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1. Introduction

Let X be a smooth, orientable, compact surface of genus n and let
g" X--X be a smooth orientation reversing self homeomorphism with the
property that f g2 has prime order p. In this and a subsequent paper [6] we
give a geometric description of such maps g as well as a classification of their
conjugacy classes in the group of diffeomorphisms of X. An analogous
classification of orientation preserving maps has been given by Nielsen [3]
and Gilman [2]. In the present paper we consider the case p 2, which
appears to be, somewhat different from the case in which p is odd [6].
Our main theorem is the following.

THEOREM 1.1. Let X be a smooth, orientable, compact surface o[ genus n
and let g: X->X, i= 1, 2 be two orientation reversing maps with the property
that g and g both have order two. Then gl and g2 are conjugate in the group
o] diffeomorphisms o] X i[ and only i] g and g have the same number
fixed points.

Although our results are purely topological we sometimes use theorems
from, or give results in, the theory of Riemann surfaces. It is well known
that it is possible to put a complex structure on X so that g and f are
respectively, anti-conformal and conformal. An (anti-)conformal self
homoeomorphism of a compact Riemann surface is called an (anti-)auto-
morphism. Such maps must always have finite order if n--> 2, so that the
study of (anti-)automorphisms of compact Riemann surfaces is in a sense
equivalent to the study of periodic maps of compact smooth 2-manifolds of
genus n -> 2.
We say that a Riemann surface is embeddable if it is conformally

equivalent to a smooth surface which is embedded in R3. If f is an
orientation preserving self-homeomorphism of a smooth surface X, then we
say f is metrically embeddable if there exists a smooth injection d" X---l3

so that dfd-1 is the restriction of a rotation. If f is orientation reversing, then
we say that f is metrically embeddable if dfd- is the restriction of a
reflection in some plane. Finally, if X is a Riemann surface, f is conformal
or anti-conformal and d is conformal, then we simply say that f is
embeddable.
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R. Riiedy [4] has shown that any map of order two is embeddable and
that every embeddable map has an even number of fixed points.
We now fix some notation used throughout this paper. The surface X is

orientable, smooth and compact of genus n and g: X---X is an orientation
reversing self homeomorphism. The map f g2 has 2a fixed points, where a
is an integer. The map g induces a map g’ on X’= X/if) which is orientation
reversing and of order two. Let r: X---X’ denote the (possibly branched)
covering. The surface X’ has genus m, where by the Riemann-Hurwitz
formula n- 1 2(m- 1)+ a. All surfaces will be understood to be (at least)
smooth, and the word "map" will always mean smooth homeomorphism. If
h is an embeddable map then let a(h) denote the angle of rotation. We will
normalize by assuming that 0 < a (h) < 2r. Thus
The following theorem describes a large class of orientation reversing

square roots of involutions geometrically.

THEOREM 1.2. If X, f, g and a are as above, and if m >-a-1, then
g H K, where H is a metrically embeddable map such that H f and K is
orientation reversing of order two. Also H and K commute. In addition, if X is
given a complex structure so that H is conformal, then a (H)= r/2. If a is odd
then X/(K) is orientable of genus 3(a-1)/2 with 2(m-a)+3 boundary
components. If a is even and positive then X/(K) is orientable of genus
3(a 2)/2 with 2(m a) + 6 boundary components. If a O, then X/(K} is
orientable of genus zero with m + 1 boundary components.

Before beginning we need one more definition. By a canonical homology
basis on X (henceforth known as a CHB) we mean a collection of 2n loops
A1, A2, An, B1, B2, Bn such that A X Bi ,3, A, Ai B Bi O,

1, 2, n, and j 1, 2 n. Here x denotes the intersection number.

2. Preliminaries

We prove here some results which are used in proving 1.1 and 1.2.

LEMMA 2.1. If Y is a smooth orientable surface and ok: Y---- Y is an
orientation reversing map of finite order which has fixed points, then d has
order two.

Proof. It is possible to put a Riemann surface structure on Y so that 4 is
anti-conformal. We let x be a point fixed by b. It is easy to find a disc D
containing x which b maps onto itself. If A denotes the unit disc, and h"
D--*A is a conformal map with the property that h(x)=0, then hrkh-l:
h- A is an anti-moebius transformation. Thus

hdoh-(z) (a + b)(- + t)-1 where lal=- Ib?- 1.

Since hbh-l(0) 0, b =0. Thus lal- 1, so a =exp io and

hdoh-l(z) (exp 2i0).
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It is easy to check that hdpZh-l(z) z. Thus bz is the identity.

LEMMA 2.2. The map g’ has no fixed points.

Proof. Let x’= 7r(x). If g’(x’)=x’, then either g(x)=x or g(x)=f(x).
Since g2= f the second equation reduces to the first. By 2.1 this implies that
g has order two, a contradiction. Thus g, and hence g’, have no fixed points.

LEMMA 2.3. m a 1 mod 2.

Proof. We prove this by induction on a. Thus assume first that a 0. We
assume the contrary, i.e., m is even. In this case it is shown in [5, pp.
225-226] that there is a dividing cycle A on X’ with the property that
g’(A) A. Since A is a dividing cycle, it is easy to show that it lifts to two
loops on X which are interchanged by f. We label these loops A1 and A2. If
g(Ai)=Ai, i= 1, 2, then f(Ai)=A,, a contradiction. If g interchanges A1
and A2 then f(A,)= A,, again a contradiction. Thus m must be odd.
Now let a > 0. We assume that X has been given a complex structure so

that g is anti-conformal. Suppose f has fixed points q and g(q) which are
contained in closed discs D and D’= g(D), respectively. Assume that
f(D)= D so that f(D’)= D’. Let b" D---A, q. D’--A’ be two holomorphic
homeomorphisms, where A and A’ are respectively the closed unit disc and
the closure of the exterior of the unit disc. Assume 4(q)= 0 and q(g(q))= .
The maps qgb-a=g and 4)gq-=gz are both anti-conformal and
ga-A--A’, gz" A’-A. Thus gl and gz are anti-moebius transformations, so
we may write

g(z)=(a+b2)(b+g2)-1, lalZ-lbl2-- 1,
and

g2(z) (c + d-)(d + 2)-, Icl-Id[z= 1.

Since gl(0)=o and gz()=0 we must have b d =0. Thus we may write

gl(Z) (exp ia)/ and g2(z) (exp i[3)lY.,

where -7r<_a<_er and -r<_/3_<r. This implies that ga(expi0)=
exp i(O+a) and g2(exp i0) =exp i(0+[3).
We now define a map l: OD---OD’ with the property that lgl- g. Let

/(b-a(exp i0))= q-X(exp i(0+(a-[3)/2)).

We now calculate

lgl(4,-1 (exp i0))=/gq-l(exp i(O+(a-/3)/2))
kk-(exp i(O + (a +/3)/2))
q-a(exp i(O + (a +/3)/2 + (a -/3)/2)
q-a(exp i(O + a))
qt-g(exp iO)
gtk-(exp iO).

Thus lgl g.
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We now construct a surface of genus n + 1 on which g induces a map.
First remove the interiors of D and D’ from X and identify x OD with
l(x) OD’ to obtain a surface Y of genus n + 1. The condition lgl g implies
that g induces an orientation reversing map G on Y. Clearly G2 has order
two with 2(a- 1) fixed points. The surface Y/(G:) has genus m + 1. Thus by
the induction hypothesis m + 1-(a- 1)- i mod 2, so that m-a i mod 2.
This completes the proof.

LEMMA 2.4. Suppose Y and Z are compact surfaces of genus m, each with
2a distinguished points p Y and q Z, 1, 2,..., 2a. Suppose further that
there are orientation reversing involutions gl: Y-- Y and g2: Z---Z such that

g(q,) q,+, (mod 2a), g2(p,) p,+,, (mod 2a).

Also assume that Y/(g)Z/(gz) and that these are both non-orientable
surfaces without boundary curves. Then there is a map h: Y---Z such that
g2 hgh-1 and

h{p,, p,+}= {q,, q,+}, i= 1, 2,..., a.

Proof. There are covering maps r: Y Y/(g) and r: ZZ/(g). Let
r r(p) and s r(q), 1, 2,..., a. Let h’: Y/(g)Z/(g) be a smooth
homeomorphism. We may adjust h’, if necessary, so that h’(r)=s, i=
1, 2 a. Now it may be shown (see [1, pp. 57-88]) that h’ lifts to a
map h: Y--Z. Thus g=hgh-. Furthermore, h{p,p+}={q,q+} i=
1,2,...,a.

LEvnV 2.5. If m >--a- 1, then there is an embedding d: X’-- 113 so that
dg’d-=hok, where h is a rotation about the z-axis with fixed points
q =d(p) and k is a reflection in the x:y plane. Also d(X’)/(k) has genus
(a-2)/2 with m-a + 3 boundary components if a is even, and has genus
(a- 1)/2 with rn-a + 2 boundary components if a is odd.

Proof. By 2.3, m-a =-i mod 2. It suffices to give an example of a
surface Y embedded in 113 with an involution of the form G h k such that
Y/(g) is homeomorphic to X’/(g’), since by 2.4 there is a map d:XY with
the desired property. To construct such a surface first let S denote the closed
square in the y-z plane

S {(y, z): -1 -< y -< 1, -1 -< z -< 1}

and let S’=S-I,.JDt-I.AEj, t=1,2,...,a-1, =1,2,...,m-a+l. The
sets Dt and Ej are open discs constructed as follows. Let N be a positive
integer such that

N-> 2 max {2a 1, 2m 2a + 3}.

Then Dt is a disc with center y 0, z 1-(3+ 4t)/(2a-1) and radius 1/N
and E is a disc with center z 0, y 1-(3+ 4)/(2m-2a + 3) and radius
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0
0 0 0 0

1IN. It is easy to check that these discs are disjoint. If we construct a regular
neighborhood of S’ with smooth boundary in l3 which is invariant under a
reflection in the x-y plane and a rotation about the z-axis, then this surface
may serve as our example Y. See the figure.

3. Proofs of main theorems

We prove Theorem 1.2 by lifting loops from a specially chosen CHB on
X’. Theorem 1.1 then follows from Theorem 1.2.

Proof of Theorem 1.2. We first consider the case in which a 0. We
remark that by [5, pp. 225-226] there exists a CHB E on X’ with the
following properties. First

{Ao, Bo,..., A, B}

and g’(A0)=Ao, g’(Bo)-Bo, ( means homologous), g’(A,)=At/s,
g’(Bt) -Bt+s (mod 2s). Here, of course, At x Bj 8tj, At xA Bt xB 0,
t,j=O, 1,2,...,2s, m l+2s.
We first assert that the loop Ao lifts to one loop on X. If Ao lifts to two

loops, then these loops are interchanged by f. If they are interchanged by g,
then both are fixed by f, a contradiction. If both are fixed by g, then they are
both fixed by f, again a contradiction. Thus Ao must lift to one loop.
We now claim that we may assume that At, > 0, and Bt, t->0, may be

chosen so that each of these loops lifts to two loops on X. Consider first the
case 1 _< t-< s. Then there exist integers mt-> 0 and nt-> 0 such that loops
and B’, homologous to At + mtAo and Bt + ntAo, respectively, both lift to
two loops on X. the loops

At/s g(At) At+s+mtAo and’ Bt+s g’(B’t) Bt+ ntAo
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also lift to two loops. Finally there is an integer n >-0 such that a loop

B[Bo+ nAo-E(m,(At +At+s)+ nt(B,-B,+s)), t= 1,2,...,s,

lifts to two loops on X. If we replace At by A’t and Bt by B’t then we obtain a
CHB with the desired property. It is still true that g’(At)=At/s and
g’(Bt) =-Bt+s (mod 2s), although it may happen that g’(Bo) Bo.
We now construct a planar surface on which g induces a mapping. The set

of lifts of At and Bt, > 0, the lift of A0, and any lift of Bo forms a CHB of
X, as can be seen by calculating the intersection numbers and counting the
number of loops. Thus the lifts of At, t-> 0, do not disconnect X. If we cut
along these lifts we obtain a planar surface Z bounded by 4(m-1)+2
boundary components. The map g induces a self homeomorphism of this
surface, which by abuse of notation we also call g, such that the two
boundary components which come from the lifts of Ao are interchanged by
this map.
Now there exists a quasi-conformal map h" Z---R, where RC is

bounded by the circles Izl 2/3, [z[ 3/2 and by 4(m-1) circles of radius
1/8 and centers

(5/4) exp (],tri/(m 1)), j 1,..., 2(m- 1)

and the reflections of these circles in Izl 1. The map h may be chosen so
that the circles Izl 2/3 and Izl 3/2 correspond to the boundary compo-
nents obtained from A0 and the circle Iz-(5/4)exp (]ri/(m- 1))1- 1/8 and
its reflection in Iz] 1 correspond to a boundary component obtained from a
lift of one of the Ak, k >0. Furthermore h may be chosen so that the
identification on the boundary components of Z becomes inversion in

The map hgh-1 extends to a map of I, so it is an anti-moebius transfor-
mation. Since this extension interchanges 0 and , we have hgh-l(z)= b/c2,
where bc=-l. Since Ihgh-1(3/2)l=2/3, [b/cl= 1 and thus hgh- fixes the
unit circle. The map (hgh-)2 is a moebius transformation of order two
which fixes 0 and . Thus (hgh-)2= -z. We must therefore have either (1)
hgh-l(z) i/2 or (2) hgh-X(z)=-i/2. If (2) holds then conjugate by z 2 to
obtain (1). Identify boundary components of R under the map z 1/2. We
can thus obtain a representation of g as a product of a rotation through an
angle of 7r/2 about the z-axis followed by a reflection in the x-y planes. This
completes the proof if a 0.
Now assume that a > 0. We first consider the case in which a is odd. We

assume that X’c 113 and g’= h k, where h and k are as in 2.5. Since a is
odd there are loops Ao, A,..., A2, s (m a + 1)/2, which divide X’ into
two components, and such that g’(Ao) Ao, g’(At) At+ (rood 2s), > 0.
Our first assertion is that Ao lifts to one loop on X. The proof of this is

similar to the proof that Ao lifts to one loop in the case a 0. Also, if At,
1, 2,..., s, lifts to one loop then it may be replaced by A’tAt +Ao,
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which lifts to two loops. We then replace A,+s by A+s g’(A) A,+ + Ao,
which also lifts to two loops. The loops Ao, A1,..., A’t,... ,At+,..., A2s
divide X’. Thus we may assume that each At lifts to two loops.
Now let A’ be an annular region about Ao which does not contain any

branch points and with the property that g’(A’)= A’. This lifts to an annular
region A containing the lift of Ao and with the property that g(A)= A. We
claim that by a proof similar to that used in the case a 0, A may be
embedded onto an annular region {z" r <-Izl <- 1/r} by a map l" A--*C so that
lgl-(z)= i/.
We now embed annular regions about lifts of the loops At into 13. First

denote a point in l3 by cylindrical coordinates (d, r, 0). Embed the annular
region A onto the region a -{d, 1, 0)" -1 _<d_<l, 0_<0_<27r} by a map eo,
such that

eoge-(d, 1, 0)= (-d, 1, 0 + r/2).

Let Ati, 1, 2, 2s, ] 1, 2, denote the lifts of At and let/3ti denote a
closed annular region with smooth boundary which contains At in its
interior, and which contains no fixed points of f. Assume that these regions
are chosen and numbered so that

g(13,j)=/t+j and g(/3t+i) =/3t+, t= 1, 2,..., s.

Now let ctk ={(d, r, 0):-1 _<d_< 1, Ir exp (iO)-(]+ 1)exp (,n’ik/2)l 1/4}, k
1, 2 ,2s, j 1, 2,. Clearly txi is a circular cylinder. It is easy to construct
a map

such that e(/3t) ctt and elge-(d, r, 0).= (-d, r, 0 + 7r/2).
We now embed X-/3j-A in R3. To do this we first construct a surface
Z in R3 of genus 3(a 1)/2 with rs + 1 2(m a + 1) + 1 boundary compo-
nents, which is invariant under a rotation b through an angle of r/2 about
the x-axis. Assume that the boundary components of Z1 coincide with the
boundary components of (U etch) U a which lie below the x-y plane.

Let Y 7r-(Xx)-U/3i-A. We will show that Ya Za. Here means
homeomorphic. Clearly Y -7r-(X1) and 7r-l(X) is a branched covering,
with a branch points, of X1. Now Xa has genus (a-1)/2 and has 2s + 1
m-a + 2 boundary components. As we have shown, 2s of the boundary
components of X1 each lift to two boundary components and the remaining
one lifts to one boundary component. Thus from the Riemann-Hurwitz
formula +-l(Xl) has genus 3(a- 1)/2. Hence X, and therefore also Y1, is
homeomorphic to Z1. By [3, p. 53], or [2] there exists a map e2" Y--Z so
that eafe dO2.
Now let Y2=’-1(X2)-[3i-A and define the map e3" Y2--R3 by

e3(x)=(d, r, 0), where e2(g(x))=(-d, r, 0+r/2). This map is well-defined
since g induces a homeomorphism from Y2 onto Y. Also the maps eo, ex,
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e2 and e3 agree where their domains intersect. Thus we may define a map
e: X--R3 by e Yt et+l, 1, 2, e I[_J/3tj el and e A eo. It is clear that

ege-(d, r, O) (-d, r, 0 + r/2),

so that ege-1= th , where is reflection in the x-y plane. Clearly tk and +
commute, and we may set H = e-lbe and K e-le. It is easy to verify that
X/(K)- "tr-(X1), that Hz= f, and that H and K commute. This finishes the
proof if a is odd.
We now consider the case in which a > 0 is even. Let q and g(q) be fixed

points of f which are contained in discs D and g(D)= D’, respectively.
Assume that f(D)= D so that, of course, f(D’)= D’. By the argument used
in 2.3 there is a map l" OD---OD’ such that, if we remove the interiors of D
and D’ and identify the boundaries via l, then g induces a map on the
resulting surface. We call the resulting surface Y, and the map which g
induces G. Now G2 has 2(a- 1) fixed points so that by what we have shown
G H K, where K and H satisfy the conclusion of 1.2.
Let 6 be the curve obtained by identifying OD and OD’. We claim that H

and K may be chosen so that 6 is fixed pointwise by K. First let 60 be the
projection of 6 onto Y/(G2). If G’ is the map induced by G on Y/(G2), then
G’(6o) 60. By a slight modification of the argument used in 2.4 and 2.5, it
may be shown that there is a map d: Y/(G) onto a surface embedded in 1;3

(as in the figure), so that (!) dG’d-= h k, where h is a rotation about the
z-axis through an angle of r, and k is reflection in the x-y plane, and (2)
d(8o) Ao. Here Ao is the curve used in the case a is odd. It is fixed
pointwise by k. Now by repeating the construction of H and K in the case in
which a is odd, it is clear that K fixes 6 pointwise.
To finish the proof we cut Y along 8 and glue discs to each of the

resulting components to recover X. Clearly H and K may be extended to X
to produce new maps, which we also call H and K, so that g H K. It is
easy to check that H and K satisfy the conclusion of the theorem.

Before beginning the proof of 1.1 we make several remarks. Necessity in
1.1 is trivial. Also it follows from the work in [3, p. 53], or [2] that the
conjugacy class of a map of order two is determined by the number of fixed
points. Thus the condition that g and g have the same number of fixed
points is equivalent to the condition that g21 is conjugate to g. To prove
sufficiency it is not hard to show that this condition may be replaced by
g g. We prove !.1 by considering separately the cases m-> a-1 and
m < a-1. The first case follows directly from 1.2 while the second case
requires a more complicated argument.

Proof of Theorem 1.1. We first consider the case m _> a- 1. We assume
g2 gz, By 1.2, gi Hi Ki, i= 1, 2, where Hi and K commute, H =f,
t(Ht) r/2 and Ki is orientation reversing of order two with the prop-
erties that X/(Ki) is orientable and X/(K)=X/(K2). The maps
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induce self-homeomorphisms H’i on X/(Ki). In fact X/(K,) may be embed-
ded in R3 so that H’i becomes a rotation about the z-axis through an angle
of r/2. The map H’ fixes either two, zero, or one boundary components
depending on whether a =0, a is even, or a is odd, respectively, and
permutes the remaining boundary components. Thus by [3, p. 53], or [2]
there is a map

h: X/(K)---X/(K)

so that hH Hz’h. Since X may be obtained from X/(Ki) by doubling
across the boundary components, this map h may be lifted to a map k"
X--X so that kKl=K2k and kH=H2k. Thus kHaKlk-a=HaK2, or
kgk- g2.
We consider now the case m < a- 1. We construct a CHB E on X’ such

that (1) g’(E)= E (up to homology), (2) the loops of E do not pass through
any branch points, and (3) each loop in E lifts to two loops on X. We first
construct a CHB which satisfies (1) and (2) by drawing an appropriate set of
loops on X’, as it was represented in 2.5. See the figure for example. Let A
be a loop in the CHB and let cr be a small loop about a branch point. If A
lifts to one loop then replace A by a loop A’ homologous to Ar. Then A’
lifts to two loops. We replace A by A’ and still have a CHB. If g’(A)A
then g’(A) is another loop in this CHB which lifts to one loop. Also g’(r) is
a small loop about another branch point. The loop g’(A’) is homologous to
g’(A)g(cr) and this loop lifts to two loops. We continue in this way, each
time using loops about different branch points, until all loops are replaced
by loops which lift to two loops. Since 2m < 2a- 2 we may do this. We thus
obtain a CHB satisfying (1), (2) and (3).

If q is a fixed point of f denote by a(f, q) the angle f makes at q with
respect to the orientation of X. Now label the branch points pl, Pa,..-, Paa
so that if q is a lift of p, we have that a(f, q)+a(f, qi+l) 0. By [4] we may
do this. It is not hard to find non-intersecting Jordan curves 5i, i-
1, 2,..., a, such that 5i joins P2- and p2 and does not intersect the loops
in the CHB constructed in the previous paragraph. Assume that these curves
are chosen so that g’(5) St, a- + 1, 1, 2,..., s, and 2s a- 1- m.
By a slight modification of the argument used in Lemma 2 [4], it follows that
the lifts of 8, i= 1,2,..., a, divide X into two components which are
interchanged by f.
We now construct a surface Y of genus n + m + 1-a from X on which g

induces a map G with the property that G2 has 2(m + 1) fixed points. First
lift 5 to X, i= 1,2,..., s, and i=a-s+l,..., a. If we cut along the lifts
we obtain a surface of genus n 2s n + m + 1 a with 2.2s 2(a 1 m)
boundary components. See Lemma 2 and Figure 2 in [4]. Each boundary
component consists of two arcs, and the map f induces a map f’, defined on
these two arcs, which interchanges them and which has order two. Now
identify these two arcs via f’ and call the resulting surface Y. We call the arc
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obtained by identifying the two arcs of a boundary component 6i, i--
l, 2,..., s, a-s+l,..., a and j= 1, 2. Clearly g induces a map G on Y
and F= G2 has order two with 2a-4s=2(m+l) fixed points. Also F
interchanges 61 and 6,2. From the Riemann-Hurwitz formula the surface
Y’= Y/(F) has genus m. If we assume that these arcs are numbered so that
G(8,j) 8,j, then we must have G(St) 8,i+1, where the second subscript is
taken mod 2.

Since Y’ has genus m and F has 2(m + 1) fixed points we may apply
Theorem 1.2. We showed that G H K, where H and K have certain
properties. We now claim that H and K may be chosen so that K fixes each
15, pointwise. To see why this is so we examine the proof of 1.2. If m + 1 is
even we have a loop Ao on Y’ which is fixed by G’. This loop lifts to a loop
on Y which is fixed pointwise by K. It is easy to replace Ao by a freely
homotopic loop which contains the arcs 8, i= 1, 2 s, a-s + 1,..., a,
and which is fixed by G’. The lift of this freely homotopic loop, and hence
also 8ii, will thus be fixed pointwise by K.

If m + 1 is odd then an analogous argument can be used. We now have
two loops A and A2, each of which lifts to two loops on Y which are
interchanged by G’. We replace A by a freely homotopic loop A which
contains each i, i= 1, 2,..., s, and we replace A2 by G’(A). The loop

and G’(A) areG(A) contains each of the arcs 8i, -a-s + 1 a. If A
used in place of A and A2 in the proof of 1.2 then the lifts of these loops
will be fixed pointwise by K. Hence each 6,j will be fixed pointwise by K.
Now suppose that g," X--X, i-1, 2, are two orientation reversing maps

such that gl g2 f. We may construct surfaces Y on which the maps gi

induce mappings G,, i= 1, 2, as was just done. The surfaces Y and Y2 are
homeomorphic. Also Y contains a set of curves 6i, i= 1, 2, j= 1, 2,
k 1, 2,..., s, a s + 1,..., a, s (a 1- m)/2, and by cutting along these
curves and reglueing one can recover X. Now, as was previously shown,
Gi Hi Ki where and K, satisfy the conditions of H and K in Theorem
1.2. Furthermore K fixes the curves 6. Now YI/(K)-Y2/(K2) and Hi
induces a mapping H’i on Y/(K,) which has m + 1 fixed points and either one
or no fixed boundary components, depending on whether m + 1 is odd or
even.
We now construct a map h: X---X such that hgl h-a-- g2. First observe

that by 1.2 we may embed Y/in R3 so that Hi becomes a rotation about the
z-axis and K, becomes reflection in the x-y plane. Thus we may identify
Y/(K,) with that part of Y which lies beneath and in the x-y plane. The
maps H’i are induced by rotations about the z-axis through an angle of 7r/2.
Thus by [3, p. 53] or [2] there is a map e: Y/(K1)--- Y2/(K2) so that

eH He.
Let , be the image of Sii in /(K). We now show that we may find a

map
e’: Y1/(K)--- Y2/(K2)
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such that e’H[ H;e’ and such that e’(hljk) h2, for some r and t, where
r 1 or 2 and 1 _< -< s or a s + 1 -< <- a. To construct this map we first
observe that e induces a map l" Z1--+Z2, where Zi =(Y/(Ki))/(H’i). Let k
denote the projection onto Z of hj. Then all of the curves k lie on one
boundary component of Z, so that we may continuously deform to a map
l’: Z--+Z: with the property that /’(k) 82t for some t. Then the map l’
lifts to a map e’: VII(K1)---> Y2/(K2) and e’(hxik) ’2n and e’H He’.
We now use e’ to construct a map h such that hgl h-l= g2. First, Y may

be recovered from Y/(K) by doubling across the boundary components. We
may thus lift e’ to a map 4: YI- Y2 such that 4H1- H24 and 4K1 K24.
Therefore H1Klt-1= H2K2 or tGlt-= G2. Since 4}(81k)--82rt, we may
cut along the curves 8,k and 82k and 4 induces a map of the resulting
surfaces. If we reglue to recover X, then it is easy to check that we obtain a
map h: X---+X. Also hglh-1= g2. The proof of 1.1 is now complete.
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