups will be infinite cyclic, and all higher
homotopy groups will be modules over A Z[Z], the group ring of the
integers. Then, in Theorem 1 (see Paragraph 2), we prove that 7tic is a
finitely generated acyclic A-module (see Paragraph 2) for n + 1 <- <-2n (the
"stable range").

Conversely, let X be any space for which 7fiX 7r,S for i_< n, and 7r,X is
a finitely generated acyclic A-module for n / 1 -< -<2n. Then, in Theorem 2
(see Paragraph 2), we prove that there is a knot complement C with the same
homotopy type as X through dimension 2n.
The first work in this direction was done by Kervaire. In [6] he proved,

under the assumptions above, that r,+lC is a finitely generated acyclic
A-module and that any finitely generated acyclic A-module can be so
realized. In [1], Brown and Dror showed that for n_> 2, the module %/2C
has the same characterization as %/1C, and that these two modules are
independent of one another. In [3], Dror and Dwyer obtained results on
homology localizations in the stable range, which imply most of our
Theorem 1.
Our Theorems i and 2 have analogues for arbitrary homology circles, i.e.,

spaces with the same homology groups as the circle. In Theorems 1’ and 2’
(see Paragraph 2) we show that in the "stable range", the homotopy type of
a homology circle has the same characterization as that of a knot comple-
ment, except that the acyclic A-modules involved are not required to be
finitely generated.

Organization of the paper. Paragraph 2 contains the definitions and the
statement of our results. Paragraph 3 begins with a review of perfect and
acyclic modules, and then proves Theorem 1. Paragraph 4 proves Theorem
2, and the proofs of Theorems 1’ and 2’ are sketched in Paragraph 5.
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Added in proof. We have been able to obtain similar results for link
complements; see Link complements and coherent group rings, to appear in
the Illinois Journal of Mathematics.

2. Statement of Results

By a knot we mean an embedding f: Sq-2"-- Sq which is either smooth or
piecewise linear. Given such an embedding, there is always a tubular
neighborhood (in the smooth case) or a regular neighborhood (in the
piecewise linear case) U of f(Sq-2) in Sq, and this neighborhood is essen-
tially unique (see [11, Appendix 2] for the smooth case and [5, Chapter 2]
for the piecewise linear case). The complement C of the knot is the closure
of Sq -U. It has the following properties:

2.1. The knot complement C is a finite CW-complex homotopy equival-
ent to Sq -f(sq-2), and by Alexander duality, C is a homology circle, i.e., C
has the homology groups of the circle S1.

This paper will only consider those knots for which there is a positive
integer n such that 7riC- 7riS for i<_n. Such knots have an infinite cyclic
fundamental group, and so all higher homotopy groups will be modules over
A Z[Z], the group ring of the integers. A fundamental property of A is that
it is Noetherian [9, p. 136], and so:

2.2. The class of finitely generated A-modules is closed under the
operations of taking submodules, quotient, modules, and module extensions.

If G is a group and M is a Z[G]-module, the homology groups Hi(G; M)
are, by definition, the homology groups of a K(G, 1) with (twisted) coeffi-
cients in M, and a Z[G]-module M is called acyclic if Hi(G; M)-0 for all
i>_O.

Our main results are then the following two theorems.

THEOREM l. Let n be a positive integer, and let C be a knot complement
such that 7rC-crS for i<_n. Then 7rC is a finitely generated acyclic
A-module ]’or n + 1 <- <- 2n.

The only properties of C that we use here (see Paragraph 3) are that it is a
finite CW-complex and a homology circle. Thus, Theorem 1 still holds if we
only assume that C is the complement of a compact homology (q-2)-sphere
embedded in Sq.

THEOREM 2. Let n be a positive integer, and let X be a space ]’or which
riX 7riS ]’or <- n, zriX is a finitely generated acyclic A-module ]’or n + 1 <-
i_<2n, and riX-O for i>-2n+1. Then for any q>-4n+3, there is an
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embedding f: Sq-2--->Sq with complement.C, and a map C--X inducing
isomorphisms 7tiC 7fiX ]’or <- 2n.

We have analogous results for arbitrary homology circles.

THEOREM 1’. Let n be a positive integer, and let C be a homology circle
such that ,rC riS or <_ n. Then 7rC is an acyclic A-module [or n + 1 <-
i<_2n.

THEOREM 2’. Let n be a positive integer, and let X be a space for which
7rX 7rS for <-. n, 7fiX is an acyclic A-module ]’or n + 1 <- i<_ 2n, and
7fiX 0 ]’or > 2n + 1. Then there is a homology circle C and a map C-->X
inducing isomorphisms ,tiC zriX ]’or <- 2n.

3. Proof of Theorem 1

If G is a group and M is a Z[G]-module, then M is called perfect if
Ho(G;M)0, and acyclic if (G;M)0 for all i>-0. (Since
H0(G; M)--M/(action of G), this is equivalent to the usual definition of
perfect.)

3.1 LEMMA. IJ G Z, then M is acyclic i] and only if Hi(G; M)-0 for
i=0, 1.

Proo]:. This follows easily from the fact that S is a K(Z, 1).

3.2 LEMMA. I]: M is a finitely generated A-module, then M is acyclic i]’
and only if Ho(G M) O.

Proof. See [4].

3.3 PROPOSITION. The class o[ finitely generated acyclic A-modules is
closed under the operations o[ taking submodules, quotient modules, and
module extensions.

Proo[. Let 0--A-- B--> C-->0 be an exact sequence of A-modules. If A
and C are both finitely generated and acyclic, then 2.2 and the exact
homology sequence imply that B is also. If B is finitely generated and
acyclic, then (3.2) so is C, and then 2.2 and the exact homology sequence
imply that A is also.
We will also need the following lemma.

3.4 LEMMA. If D is a finitely generated acyclic A-module, then so is
HiK(D, m) ]or <--2m- 1.

Proof. This follows from 3.3 together with the computation of these
groups given in [2, p. 11-11].

Proof o.]’ Theorem 1. Let C be the universal cover of C. Then Z rC
acts on C, and (2.1 and 2.2) HC is a finitely generated A-module for all
i>-0, and we have the following lemma (which we prove at the end of this
section).



"STABLE" HOMOTOPY TYPE OF KNOT COMPLEMENTS 131

3.5 LEMMA. I"Ii( is an acyclic A-module for all i>0.

To complete the proof we will show by induction on k, that for n + 1 -< k -<
2n,

(1) 7rkC is a finitely generated acyclic A-module, and
(2) HiPk(? is a finitely generated acyclic A-module for i<-2n + 1 where

pk_, is the k-th Postnikov approximation of (.

The induction is begun by Lemma 3.4 (with m n + 1), together with the
fact that r,/1C H,/I C.
Now assume that we have shown (1) and (2) through dimension k-l, and

consider the Serre spectral sequence of the fibration

This is a spectral sequence o A-modules, and so it follows easily (3.3) that
rC is a finitely generated acyclic A-module. Lemma 3.4 (with m k) now
implies that E,q is a finitely generated acyclic A-module for q-<2k- 1, and
so statement (2) is clear, and the induction is complete.

Proof of Lemma 3.5. Consider the Serre spectral sequence of the fibra-
tion (?-->C--S 1. Since S is a K(Z, 1), we have E,q-Hp(Z; Hq(?), and
since S is one-dimensional, Eq-0 for p>-2. Thus, all the differentials
vanish, and so Hp(Z; Hq) E2,, 0 for q > 0.

4. Proof of Theorem 2

We will use the following theorem of Wall [13, p. 17].

THEOREM. Let W be a finite CW-complex of dimension 2n + 2 such that
r;W-Z and H,WH,S, and let q >- 4n + 3. Then there is a smooth
embedding Sq-2-->Sq with complement C, and a map C---W inducing
isomorphisms riC rW for <- 2n.

Thus, it is sufficient to construct W as above, together with a map W--X
inducing isomorphisms rW---rX for i2n. To do this we will need the
following theorem, also due to Wall [12, Theorems A and B].

THEOREM. Let X be a CW-complex for which rIX-Z, and let be the
universal cover of X. If there is an integer k such that H is a finitely
generated A-module for <- k, then X is homotopy equivalent to a CW-
complex with a finite k-skeleton.

To make use of this theorem, we prove the following proposition.

PROPOSITION. Hi is a finitely generated A-module for i<-2n + 1.

Proof. One shows by induction on k that for k-< 2n + 1 and i<-2n + 1,
the groups HiP.i are finitely generated A-modules (where Pk is the k-th
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Postnikov approximation of ). The induction follows easily from the Serre
spectral sequence, using Lemma 3.4.

Thus, we may assume that Xa"+l, the (2n + 1)-skeleton of X, is finite, and
we have the following proposition (which we prove at the end of this
section).

4.1 PROPOSITION. HiPa"xa"+l- HiS for <_ 2n + 1.

In particular, we have isomorphisms I-IXa"/I-HiS for i<-2n. Now
Ha,+IXa"+l is a (finitely generated) free abelian group, so we can choose a
(finite) free basis for this group and, because we have the exact sequence

7ra.+Xa"+---> Ha.+IXa"+i._> Ha.+ Pa"Xa"/ 1,
we can lift each element of this basis to 7ra.+X"+. If we now use these
elements of 7ra.+iXa"+1 to attach (2n + 2)-cells, we obtain our complex W
with H,W-H,S. The inclusion Xg"+-->X can now be extended over all
of W (because 7r2.+X0), and so the proof is complete (except for
Proposition 4.1).

Proof of Proposition 4.1. One shows by induction on k that

HiPXa"+I-HiS for k-<2n and i-<2n+l.

The induction follows easily from the Serre spectral sequence, using Lemma
3.4 together with the fact that Hv(pxa"+I;M)O for 2<--p’<n and any
local coefficient system M on pkxa"+.

5. Homology circles

Sketch of proof of Theorem 1’. We will need the following lemma.

5.1 LEMMA. If G is an infinite cyclic group generated by t, then for any
Z[G]-module M there is a natural exact sequence

0--- Hi(G; M) --->M2->M----> Ho(G; M)---0

where tO t- 1M.
isomorphism.

Thus, M is acyclic if and only if q" M---->M is an

Proof. This follows readily from the fact that S is a K(Z, 1).

Now if we let ( be the universal cover of C, then ( is n-connected, and
we want to show that -C is an acyclic A-module for i<_2n. As in Lemma
3.5, we know that HC is an acyclic A-module for all i> 0.
Now if SO is the suspension oI , then we have natural isomorphisms
r,( ri+lS for i<-2n [10, p. 458] and/-//-/+S for all i>0. Thus,
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we know that the/-/St are acyclic A-modules for all i> 0, and we want to
show that the 7riS( are acyclic A-modules for i<_2n + 1.

If we now let denote both a generator of 7rlC and the automorphism it
induces on StY, then we can define a map q" S(-- St by t- lse [10, p.
41], and we have the following lemma (which is easily verified).

LEMMA. The map d/ induces q" HiS(?--H,Sfor all i> O, where q is as in
Lemma 5.1.

Thus, by Lernrna 5.1, q,: H,S--HS is an isomorphism f.or all i. Since
SC is simply connected, this implies that q," 7r,SC--TriSC is also an
isomorphism for all i, and we have the following lernma (which is also easily
verified).

LEMMA. The map tO induces q" riS"ffiS for <--2n + 2.

Lemma 5.1 now implies that riSC is an acyclic A-module for i<-2n + 1,
and the proof is complete.

Sketch of Proof of Theorem 2’. Letting X2"+1 denote the (2n+l)-
skeleton of X one shows, as in Proposition 4.1, that H/p2"x2"/ HiS for
i_< 2n + 1 (this is proved using Lemma 5.2 (below) in place of Lemma 3.4).
Then, as in the proof of Theorem 2, we can attach (perhaps infinitely many)
(n + 2)-cells to X2"/ to obtain a homology circle.

5.2 LEMMA. If D is an acyclic A-module, then so is H,K(D, m) for
i<_2m-1.

Proof. This is similar to the proof of Theorem 1’. We know that
7rSK(D,m) is acyclic for i<--2m, and so the same must be true of
HiSK(D, m).
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