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POLYNOMIAL IDENTITIES OF NONASSOCIATIVE RINGS
PART Ill: APPLICATIONS

BY
Lours HALLE ROWEN

0. Introduction

In Parts I and II, a general theory was built which focused on certain
classes of Q-rings satisfying central polynomials. In this part we shall give
applications to the classes of associative rings, alternative rings, alternative
rings with involutions, and Jordan rings. {associative PI-rings}, {alternative
PI-rings}, {alternative PI-rings with involution}, and many classes of Jordan
PI-rings are Kaplansky and thus admit the structure theorems developed in
[1, §§3 and 4]. These results were patterned after known results in associa-
tive ring theory and are therefore already known for associative rings, but
many are new for alternative rings, and most are new for Jordan rings. In
each section we will start by assuming () is an associative, commutative ring
¢ (possibly with an extra element denoting an involution); at the end of
each section we consider the case where () is an arbitrary ring. The idea is to
use easy, known facts and the results of [25] and [26] to prove that various
classes of rings are Kaplansky, to find canonical identities and then to obtain
properties of these classes by applying other results of [25, §§3 and 4] and
[26, Theorem 4.10]; other results from [25, §1] and [25, §3] are also
available. For the reader’s convenience, we quote below the more major
results of [26] and [25] which describe properties of Kaplansky classes.
Recall that R denotes an Q-ring with center Z; Nil( ), J( ), Jac( ), and
BM( ) denote respectively the nil, Jacobson-Smiley, Jacobson—-Brown
(““generalized Jacobson”), and Brown-McCoy radicals. Also, two ()-rings
are equivalent if they satisfy the same identities.

A. Theorems about Q-rings R belonging to a Kaplansky class (cf. [25, Def. 3.18])

THeOREM 0.1 [25, Theorem 3.3]. If R is centrally admissible then every
nonzero ideal of R hits Z.

TaeoreM 0.2 [25, Theorem 3.4]. If R is strongly prime then R is centrally
admissible (and thus absolutely prime).

TaeoreM 0.3 [25, Theorem 3.11(ii)]. If R is primitive and semisimple
then R is simple.
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16 LOUIS HALLE ROWEN

TueoreM 0.4 [25, Theorem 3.13). There is a 1:1 order-preserving corres-
pondence between {identity-faithful absolutely prime ideals of R} and
{identity-faithful prime ideals of Z}, given by P — PN Z. This correspondence
induces a 1:1 order-preserving correspondence between {identity-faithful
maximal ideals of R} and {identity-faithful maximal ideals of Z}.

THEOREM 0.5 [25, Proposition 3.22]. If Nil(R)=0 and if R satisfies the
ascending chain condition on central annihilators, then the Q-ring of central
quotients of R is a direct sum of simple PI-rings.

Tueorem 0.6 [25, Theorem 3.17]. If Nil(R)=0 then BM(R[A]) =0.

Tueorem 0.7 [25, Proposition 3.10] and [26, Theorem 4.10]). Under the
conditions of [26, Theorem 4.10], R is semisimple iff Z is semisimple.

TreoreM 0.8 [26, Theorem 3.17]. Nil(R)=BM(R) if R is a universal
PI-ring.

B. Theorems about Azumaya type (cf. [25, Definition 4.11])

Tueorem 0.9 [25, Theorem 4.13]. If R has Azumaya type t then the
following three properties hold:

(i) For every maximal ideal P of Z, there exists ¢ in Z—P such that
R.=(Z.)' as Z.-modules;

(ii) There is a lattice isomorphism from {ideals of R} to {ideals of Z},
given by A—> A N Z, with inverse A— AR;

(iii) If P is a maximal ideal of Z, then R/PR is a central simple
Z|P-algebra of dimension t.

TueoreM 0.10 [25, Theorem 4.15]. If R is equivalent to a central simple
Q-ring with regular central polynomial and if S is a multiplicative subset of Z
such that SNIR#Q (where I is the “central kernel”, the values of regular
central polynomials), then Rg has Azumaya type.

Tueorem 0.11 [25, Theorem 4.19]. If R is mult-equivalent to a central
simple Q-ring with multilinear central polynomial, then R,_, has Azumaya
type.

In order to use Theorem 0.7, we will want some knowledge about
canonical central polynomials. Say a Kaplansky class € of Q-rings has
property F (with respect to a class of polynomials {g, | n € Z*}) if, for every
semisimple (Q-ring R of 4, there is some k, such that g, is R-central and g,
is an identity of R for all ¢t > k.

Remark 0.12. Every Q-ring in a Kaplansky class with property F is
centrally admissible.

Tueorem 0.13. If € is a Kaplansky class with property F then, for the
same class of polynomials {g, | n € Z*}, for every strongly semiprime Q-ring R
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of 6, there is some k such that g, is R-central and g, is an identity of R for all
t > k. If every direct power of a member of € is in 6 then for every Q-ring R of

€ there is some k such that a suitable power of g, is an identity of R for all
t>k.

Proof. If R is strongly semiprime then, by Theorem 0.6, R[A] is
semisimple, so, for some k, g, is an identity of R for all t> k. Take the
smallest such k. Then g is not an identity of R, so g is not an identity of
some strongly prime image R of R (cf. [25, Corollary 2.5]). But for each
such R, g, is central for the ring of central quotients of R, which is simple,
by Theorem 0.2; thus, by [25, Corollary 2.1], g, is R-central. Hence we see
g is central or an identity for each strongly prime image of R, so g is
R-central.

The second assertion is an immediate application of [25, Theorem
3.23]. Q.E.D.

As we prove various classes of rings are Kaplansky satisfying property F,
we shall not restate verbatim results 0.1 through 0.13, but these results are
quite striking in the individual applications.

1. Associative algebras

The variety of associative PI-algebras was the model for our theory, so we
do not expect many new results (although I believe [25, 3.13] and parts of
[25, §1] and [26, §81, 3] are new even for associative PI-algebras). Note that
J(R)=Jac(R) when R is associative; hence, by [26, Theorem 2.3], one gets
Amitsur’s theorem, that Nil(R)=0 implies Jac(R[A])=0. We need the
following additional well-known results in the category of associative alge-
bras over a commutative, associative ring.

Tueorem A (Kaplansky’s theorem). Every (associative) primitive PI-
algebra is simple, and is a finite dimensional algebra over its center.

Tueorem B (Levitzki-Amitsur). Every (associative) semiprime PI-
algebra is strongly semiprime. (Thus “prime” means “strongly prime”.)

A central simple F-algebra of dimension n? over F is said to have degree
n.

Tueorem C (Formanek [7]). For each neZ”*, there is a completely
homogeneous polynomial g,(X., ..., X, 1), linear in X,, ..., X, .1, which is
A-stable central for each (associative) central simple algebra A of degree n,
and g, is an identity for all central simple algebras of degree <n. By
rearranging terms, Amitsur has shown that g,(X,, X,)=g,(X{, X5, ..., X5) is
also A-stable central for each associative central simple algebra of degree n.

Theorem A shows that the variety of associative PI-algebras is Kaplansky
and also, for every PIl-algebra R, BM(R)=Jac(R).
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Theorems A and C imply that {Associative PI-algebras} have property F,
so, by Theorem B and Theorem 0.12, we see in particular that every
associative semiprime PI-algebra satisfies a central polynomial. At this point
we see that Theorems 0.1-0.13 are applicable, although Theorem 0.3 is
subsumed by Kaplansky’s theorem.

Theorem 0.9 yields the following important result:

Tueorem 1.1 (Artin [6], Procesi [21]). If R is associative and satisfies all
identities of M,,(Z), and if no simple homomorphic image of R has dimension
<n? over its center, then R is an Azumaya algebra over its center, of rank n>.

PrOOf. Let f(Xb ce ey X2n2)=z (Sg w)XIXﬂ2X3X1r4 c X2n2—1X1r(2n2)9
summed over all permutations 7 of (2,4, 6, ...,2n?%). It is an easy matter to
check matrix units and show that R{(f) =R, for any matrix algebra R,=
M, (F), where F is an arbitrary field. Thus, setting

g, = gn(XD L) Xn’ f(Xn+17 L] X2n2+n))’

and rearranging the indeterminates so that they start X, .5, X, 44,..., W€
see that g’ is n?>-normal and is central for every matrix algebra M, (F).
Now, every associative central simple algebra R, is equivalent to a matrix
algebra over a field. (If the center is finite then R, is already a matrix
algebra over a field, by Wedderburn’s theorems; otherwise we “split” R, by
the algebraic closure of its center and use [25, Remark 1.8].) Thus, it follows
easily from the hypotheses that g’ is R-central and 1€ R(g')R. Hence R has
Azumaya type n?, by [26, Definition 4.11], so we may apply Theorem 0.9.
The conclusions yield classically that R is an Azumaya algebra. Q.E.D.

The theory of universal associative PI-algebras is very interesting, and we
outline its main features, based on [26, §3]. (Of course, the results presented
here are well known.) First, we recall [26, Theorem 3.17], which says that
the Brown-McCoy radical of every universal, associative PI-algebra is nil.
At this point, assume ¢ is an infinite integral domain and R is a ¢-algebra.
It is well known (cf. [2]) that for every n, there is a division ¢-algebra D of
dimension n? over its center. This gives rise to the universal algebra AU(D),
which we call ¢™{Y}, because, letting ¢ (&) be the field generated over ¢ by
the commuting indeterminates {£0° | 1=<i,j=n, 1 =k <o}, we have ¢™{Y}
canonically isomorphic to the ¢-subalgebra of M, (¢(£)) generated by the
“generic” matrices Y, =Yy, £¢; (where e; are the canonical matric
units), 1<k <, By [26, Corollary 3.26], $™{Y?} is a domain equivalent to
the PI-ring D, so ¢“™{Y} has an ¢-algebra of central quotients which we
call ¢™(Y). Obviously ¢™(Y) is a division algebra equivalent to D, so
¢™(Y) also has dimension n? over its center. By [26, Corollary 3.26],
¢™{Y} satisfies every universal, sentence of an arbitrary simple ¢-algebra
having dimension n> over its center. Piecing together information about
¢™(Y) from various division algebras was one of the main techniques
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of Amitsur in his paper [5], proving that ¢™(Y) is not a crossed product,
for many n.

Let us make a brief digression concerning {associative PI-algebras with
involution}. The starting point in this theory is the theorem of Amitsur [4],
that if (R, *) is a PI-algebra then R is a PI-algebra. (In fact, by [27,
Theorem 8], if (R, *) is a PI-algie then R is a PI-Z-algebra. Thus, one has
cosmetically the same theory as in §1, but the relevant objects are often
different. This idea is exploited in [27].)

We briefly consider universal associative PI-algebras with involution, for
example. We again use M, (¢(£)), where ¢ is an infinite integral domain, but
we also consider the transpose involution (t), and let ¢™{Y, Y’} be the
¢-subalgebra of M, (¢(&)) generated by the generic matrices Y =
Yrioy EFe; and their transposes Yi=Yri_: £ie;. ¢™{Y, Y’} has an in-
volution induced by (t), of the first kind (by [26, Example 3.24]); letting
(¢™(Y, Y"), t) be the algebra of central quotients of (¢™{Y, Y'}, t), we see
that ¢™(Y, Y") is central simple of dimension n2. Moreover, there exists a
¢-division algebra with involution of the first kind, having dimension n?
over the center, iff n is a power of 2 (cf. [28, Proposition 28]); hence
¢™(Y, Y") is a division algebra iff n is a power of 2. One can do a similar
analysis using the symplectic involution in place of (¢), and it is fascinating to
study these ‘“generic” division algebras with involution, as well as the
“involutory” analogue of the Artin-Procesi theorem, but we shall not
digress that far here.

In case we consider algies, in place of algebras, one can state Theorems 2
and 6 in [27] as: If (R, *) is an associative PI-algie over a ring 3, then R is a
PI-Z-algebra.

2. Alternative algebras

Let purely (resp absolutely) alternative mean purely (resp. absolutely)
nonassociative alternative, cf. [25, §5]. There is an extensive structure
theory of purely alternative algebras, due largely to Albert, Bruck, Klein-
feld, and Slater. Much of this theory now follows as a special case of the
above theory, applied to alternative algebras; also, new information is
obtained about the lattice of prime ideals. First recall by [25, Remark 1.2]
that the identities [X;, X;, X,] and [X,, X, X;], which define alternative
algebras, are stable identities of every alternative algebra, hence, by [25,
Proposition 1.3], R[A] is alternative if R is alternative. Thus, every class of
alternative algebras satisfies criteria (ii) and (iii) of [25, Definition 3.16] of
central class. Another immediate consequence of the alternative identities
is:

Lemma 2.1. If A is an ideal of an alternative algebra R, then

{reR|rA=0} and {reR|Ar=0}
are ideals of R.
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Thus, if R is prime and rA =0, then either r =0 or A =0. We shall now
prove that every variety of alternative PI-algebras is a Kaplansky class. We
shall need the easily verified Moufang identities

(X1 X)X )X;5— X1(X(X1X3)) and  (X1(X2X3)) X, — (X X0)(X5 X))
cf. [12, p. 16]), as well as the following five basic results:

THeOREM D (Artin). Any alternative algebra generated over its center by
two elements is associative.

THeOREM E (Kleinfeld [13] and Bruck). [[X;, X,1*, X5, X, is an identity
of every alternative algebra.

Tueorem F (Kleinfeld [14, proof of Lemma 3.5]). For every prime,
nonassociative, alternative algebra R, Z(R)=N(R). (Hence [X;, X,}* is
either central or an identity of R.)

Tureorem G (Kleinfeld [13, Theorem 4.1]). If [X,, X,]* is an identity of
an alternative algebra A, not necessarily with 1, then Nil(A)=/{nilpotent
elements of A}.

Tueorem H (Kleinfeld [14]). Suppose a nonassociative, alternative
algebra R has a maximal left ideal which contains no nonzero two-sided
ideals. Then R is a Cayley-Dickson algebra of octonians (abbreviated CD
algebra). In other words R has the following form: The additive structure of R
is QP Q, Q an arbitrary (associative) quaternion algebra with involution
q—>q such that q € Z(Q) iff § = q; multiplication on R is given by

(41> 42)(a3, 44) = (9195 + V9442, 4491+ 4295),
v a suitable fixed nonzero element of Z(Q).

Remark 2.2. CD algebras are not associative and thus satisfy the central
polynomial [ X;, X,1*. (In fact, [ X, X,]* is central, cf. Theorem 2.8 below.)

Tueorem 2.3. (1) If R is a strongly prime, alternative PI-algebra, then R
is absolutely prime.

(2) The variety of alternative PI-algebras is Kaplansky.

Proof. (1) We are done unless R is nonassociative. Let A# 0 be an ideal
of R. We need to prove ANZ#0. Foreach a in A, rin R, [a, r}*€ Z, so we
are done unless [a, r]*=0, for all a in A, all r in R.

Choose r arbitrarily and let R’ be the Z-subalgebra of R generated by Z,
A, and r. R’ has an associative, commutative Z-subalgebra R"” = Z[r]; any
element of R’ has the form a +x, for suitable a in A and x in R”. Since
[a;+x;,a,+x,]€e A for all a; in A, all x; in R”, Theorem F yields
[a,+x,, ay+x,]*€ A N Z, so we are done unless [X;, X,]* is an identity of R’.

By Theorem G, we then have Nil(R') = {nilpotent elements of R}, so ar,
ra, and a +a’ are nilpotent for all nilpotent elements a, a’ of A. Since r was
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taken arbitrarily in R, we conclude that {nilpotent elements of A} is a nil
ideal of R, which must thus be 0. Hence A has no nilpotent elements.
On the other hand, since [X;, X,]* is an identity of R’, [r, a] must be
nilpotent for each element a of A, so [r, a]=0. In other words, [R, A]=0.
The rest of the proof is standard, but we argue it out for completeness.
Section 1B example (iB) in [25] yields the identity

3[X1, Xz, X3]+ XI[XZ’ Xs] + [Xl’ X3]X2 - [X1X2, X3]

for every alternative ring. We apply this identity to R. Specializing X5 to A
shows 3[R, R, A]=0; by left-right symmetry, [3A, R, R]=0. Next,
specializing X; to A (and X,, X; to R) shows A[R, R]=0; by Lemma 2.1,
[R, R]=0. Using the Moufang identities and Artin’s theorem we get, by an
easy computation, [r3, r,, r;]=0 for all r, in R, implying r;e N(R)=Z. In
particular, a®*c ZN A for all a in A. Since Nil(R)=0, a®>#0 for some a in
A, so we conclude that ZNA#0.

(2) First we shall prove that {alternative PI-rings} is central, as defined in
[25, Definition 3.16.] As remarked earlier, it suffices to verify condition (i),
that every strongly prime alternative PI-algebra R has an R-stable central
polynomial. This is clear unless R is nonassociative. Then, by part (1) above,
Theorem H, and [25, Corollary 2.1], R is equivalent to a CD algebra, which
then, by Remark 2.2, satisfies the central polynomial [X;, X,]%, so [ X, X,]*
is R-central. But R[A] is also strongly prime and nonassociative, so [ X;X,]*
is R[A]-central; thus [X;, X,]* is stable R-central, and we have proved
condition (i), and know that {alternative PI-algebras} is a central class.
Then, by Theorem 3.17 ((3)=>>(1)), ({alternative PI-algebras} is
Kaplansky. Q.E.D.

At this point, we are ready to apply immediately most of the results given
in §0, and obtain much information about prime and semiprime alternative
PI-algebras; the main point is Theorem F, which says that every prime,
nonassociative, alternative algebra is a PI-algebra! Slater [30], [31] obtained
structure theorems about semiprime purely alternative algebras; these can
be seen to be special cases of the theorems in §0 via the following results.

Remark 2.4. Every strongly semiprime purely alternative algebra is PL
(Proof. Special case of [25, Remark 5.5].)

Remark 2.5. (cf. Slater [29]). If R is prime, nonassociative and alterna-
tive then R is strongly prime unless 3R =0 and R has a nonzero locally
nilpotent ideal. (Proof. By Kleinfeld [15], R is strongly prime unless
Ann{3}={reR|3r=0}#0. Since (3R) Ann{3}=0, R is strongly prime
unless 3R = 0. Even so, by a result of Shirshov given in [17], R must have a
nonzero locally nilpotent ideal.)

Having seen how well the PI-theory works in presenting known results,
we shall show that {alternative PI-algebras} is as well behaved as we could
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wish, enabling us to obtain new results for alternative algebras. In view of
Theorem H, we should first investigate {CD-algebras} more closely. An easy
verification shows, in the notation of Theorem H, that a CD-algebra R is a
domain if, for all q in Q, v#qq. It is then a simple matter to construct a
“generic” CD division algebra; let v be an indeterminate over ¢, and let Q
be the algebra of central quotients (¢(v))?(Y, Y*) of (¢[v])®{Y, Y'} (as
defined above in §1).

On the other hand, notation as in Theorem H, if v =1 and Q = M,(F), the
ring of 2 X2 matrices over a field F, then R is called a split CD-algebra. It is
easy to see (cf. [29, p. 32]), for any CD-algebra R whose center Z has
algebraic closure Z’, that RQ,Z’ is split. Let CD(F) denote the split
CD-algebra with center F.

Suppose ¢ is an infinite field and R is a CD-algebra whose center
Z has algebraic closure Z'. R is equivalent to R®,Z'=CD(Z')~
CD(¢)®, Z', which is equivalent to CD(¢). Hence U(R)= U(CD(¢)) for
every CD-algebra R. But we have seen that there exist CD division algebras
(over ¢); hence, by [26, Corollary 3.26], U(R) is a purely nonassociative
domain. So we see that there is precisely one universal algebra for all
CD-algebras over ¢, and this is a purely nonassociative domain which we
call ¢“P{Y}. Using central quotients, we see that ¢“°{Y} is equivalent to

every prime, nonassociative, alternative ¢-algebra, so, by [25, Remark 5.5],
we have:

ProOPOSITION 2.6.  ¢“P{Y} is equivalent to every strongly semiprime, purely
alternative ¢-algebra.

Of course, the algebra of central quotients of $<°{Y}is CD, and is in fact
the “generic” CD division algebra described above; details are left to the
interested reader. Since every CD-algebra contains an (associative) quatern-
ion subalgebra, we know that all identities of ¢“P{Y} are identities of
M,(¢$). As a partial converse, we have the following result:

TueoreM 2.7. If ¢ is an infinite field then ¢“P{Y} satisfies every 2-
identity (i.e. every identity in 2 indeterminates) of M,(d).

Proof. Let f(X4, X5) be a 2-identity of M,(¢). Theorem D says that, for
any elements x;, x, in ¢$“P{Y}, the subalgebra A of ¢“P{Y} generated by
x, and x, is associative. Moreover, A is a domain in which [X;, X,1* is
either an identity or central. Hence, the ring of central quotients of A is
central simple of degree =2, so A satisfies all the 2-identities of
M,(¢$), implying f(x,, x,)=0. Therefore f(X;,X,) is an identity of
¢°°{Y}. QE.D.

Note that ¢“P{Y}, being nonassociative, cannot satisfy [X;, X;, X3], a
3-identity of M,(¢). On the other hand, each Formanek polynomial
g2.(X1, X,) is an identity of M,(¢), for all n>2. Thus g,(X;, X,) is an
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identity of ¢“P{Y?}, for all n>2. It is easy to check that g, =[X;, X, is
central for CD(¢), and thus for ¢“P{Y}. Now multilinearize g, to the
polynomial

g =X, X,1[X;, X1+ X4, X,0X5, Xo1+ X5, Xo1[X, X,]
+[X;, X [X1, Xo]

Then g} is either ¢ “°{Y}-central or is an identity of ¢“°{Y}. On the other
hand, it is well known (cf. [7]) that g5 is not an identity of any quaternion
algebra, and thus is not an identity of any CD-algebra. Thus g; is CD(¢)-
central, and thus ¢“P{Y}-central.

Now let ¢ be an arbitrary integral domain. Any CD-algebra obviously
can be embedded into a split CD-algebra with infinite center (via splitting
by the algebraic closure of ¢). Thus we have proved:

TeeEOREM 2.8. Every CD-algebra satisfies the identities g, (X, X5), n>2,
and the central polynomials g, and g5.

Also note that every CD-algebra has dimension 8 over its center, so every
9-normal polynomial is an identity. We are now ready to prove that the
variety of alternative PI-algebras satisfies property F.

Tueorem 2.9. (1) If A is a strongly semiprime, purely alternative algebra,
then [X,;, X, and g, are A-central, g,(X;, X,) is an identity of A for all
n>2, and every 9-normal polynomial is an identity of A.

(2) The variety of alternative PI-algebras satisfies property F with respect
to{lg, | n=1}.

Proof. (1) Since A is a subdirect product of strongly prime, nonassocia-
tive algebras, it suffices to verify the assertion when A is prime. But then A
is absolutely prime, by Theorem 2.3(1), so A is equivalent to its algebra of
central quotients, a CD-algebra, and, by theorem 2.8, we are done.

(2) We want to show that for every semisimple alternative PI-algebra A,
there is some number k such that g, is A-central and g, is an identity of A
for all n> k. By [25, Proposition 5.4], and [26, Corollary 2.6], we have A as
the subdirect product of semisimple PI-algebras A, and A,, with A,
associative and A, purely alternative. Then we are done by putting together
Theorem C and Theorem 2.9(1). Q.E.D.

By Theorem 2.9, we have the whole theory of §0 above to draw from in
the study of alternative PI-algebras; more specifically, purely alternative
algebras satisfy the multilinear central polynomial g} and are thus amenable
to Theorem 0.4. Next, we see how we can use our version of the Artin-
Procesi theorem to study alternative algebras. The object is to prove an
alternative algebra has ‘““Azumaya type” and then to apply Theorem 0.9.
First note, by [25, Theorem 4.5] and Theorem 2.9, that every CD-algebra
satisfies an 8-normal, central polynomial g < g5. Now suppose R is alterna-
tive, and g5 is R-central, and, using notation following [25, Lemma 4.9], let
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G'={ge % | g<gs}. If R is absolutely nonassociative then R*(G’) is not
contained in any maximal ideal of R, so, by [25, Proposition 4.12], R has
Azumaya type 8, yielding:

THeoreM 2.10. If R is absolutely nonassociative, alternative, and if g5 is
R-central, then R has Azumaya type 8.

CororrLary 2.11. If R is absolutely nonassociative, alternative, and if
Nil(R) =0, then R has Azumaya type 8.

Proof. By Theorem 2.9(1), g5 is R-central, so apply Theorem
2.10. Q.E.D.

Thus, in view of Theorem 0.9, the structure of absolutely nonassociative,
alternative algebras is very closely connected to the center. We close this
section with a nostalgic result:

TueoreM 2.12. Every alternative PI-algebra satisfies a power of a suitable
standard identity. Every strongly semiprime alternative PI-algebra satisfying
an identity of degree m also satisfies the standard identity S, for all t=
max (9, 2[m/2]).

Proof. In view of [25, Theorem 1.9], we need only verify the second
assertion. But then a strongly semiprime, alternative PI-algebra is a sub-
direct product of an associative PI-algebra (which satisfies S, for all t=
2[m/2]) and a purely alternative algebra which, by Theorem 2.9(1), satisfies
S, for all t>8. Q.E.D.

3. Alternative algebras with involution

Since the theory of alternative PI-algebras follows closely the theory of
associative PI-algebras, we should expect the theory of alternative PI-
algebras with involution to match the theory of associative PI-algebras with

involution. Indeed, the theories are analogous, seen through the following
result:

Tueorem 3.1. If (R, *) is alternative and satisfies a strong identity { of
degree d, then R is a PI-algebra, satisfying the identity g;.,(X;, X5)" for
suitable t.

Proof. We rely heavily on a theorem of Herstein [8]-Martindale [18]-
Amitsur [4]: If (R, *) is associative and satisfies a strong identity of degree
d, then R satisfies some power of the standard polynomial S,,; in particular,
if R is semiprime then R satisfies S,4, so g;.1 is an identity of R. Now, to
prove Theorem 3.1, first assume R is strongly semiprime. By [25, Remark
6.11], (R, *) is the subdirect product of an associative semiprime PI-algebra
with involution (R, *) and a strongly semiprime, purely alternative algebra
with involution (R,, *); f is a strong identity of each. By Amitsur’s theorem,
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2441 18 an identity of R,. Moreover, by Theorem 27, g,,, m > 2, are identities
of R,. If d =1 then R, =0, so it follows in all cases that g,., is an identity of
R.

Let € be the class of alternative PI-algebras with involution for which f is
a strong identity. € is closed under direct powers, so we conclude the proof
of Theorem 3.1 by using [25, Theorem 1.9]. Q.E.D.

Thus far, all of our results on alternative algebras would apply without
restriction on (), as will be seen shortly. If we want special results which rely
on ¢ being associative and commutative, we can use the flavor of Amitsur
[5] as follows: Given a generalized monomial h of an element f of ¢{X},
note that the canonical image h of h in the free, associative ¢-algebra has
the form aX;, - - - X; for a suitable a in ¢. Call a the coefficient of h, and
say f is R-correct if, given r in R, one can find a generalized monomial with
some coefficient & such that ar# 0. Note that every R-strong identity of a
¢-algebra with involution (R, *) is R-correct. Amitsur’s approach to [5],
coupled with his results in [4], then yields:

Tueorem 3.2. If (R, *) is an alternative algebra satisfying an R-correct
identity f of degree d, then R is a PI-algebra satisfying the identity
2::1(X1, X5)' for suitable t.

Proof. The details in the associative case are given in [28]. The extension
to the alternative case is the same as in Theorem 3.1.

For completeness, we show that the PI-algie theory is also the same as the
PI-algebra theory for {alternative rings}. Q.E.D.

TueoreM 3.3.  Any alternative PI-algie R satisfies the identity g,(X;, X,)!
for suitable d and t. If (R, *) is an alternative PI-algie with involution, then R
is a PI-algie.

Proof. Using [25, Theorem 1.9], we may assume Nil(R)=0. But every
strongly semiprime, purely alternative ring satisfies the central polynomial g,
and the identities g, d > 2, so we may apply [25, Remark 6.11] to conclude
the proof (in the same way as in Theorems 2.9 and 3.1, res-
pectively). Q.E.D.

4. Jordan algebras

For simplicity, assume 3 € ¢, and define the variety of Jordan algebras as
OV{[XI, Xz], (X?X2)X1 "X%(szl)}*

Since 3€ ¢ the latter identity is easily seen to be “stable”, in the sense of
[25, §1], so, in particular, every central extension of a Jordan algebra is
Jordan. Let $ denote an arbitrary Jordan ¢-algebra. In view of commutativ-
ity, we have the equality of BM(¥) and Jac($). McCrimmon [16] has
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characterized J(#), but I believe it is an open question whether J($) equals
Jac(¥) in general. Write FJ' for the free (i.e. universal) Jordan algebra on
Xy, X

Let A be a (not necessarily associative) ¢-algebra, and define a - b=
1(ab + ba), for elements a, b of A. Define A* to be the algebra obtained by
substituting the operation ( - ) for multiplication in A. Of course, if A is
already commutative then A™ is the same as A, a fact which will be useful in
evaluating polynomials.

$ is a special Jordan algebra if, for some associative algebra A, ¢ is a
Jordan subalgebra of A*. Note, by [12, Theorem 3, p. 15], if A is
alternative then A* is special. Let ¢$®(X) denote the universal associative
algebra. The free special Jordan algebra with t free generators FSJ® is
defined as the subalgebra of (¢®{X})* generated by X, ..., X,. There is a

canonical map ,: FJ¥— FSJ®, sending respective generator to respective
generator.

TueoreM I (Macdonald’s Theorem [12, p. 40]). Suppose Y, Y,, Ys

generate FI®, and f(Y,, Y,, Y;)€ker ¢, f linear in the third indeterminate.
Then f(Yl, Y2a Y3) =0.

An immediate consequence of Theorem I is the following: Suppose $ is a
Jordan algebra in a variety of Jordan algebras and f(X;, X,, X3) is a
polynomial, linear in Xj;, which is an identity of every special Jordan algebra
in this variety. Then f is an identity of $. In particular, FJ® = FSJ®.

Tueorem J (Cohn [12, p. 9)). If t=3, then FSJ® is the subspace of
symmetric elements of ¢“(X), under the involution given by X¥=X, (i.e.
(X, - Xk,)* =X, " X))

It has been observed by Amitsur that the Formanek polynomial g, is
symmetric under the involution given in Theorem J, so we can find a
polynomial g, in FSJ® = FJ®, obtained from g, by using ( - ) instead of
the old multiplication.

Using the definition of absolutely primitive idempotents from [12, p. 197],
say $ is reduced if 1 is a finite sum of absolutely primitive idempotents.
Reduced simple Jordan algebras are classified in [12, p. 203]; they are
important because all simple finite-dimensional Jordan algebras over alge-
braically closed fields are reduced. I have been unable to obtain sweeping
results for Jordan PI-algebras in general; instead, a structure theory will be
developed here which includes all reduced simple Jordan algebras. (Another
direction, taken in a work to appear in J. Algebra, is the study of Jordan
algebras satisfying normal identities.)

Our strategy here is to use results of Racine [22] and Jacobson (concern-
ing central polynomials of simple, reduced Jordan algebras) to find Ka-
plansky classes of Jordan PI-algebras. First, if $ is commutative and
associative, then obviously we can apply the associative PI-theory.
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Next, suppose # is “generically algebraic of degree 2”°, defined in terms of
a quadratic form as follows: Given a subring C of Z(¥) and a quadratic
form Q: $— C with Q(1)=1 and bilinearization

Q(a, b)=Q(a+b)—Q(a)—Q(d),

multiplication in ¢ is given by ab=3%(T(a)b+ T(b)a—Q(a, b)), where
T(a)=Q(a, 1). Let

Rad Q={aeR|Q(a,r)=0 for all r in R};

clearly (Rad Q)>*=0. $/Rad Q has a quadratic form induced by Q. We shall
write (£, Q, C) to denote the Jordan algebra $ defined by the quadratic
form Q: §—C.

Note that, without loss of generality, we could take C = Z(¥), but I prefer
to isolate C. It has been customary to work in the category of algebras
generically algebraic over a given field, but here we want to be able to
change C in order to pass to central extensions. We now need the following
computation, due to Jacobson.

TueoreM K (Racine [22, Theorem 1]). If $ is generically algebraic (of
degree 2), then &, is either $-central or an identity of $. Moreover, if Z(¥) is a
field and g, is an identity of ¥, then $ is commutative and associative.

Lemma 4.1. If (#, Q, C) is a generically algebraic Jordan algebra, and H
is a commutative, associative C-algebra, then (J ®c H, Q, H) is a generically
algebraic Jordan algebra, via the map

QX a;1®h;y, Y. aj2®h'i2) =3 Q(ai1, aj2)® hilhj2'

Proof. Standard application of the categorical properties of tensor
product. Q.E.D.

Note that every associative Jordan algebra $ is commutative and associa-
tive, and thus has the “trivial”’ quadratic form Q(x)= x? for all x in §; also
g, is an identity of £.

THEOREM 4.2. Let € be the class of generically algebraic Jordan algebras
of degree 2. Suppose (¢, Q, C)e € and P is a prime ideal of ¥, such that $/P
is not associative. Then Q($, P)c P, Q(P)< P, and Q induces a quadratic
form on $/P.

Proof. Let . denote the canonical image in § = $/P. By hypothesis, we
have elements a,, a,, a; in $, such that [a,;, d,, as;]#0. Suppose beP.
Then

T(b)a,— Q(a,, b)=2a,b—T(a,)beP,

so T(b)a, € Z(¥), implying T(b)[a,, G», G;]=0. Since $ is prime (and thus
torsion-free over its center), we have T(b)=0, i.e. T(b) € P. Thus, for any b
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in P and x in $, we have
Q(b, x)=-2bx+T(b)x+T(x)beP,

implying Q(P, )< P. In particular, Q(P)c P. Now define Q on $ by
Q(x) = Q(x). For any element b of P,

Q(x+b)=Q(x)+Q(b)+ Q(x, b) = Q(x),

so O is well defined, and is obviously a quadratic form. Q.E.D.

ProrositioN 4.3. If $ is a prime, generically algebraic Jordan algebra of
degree 2, then $ is absolutely prime.

Proof. Let $' be the algebra of central quotients of . Clearly Z(#') is a
field, and the quadratic form Q of $§ extends canonically to $', by Lemma
4.1. Moreover, (Rad Q)*>=0, so Rad Q=0 (since $' is prime), and it is well
known and straightforward to conclude that $' is simple. Q.E.D.

THEOREM 4.4. Let € ={Homomorphic images of generically algebraic
Jordan algebras of degree 2}.

(1) Every prime member of € is generically algebraic of degree 2.

(2) If $€€ and is prime, then either ¥ is associative or g, is $-central.

(3) % is Kaplansky and satisfies property F with respect to {X;, g}

Proof. (1) Immediate from Theorem 4.2.

(2) Suppose $ is nonassociative. By (1), $ has a quadratic form. Let §'
be the algebra of central quotients of $. Z(¢') is a field; by Lemma 4.1, ¢’ is
generically algebraic of degree 2, so, by Theorem K, g, is #'-central. But ¢
is equivalent to ¥, so g, is $-central.

(3) First we verify that € is a central class, checking the conditions of
[25, Definition 3.16]. We have (i) by assertions (1), (2) above; (ii) is
immediate; (iii) follows easily from Lemma 4.1. Next, we show %€ is
Kaplansky by verifying that every strongly prime algebra ¢ of € is abso-
lutely prime (cf. [25, Theorem 3.17(3) and Definition 3.18]); this is im-
mediate by part (1) above and Proposition 4.3. Finally, it is clear from (2)
that € satisfies property F. Q.E.D.

At this point one can already apply Theorems 0.1 through 0.13, but we
want to push these results even further. First we remark without proof that
Levitzki’s theorem, that the lower radical of an associative ring is the
intersection of the prime ideals, goes over to nonassociative rings, so
Proposition 4.3 and Theorem 4.4(1) easily yield:

PropoSITION 4.5.  Every semiprime member of € (defined in Theorem 4.4),
is strongly semiprime.

ProrosiTioN 4.6. If $€€ and $ is semiprime, then § is the subdirect
product of a semiprime associative, commutative algebra and a purely nonas-
sociative, semiprime, generically algebraic algebra of degree 2.
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Proof. Using the decomposition of [25, Proposition 5.4], we need only
show that every purely nonassociative, semiprime member of € is generi-
cally algebraic of degree 2. So suppose R € € is purely nonassociative and
semiprime, and R = $/B where § is generically algebraic of degree 2, with
the quadratic form Q. By Proposition 4.5, R is strongly semiprime, so by
[25, Remark 5.5], B ={strongly prime ideals P of §|B<P and $/P is
nonassociative}. But for each such P, we have Q(¢, B)< Q(¥, P)c P, by
Theorem 4.2, so we conclude that Q(¢¥, B)< B, implying Q induces a
quadratic form Q in R (by Q(x+B)=Q(x)+B). Q.E.D.

The rest of our study of Jordan algebras is motivated as follows: Suppose
we are given a simple Jordan algebra $ whose center Z (a field) has
algebraic closure Z'. Call $ quasi-reduced if § ®,Z' is reduced. Note, by
[12, Theorem 4, p. 197], that any simple finite-dimensional Jordan algebra
is quasi-reduced and thus satisfies all the identities of the appropriate
reduced algebra. Our objective will be to find varietally-defined Kaplansky
classes of Jordan algebras whose simple members are quasi-reduced.

First, we need a definition of Jordan PI-algebra which requires identities
other than the usual Jordan identities. To achieve this end, define induc-
tively a ¢-linear map ¢: ¢{X}—>¢{X} by ¢(1)=1, ¢(X))=X,, and for
monomials h, and h,,

Y(hqhy) = %(ll/(hl)l//(hz) +(hy)¥(hy)).

An element f of ¢{X} will be called Jordan-correct if, given x in §, we can
find a generalized monomial h of yf, with coefficient a such that ax# 0; § is
PI-Jordan if $ has a Jordan-correct identity. It is easy to see that every
multilinearization of a Jordan-correct identity is Jordan-correct. Hence,
every PI-Jordan algebra has a multilinear Jordan-correct identity. (Note
that all generically algebraic Jordan algebras of degree 2 are PI-Jordan, by
Theorem 4.4(2) and [25, Theorem 1.9].)

We shall now look at more Kaplansky classes of PI-Jordan algebras. Let
(R, *) be an algebra with involution and let $(R, *) be the algebra of
symmetric elements of R, under the new multiplication

S1° 82 =%(3132+3231)

(ct. [1, Theorem 6.11]). Suppose that (R, *) is a Jordan algebra §. If ¢
satisfies a Jordan-correct identity f(X,..., X,.), then

PFX +XE, . X + X5

is an identity of (R, *). Moreover, given r in R, one can find a generalized
monomial of f with coefficient a such that a(r+r*)=ar+(ar)*#0, so
ar#0. This shows that f is R-correct. Hence, if § is a PI-Jordan algebra
then (R, *) is a PI-algebra with involution.

The most interesting case of the above situation occurs when R has the
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form M, (A), the algebra of n X n matrices with entries in an algebra A; i.e.
we let {e;|1=i,j=n} be a set of (associative) matrix units, and define
QX aie) X i) =2 8001, €50

Every multilinear generalized monomial which is an identity of A is an
identity of M, (A), which is “why” M, (A) is associative if A is associative. If
A has an involution *: a—a, then M, (A) has an involution (*) given by
(X age;)* =Y age;. It is easy to see that any ideal of M,(A) has the form
M, (B), B an ideal of A; hence any ideal of (M,(A), *) has the form
(M, (B), *), (B, *) an ideal of (A, *).

It has been shown that, given n, there is a variety ¥, of algebras with
involution such that (M, (A), *) is a Jordan algebra if and only if (A, *)e
Y, (cf. [12, Theorem 1, p. 127; ex. 4, p. 132]). For example, ¥, =
{associative algebras} for n=4; ¥’;=/{alternative algebras with involution
satisfying [ X, + X¥, X,, X;]}, i.e. those alternative algebras with involution
whose symmetric elements are nuclear. The Jordan algebras ¥(M,(A), *)
have most interest when A is alternative (in view of [12, Theorem 8, p.
203]), so let us examine %5 a little more closely. If (A, *) is simple and if
(A, *)e 7, then either (i) A is associative, (ii) A is Cayley-Dickson, or (iii)
A is the direct sum of a CD-algebra and its opposite, with (*) the exchange
involution. However, since the symmetric elements are in N(A), we may
rule out (iii). Moreover, in (i), N(A)=Z(A), a field, so all symmetric
elements are invertible; hence, by [12, Theorem 8, p. 170] (*) may be
assumed to be the standard involution, defined as (q,, 4,)* = (41, —q,) in the
notation of Theorem H. (Note that the involution q—q in Q must be
symplectic in order that symmetric elements be nuclear.)

ProrosiTION 4.7. Suppose (A, *) is simple. Then (M, (A), *) is simple
under any one of the three following additional assumptions: (i) n=3; (ii)
P(A, *) is simple; (iii) (A, *)e V5.

Proof. The first assertion is standard and easy, having the proof of [12, p.
129], and the second assertion is even easier, proved using the same ideas.
For the final assertion, we have observed above that A is either associative,
or Cayley-Dickson with (*) the standard involution. In the latter case
F(A, *) is a field, so S(M, (A), *) is already seen to be simple. On the other
hand, if A is associative then M, (A) is associative so (M, (A), *) is simple
by [8], Theorem 2.6 or Theorem 1.1]. Q.E.D.

Say a Jordan algebra $ has type n if $ =%(M,(A), *) for some (A, *) in
V5. In other words, either § = (R, *) for some associative R (which, as
noted above, must be the case if n=4) or $ =S(M,(A), *) where n=<3 and
A is alternative with the symmetric elements of A in the nucleus. Hence, in
the definition of “type n” we may always assume n=3.

Lemma 4.8. If A is an alternative PI-algebra then Nil(M,(A))=
M, (Nil(A)).
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Proof. Clearly Nil(M,(A))=M,(B) for some nil ideal B of A, so we
must merely prove Nil A< B, or, equivalently, that Nil (A/B)=0. Let
B; =Nil(A/B). Then, by Shirshov’s theorem (cf. [17]), B, is locally nilpo-
tent. But then M, (B,) is nil, so

implying B, =0, as desired. Q.E.D.

In particular, A is strongly semiprime iff M, (A) is strongly semiprime, a
useful fact in the subsequent results.

THEOREM 4.9. Let €, be the class of PI-Jordan algebras of type n, for n
fixed, under the categorical definition of ideal (i.e. ideals are kernels of
surjections $,— $,, where $,, $,€%,). The following three conditions are
equivalent:

(1) ¢ is simple (resp. strongly prime, strongly semiprime) in €,,.

(2) F=FM,(A,), *) for suitable simple (resp. strongly prime, strongly
semiprime) (A4, *) in V..

(3) £ is simple (resp. absolutely prime, strongly semiprime) as a ¢-algebra
(i.e. with respect to the usual definition of ideal).

Proof. Since there are at least as many algebra-ideals as ideals with
respect to the class 4, surely (3) implies (1), so we prove (1) (2)=>(3).
Write § = F(M,(A), *).

(1)=>(2). Choose an ideal (P, *) of (A, *), maximal with respect to
FNM,(P)=0, and let (A, *)=(A/P, *). $=P(M,(A,), *), and clearly, in
view of Lemma 4.8, (A, *) is simple (resp. strongly prime, strongly semi-
prime) if ¥ is.

2)=>(3). If (A,, *) is simple then $ is a simple algebra, by Proposition
4.7. If (A4, *) is strongly prime then, by passing to the algebra of central
quotients, we see that $ is absolutely prime. Finally, if Nil(A,) =0, write
(Ay, *) as a subdirect product of strongly prime (A,, *); then $ is a
subdirect product of the absolutely prime $(M,(A,), *), so clearly $ is
strongly semiprime. Q.E.D.

Theorem 4.9 shows in particular that our category &, is quite natural, and
we examine the property (2) more carefully.

Prorosition 4.10. If $=%(M,(A), *) is PI-Jordan and Nil(A, =)=0,
then Z(M,(A), *)=Z($).

Proof. First we note that obviously Z(M, (A), *)<c Z($). To prove the
opposite direction, first we recall that (A, *), and thus A, is PL If (A, *) is
simple then we know (by Theorem 4.9) that ¢ is simple; moreover, since
(A, =) is finite dimensional over the field Z(A, %), $ is also finite dimen-
sional, and we may conclude that Z(¥)=Z(M,(A), *) by inspecting the
classification of finite-dimensional Jordan algebras over a field. If (A, *) is
strongly prime then, (A, *) is absolutely prime, so, letting S = Z(A, *)—{0},
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we have (Ag, *) simple, so $5 =P (M, (As), *) (by [25, Theorem 6.11(ii)])
and thus Z(¥s)=Z(M,(Ag), *). Thus

Z($) =(M,(A), *) N Z(M,(As), *) = Z(M, (A), *).

Finally, in the general situation that Nil(A)=0, we write (A, *) as a
subdirect product of strongly prime (A,, *), and let $, =%(M,(A,),*). By
[25, Theorem 6.11(iii)]), #, is a homomorphic image of $, and $ is
obviously a subdirect product of the ¢.. But we saw above that

Z($,) s Z(M,(A,), *),
for each v, so we conclude Z($)< Z(M,(A), *). Q.E.D.

Tueorem 4.11. For any n, {PI-Jordan algebras of type n} is Kaplansky,
having property F with respect to {§,(X,, X,) | t = 1}. In fact, if Nil(¢) =0, and
if $ has type n and satisfies a Jordan-correct identity of degree d, then there
exists t<d such that g, is $-central and g, is an identity of ¥, for all k>t.

Proof. Let €, ={PI-Jordan algebras of type n}. First we verify that €, is
central, as per [25, Definition 3.16]. Condition (iii) is immediate from [25,
Theorem 6.11(ii)]. To check that condition (i) holds, we shall now verify the
stronger assertion given above, that if #e€ %€, Nil(#)=0 and $ satisfies a
Jordan-correct identity f of degree d, then there exists t <d such that g, is
F-central and g, is an identity of §, for all k> t; in view of the multilineari-
zation technique, we assume that f is multilinear. We then write f as
X, ..., X,). Writing $=%(M,(A), ), where Nil(A)=0 (cf. Theorem
4.9(2)), we see that f is an identity of F[A]=F (M, (A[A]), *) and since
(A[A], *) is semisimple, we can use the decomposition into simple alterna-
tive algebras with involution, coupled with Theorem 6.11(jii), to reduce the
assertion to the case when (A, *) is simple. Let us assume that the coeffi-
cient of X, X, -+ X, in f is a#0, and write {e; | 1 <i, j=n}, a set of matric
units for M, (A). If n>d, substituting e,;,, for X, 1=i=d, would yield

0=-ej f(erxt ey, ex5tes,, ..., €4.d+1 +ed+1,d) =y g+1,

a contradiction, so we have n=d.

At this point, we shall try to maneuver into a position to apply the results
of Racine [22]. First assume A is nonassociative. In the discussion before
Proposition 4.7, we saw that A is a CD-algebra and (*) is the ‘“‘standard”
involution; moreover, by [12, Theorem 1, p. 127], n=3. If n=1 then
F=2Z(A)" and the assertion is immediate; for n=3, our assertion is
essentially [22, Theorem 3]. For n=2, we need to prove that g,=
[X,+X¥ X,+X¥] is (My(A), *)-central, and all g (X,+XF, X,+X%) are
identities, for k>2. By a well-known Zariski topology density argument
(similar to the one used in the proof of [22, Theorem 3]), if we want to
prove, for all symmetric x;, x, in M,(A), that g,(x;, x,) is scalar and
g (x4, x,) =0 for k > 2, we may assume that x, is diagonal; in other words,

*
Xi=ae;;+Beyp and x,=ajetazexntaetate,,
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for suitable a, B, a;, a, in Z(A) and a in A. Let H=(Z(A))[a], a
commutative, associative ring. Since a*=tr(a)—aeH, we have x;, x,€
M,(H), so our assertion is a consequence of Formanek’s theorem (for
associative algebras).

Thus we are left with the case that (A, *) is simple associative. Let
C=Z(A, *), a field with algebraic closure C'. Then

I Bc C'=F(M,(A)®c C', ¥)=~F(M,(A"), *),

for suitable t, with either A'=C" or (A, *)=(C'® ', o). Now our assertion
reduces essentially to [22, Theorem 2].

So we have finally verified (i) of [25, Definition 3.16]. Next, we check (ii).
If $=9WM,(A), *)e%b,, then let A'=A/Nil(A’), and consider $'=
P(M,(A"), ). We know, from Theorem 4.9, together with [25, Theorem
6.11(iii)], that ¢’ is the subdirect product of strongly prime images
P(M,(A"), ) of $'; moreover, this implies Nil($')=0. In addition, by
Lemma 4.8, the canonical map A— A’ induces a homomorphism $— ¢,
whose kernel is nil, so we conclude that $/Nil($)~ $'€ 4, and is a subdirect
product of strongly prime members of 6,. This verifies condition (ii), and we
have proved that 4, is central and satisfies property F.

Finally, Theorem 4.9 shows that any strongly prime member of €, is
absolutely prime, so 4, is Kaplansky. Q.E.D.

Remark 4.12. The classes €, are ‘‘sufficient”, in the sense of [25,
Definition 4.8], as is verified trivially.

Example 4.13. For any alternative algebra A, we have A*=
F(ADB AP, °) by the map x—(x, x), so A* has type 1. Consequently, all
finite-dimensional central simple Jordan algebras either are generically
algebraic of degree 2 or have some type n (cf. [29, p. 101]).

Example 4.14. For m =3, the free special Jordan algebra FSJ(m) has
type 1, since FSJ(m)=%(¢"{X}, r), where r denotes the reversal involu-
tion. (This is [12, Corollary, p. 9].) Since FSJ(2) = FJ(2), we see that FJ(2)
has type 1.

Lemma 4.15.  Any special Jordan algebra generated by 3 or fewer elements
has type 1. In particular, any subalgebra which is generated by 2 elements, of
a Jordan algebra, has type 1.

Proof. Follows easily from [12, Lemma 1, p. 10].
This gives us some canonical identities:

TueoreM 4.16. If ¢ satisfies a Jordan-correct identity f of degree d then,
for each k> d, there exists u such that g.(X;, X,)* is an identity of $.

Proof. For a,b in 4, let $,, be the Jordan ¢-algebra generated by a and
b, and let ¢’ be the complete direct product of all $,, (for all pairs (a, b)).
By Lemma 4.14, each $,, has type 1, implying $#' has type 1, and f is a
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Jordan-correct identity of $'. The theorem then follows easily from
Theorem 4.11 and [25, Theorem 1.9]. Q.E.D.

Our definition of type n is an alternative analogue of reflexive so it may
be worthwhile to explore the alternative analogue of the universal envelope
of a Jordan algebra.

One could try to study the class of algebraic PI-Jordan algebras, in the
hope of proving that it was Kaplansky. The proof of [12, Theorem 4 p. 197]
shows that if # is algebraic over an algebraically closed field, and if 1 is a
finite sum of primitive idempotents, then # is reduced; this leads to:

Conjecture 4.16. If $ is a simple PI-Jordan algebra, algebraic over an

algebraically closed field, then 1 is a sum of orthogonal, primitive idempo-
tents.

Given Conjecture 4.16, one would see immediately that {algebraic PI-
Jordan algebras} is Kaplansky, satisfying property F. Algebraic Jordan
algebras without nilpotent elements are studied extensively by Loustau
(Comm. Alg., vol. 4 (1976), pp. 1045-1070).

Discussion of Results. It seems quite remarkable that the theory of
polynomial identities, which has produced many beautiful theorems for
associative rings, can be placed in a setting beyond the reach of many
associative ring-theoretic methods. For example, modules (and in particular
one-sided ideals) are not significant in this paper, and it is tempting to
believe that the smoothest general treatment of PI-rings would not involve
modules.

One very important class of nonassociative algebras which has been
conspicuously absent in this paper is the class of Lie algebras. Since the
center of a Lie algebra is a nilpotent ideal, strongly semiprime Lie algebras
have trivial centers and therefore have no central polynomials. There are
ways to try to overcome this difficulty; one method is to pass to representa-
tions in associative algebras and study Lie algebras with associative rep-
resentations satisfying polynomial identities. In particular, Lie algebras of
the form A~, A associative, can be handled in this manner. Still, this
approach involves a blatant mixing of categories.

The techniques of this study obviously work for any variety of algebras for
which simple algebras are associative or CD. Recently, such a property has
been shown to hold for a large number of varieties.
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