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1. Introduction

Let An denote the unit ball in the space Cn of N complex variables, and
consider functions f holomorphic in An. When N 1, the function log Ill can
be prescribed almost arbitrarily on the boundary 0An. When N> 1, how-
ever, the behavior of Ill on smaller subsets of 0An tends to be enough to
determine f completely. For instance, if Ill 1 on an open subset of 0A
then f is constant. Recently Forelli ([2], Theorem 1.5) has shown that if
and f2 are holomorphic in An and continuous in the closure, with
on an open subset of OAn, then in fact f/f2 reduces to a constant.

In the present paper we will find that there are subsets Uc 0An which are
topologically thinner than open sets, such that f is completely determined by
the non-tangential limits of Ill on U, under certain growth restrictions on f;
we obtain a result which overlaps Forelli’s but does not contain it. This is a
consequence of Theorem B, stated in Section 2. Our Theorem C contains a
result of Rudin (unpublished, cited in [2]) which states that if f is any
non-constant inner function of An(N> 1) then the cluster set of f at every
boundary point of 0An consists of the full unit disc.
The results of this paper concern not only An, but a rather wide class of

domains containing An; the slice domains defined near the end of this
introductory section.

In the remainder of this section we set out the notation and definitions to
be used throughout. In Section 2 we state the main theorems, and discuss
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them in a rather informal way, placing them in context and drawing some
simple inferences. Section 3 is devoted to technical lemmas concerning
holomorphic continuability, and may be of independent interest. The main
theorems are proved in the final three sections.
The dimension N of our complex space is fixed throughout. For reasons

which will presently be clear, we write points of CN in the form (z, w),
where z 6 C and w =(w2,... WN) CN-1. On a few occasions we find it
convenient to use vector notations p, q, etc. for points of CN. As is
customary, subscripts denote coordinates of w and superscripts are used to
denote a fixed point in w-space.
We reserve the symbol B(w, c) to denote the open ball in w-space with

center w and radius c. Another special notation we find convenient is the
following" if A is any subset of the real interval [0, 2r], then

ein exp {iA} {z" z e, 0 A}.

Finally, AN has the meaning above; the open unit ball of CN.
In addition, we use the following standard set-theoretic notations. If

A c CM, then 0A is the boundary of A in Ct (which is thus a set of real
dimension 2M-1 in general) and cl A is the closure of A in Cyr. The
dimension of the space in which A "lives" will always be clear from the
context. A B is the usual Cartesian product. When A c C and is a
positive real number, then cA is A expanded by the scale factor c, namely
cA {z: z/c A}.
We will say f(z, w) is holomorphic on the set A ff f is single-valued and

holomorphic on some open subset of Cn containing A, and z-analytic on A
means that when (z, w) A, f is an analytic function of z for each fixed w. If
f is defined in D Cn and 1 6 cl D, then CD (f, 1) is the full cluster set of f at
p, as defined on [1, p. 1].

DEFINITION 1.1. We call D CN a slice domain if it is of the form

D ={(z, w)" ]zl<R(w), weD} (1.1)

with/ some domain in CN-1 and R(w) is continuously differentiable with
respect to real coordinates and bounded away from zero on the compact
subsets of
For example, AN is a slice domain, with R(w)= /1-[]w[]2, and/ the open

unit ball of CN-1.
The function R(w) is defined on/, and the points (R(w)e, w) comprise

all of 0D except for the negligible set where w e OD. If f is defined in the
slice domain D, we introduce the following special limit at (R(w)e, w)c
OD;

Lf(O, w)= lim log If(tR(w)e
t-+l--0

(1.2)

provided this limit exists in the extended real numbers.
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DEFINITION 1.2. For slice domains D, we define function classes as
follows"

(i) f 2(D) if f is a non-constant holomorphic function in D, fl -< 1 in D,
and Lf(O, w)=0 almost everywhere on [0, 27r]X

(ii) f (D) if f 23(D) and has no zeros in D.

DEFINITION 1.3. A subset S of the w-space C- 1 will be called a

determining set relative to the ball B(w, ,3) if S is dense in B(w, 6), and S
meets OB(w, ,3) in a set of positive measure for some sequence 6, 0.

We conclude this section by pointing out a simple [act concerning the
special limit Lf.
LEMMA 1.1. If log Ill has a non-tangential limit at

(R(w)e’, w), we: 0,
then this non-tangential limit is equal to Lf(0, w).

Proof. Put p (R(w)e, w). The normal to OD at p is the gradient there
of the function

x+y-R(u, v, u3, v,. UN, VN)

(Z X + iy, Wi Ui + ivi), and since R : 0 on I) this gradient is co-directional
with

N (cos 0, sin 0,
OR OR OR O0_v)ooo

The path (tR(w)e, w), 0--< < 1, has tangent vector

T (R(w) cos 0, R(w) sin 0, 0,..., 0).

We see that T and N are not orthogonal.

2. Statement and discussion of the main theorems

THEOREM A. Let D be the slice domain (1.1), and let 1) be an open ball
about some point of OD. Suppose f is holomorphic in D f31, continuous in
cl D N), and real valued on OD 12.
Then either f is constant, or log R(w) is pluriha,rmonic in some open set.

We remark that Theorem A generalizes a result which is well-known (and
alluded to above) for AN to all slice domains.

THZOREM B. Let f= fl/f2, where and ]’ are holomorphic in the slice
domain (1.1). Suppose:

(i) and fz are free of zeros in a set

{(z, w)" z R(w)E, w e B(w, iS)}
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with E a simply connected subdomain of the unit disc such that cl E contains
the arc ei, I an interval;

(ii) Lf(0, w)= 0, (0, w)e I x S, where S c D is a determining set relative to
B(w,);

(iii) there exists some finite valued unction O(w) on b such that

sup
I!;1<1 Igl<

Then either f is constant, or log R(w) is pluriharmonic on some open set
(which as a matter of fact can be taken to lie in B(w, 8)).

THEOREM C. Let f(D), D the slice domain (1.1). Then either CD(f, P)
is the full unit disc for every p OD, or log R(w) is pluriharmonic on some
open set.

Let us see what Theorem B tells us when D AN. A simple computation
shows that the corresponding function log R(w) is nowhere even separately
harmonic in the coordinates wj, thus our conclusion is that fl/fz is constant if
[f(z, w)l=[f2(z, w)[ on e it x S in the sense of non-tangential limits. We
compare this with the result of Forelli [2, Theorem 1.5] alluded to in our
introduction. Forelli does not place any restrictions on the zeros of f and f2.
Our conclusion though is stronger than the Forelli result in two directions;
we do not require f and f2 to be continuous in cl AN and, more significantly
we feel, e** S can be topologically much thinner than the open subsets of

COROLLARY 2.1. Let gl, g2 be holomorphic with bounded real parts in the
slice domain D. Suppose that, in the sense of non-tangential limits,

Re g(R(w)e, w)=Re g2(R(w)e, w), (0, w)IxS,

where I is an interval and S a determining set.
Then either g(z, w)=ga(z, w)+ic, c a real constant, or log R(w)

pluriharmonic in some open set.

Proof. Let f, exp g,, n 1, 2. Then fl and f2 satisfy the conditions of
Theorem B, condition (i) being met vacuously.

We say f is an inner function for the domain
[f[-< 1 in , and f has a radial limit of unit modulus almost everywhere on. (We note that if gl is a polydisc it is customary to use the term "inner
function" with a different meaning.) The existence of non-constant inner
functions, even for the ball, is still open. A recent result of Rudin (unpub-
lished, cited in [2]) is that if f is a non-constant inner function for AN then
the cluster set at every boundary point contains the unit disc. In view of
Lemma 2.1 below, Theorem C contains Rudin’s result, and generalizes it to
any slice domain for which the notion of radial limit makes sense; further-
more radial limits can be replaced by any kind of non-tangential limit.
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LEMMA 2.1. Let be a non-constant holomorphic ]:unction in the slice
domain D, with I1 <- 1 in D. Let p (R(w)e, w), w ). Suppose

lim f(z, w) e’, "r real,
(z, )---p

along some non-tangential path F out to p. Then Lf(O, w)= O.

Proof. Because of Lemma 1.1, it suffices to show f(z, w)-- e uniformly
in any Stolz cone with vertex at p.
Let u =Re (1-e-’f). Then u is harmonic in D, and the maximum

modulus property of f shows u > 0 in D. Furthermore u tends to zero along
F.
Choose V and V’ to be Stolz cones in D with vertex at p, V’ properly

including V and V wide enough so that F eventually lies in V. Let

V ={q: q V, e/2--<llp-qll
and

V’ {q: q V’,

By Harnack’s Principle [4, p. 263] (note that the method of proof is
independent of the number of variables) there exists a constant c deter-
mined only by V and V such that

(2.1) u(q2) cu(qx), ql V, q2 V.
Because the geometry is homogeneous, c is actually independent of e.
Now in (2.1) let ql =qx(e) be the point which maximizes u on F V.

Thus for any point q2 in cl V we have u(q2)cu(q(e)), and since u(q(e))
tends to zero with e the conclusion follows.

We conclude this section by pointing out a couple of generalizations which
follow from inspection.
The condition on S (Definition 1.3) is used only in Lemma 3.3, where it is

necessary to have S meet OB(w, c) in a set of positive measure for some c
suciently small (so that certain sets overlap properly). Thus:

COROLLARY 2.2. The conclusion of Theorem B holds if the condition that S
be a determining set is replaced by the condition that S be dense in B(w,
and meet OB(w, ) in a set of positive measure, for some positive suciently
small depending on I, K, w and the function R.

Finally, our theorems are subject to a kind of "localization". Rather than
require that D be a slice domain, our conclusions follow if only D contains a
set of the form

{(z, w)" z < R(w)e, w ,0 02}, (2.2)

with any open set, provided in the case of Theorem B that S lies in or,
in the case of Theorem C, that p lies in the closure of the set (2.2).
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3. Technical lemmas

These lemmas are all concerned with holomorphic continuation. Through-
out, D, /3 and the function R are as in Definition 1.1.

LEMMA 3.1. Put B =B(w, c). Let the real-valued functions q,(w) be
plurisubharmonic in cl B. Suppose there are numbers a and [3, and a subset S
of OB of positive measure, such that

q, (w) <_ a, w cl B,

lim Cn(w)_< , weS.

Then ]:or any positive e there exists an open subset o[ B on which

lim Cn(w) </3 +e.

Proof. A plurisubharmonic function is subharmonic, in the usual sense of
dominance by harmonic functions, thus

q,(w)<-- fo P(w, to)q(to) dtr(to)<-- I P(w, to)v(to) dtr(to), tomB

where v, (to)--sup._>n q,, (to), dtr(to) is normalized Lebesgue measure on 0B,
and P is the Poisson kernal. It follows from Fatou’s Lemma that

(3.1) qn(w)<--f P(w, to)v(to)dtr(to), weB
B

where v lim bn lim v,).
If v is not integrable over OB then (3.1) is true with both sides equal -,

and we are done. Otherwise, almost every point to of OB is a regular point
for v, meaning a point where the right-hand side of (3.1) tends uniformly to
v(to) in any Stolz cone at to

0 [8, pp. 197-8]. (In [8] this principle is proved for
a half-space, but the proof adapts to the context of a ball in view of an
inequality in [9, p. 10].) If we take to a regular point such that v(to) _</3, we
have v(w)</3 + e in an open subset of a Stolz cone at too.
LEMMA 3.2. Let U be an open subset of , and K a simply-connected

plane domain containing an arc of the unit circle. Let

T ={(z, w): z R(w)K, w U}.

Then if f is z-analytic in T and holomorphic in T fqD, f is actually
holomorphic in T.

Proof. We fix attention on a point (z, w) T, and construct a neighbor-
hood of this point in which f is holomorphic.
Because R is continuous, we can find a sufficiently small polydisc P about

the origin of CN-l, and a simply-connected relatively compact subdomain
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K’ of K, such that the set

T’ {(z, w)" z R(w)K’, w w + P}

will fit inside T and will cover (z, w). Furthermore, we can arrange that for
some point z’ common to K’ and the open unit disc, the set

T"={(z,w):z=R(w)z ’, ww+P}

lies in T C3 D. We will show that f extends to be holomorphic on T’.
Let z =4)(K) be the conformal mapping of IKI<I onto K’ such that

4)(0) z’. The biholomorphism z R(w)((), w w+ oJ transforms
f(z, w) into

f(, oo) f(R(w)4(), o + w).

Then is -analytic on the N-dimensional polydisc

pN {(, to)"

since f is z-analytic on T’, and f is holomorphic on a set of the form

since f is holomorphic on T". From a theorem of Rothstein [7, p. 8], f is
holomorphic on pN and hence f is holomorphic on T’.

LEMMA 3.3. Let K be a simply connected plane domain containing an arc
eu of the unit circle. Let S be a determining set (cf. Definition 1.3) relative to
the ball B(w, (3)c . Put Ko for the intersection of K with the open unit disc.
Let

T {(z, w)" z e R(w)K, w e S}.

Suppose f is holomorphic on the set

{(z, w)" w e R(w)Ko, w e B(w, ‘3)}

and z-analytic on T.
Then f extends holomorphically to a set containing an open patch of OD of

the form {(z, w)" z e R(w)eu, w e U} with U an open subset of B(w, ,3).

Proof. Let I’ be an arbitrary closed subinterval of I. Because of Lemma
3.2, we are done if we can produce K*, a relatively compact simply-
connected subdomain of K containing exp {iI’}, and an open subset U of
B(w, ‘3), such that f is z-analytic in the set

(3.2) {(z, w): z R(w)K*, w U}.

First, choose K’ any relatively compact simply connected subdomain of K
which contains exp{iI’}. Because R(w) is continuous at w, there exists

n >0 such that when IIw-wll<n the plane set R(w)K’ meets both
R(w)Ko and R(w)(K-Ko) in non-empty open sets, and is contained in
R(w)K.
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Let z’ be any point common to R(w)K and R(w)Ko, and let z q()
be the conformal mapping of I[ < 1 onto R(w)K such that z’= (0). There
exists a number c < 1 such that the pre-image of R(w)K’ covers I1 < c and
the image of ]1< c contains an open neighborhood of exp{iI’} (so long as
IIw-w[l< ). Consider now the function F(, w)= f((), w). Choose n so
large that 6n < rl. Then the function F is holomorphic in a neighborhood of
(0, w), and is -analytic on the set

{(, w): Il<c, weSOB(w, ,)}.

Our task is to show that for any e > 0 there exists an open Uc B(w, 8n)
such that F is -analytic on

(3.3) {(, w): Il < c e, w U}.

This will actually complete the proof of the lemma, for if e is small enough
the image of the set (3.3) under the biholomorphism z q(), w w, will
contain a set of the form (3.2), with K* meeting the appropriate conditions,
and f will be z-analytic on this set.
F has a Taylor expansion about (0, w) which, by normal convergence,

can locally be arranged to read

(3.4) F(, w)= a,(w)".

For fixed w this series converges in any disc Izl < r in which F is -analytic.
Let r(w) be the radius of convergence of (3.4). If wSfqOB(w, ,,) then
r(w) >_ c, and also

log 1/r(w)= lim (l/n) log la.(w)l

The usual Cauchy estimate for coefficients shows there is a finite upper
bound for the functions (1/n)logla,(w)l in clB(w,6,), and they are
plurisubharmonie in el B(w, 3,) (of. [3, p. 44]). Identifying (l/n)log
with the functions ,(w) of Lemma 3.1 and taking B =B(w, ,), we infer
that for any e>0 there is an open subset U of B(w,6n) such that
r(w) > c-, w U. Thus F is -analytic on a set (3.3).

4. Proof of Theorem A

We may suppose OD fqD, is of the form

S ={(z, w): z R(w)ei, 0 I, w U}

where I is an interval and U is an open subset of
By the reflection principle f is z-analytic in f, and the continuation across
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OD is given by the formula

(4.1) f(z, w)= f(R2(w)/, w), (z, w) f-D.

By Lemma 3.2, f is holomorphic in . We will find, however, that the
right-hand side of (4.1) cannot in general be analytic in the coordinates of w
unless R is subject to special conditions.
We use the Wirtinger operators O/Owi, 0/0, (cf. [3, p. 1]). The Wirtinger

operators are not differentiations in the usual sense, but they satisfy the
usual chain rule and it is easily checked that

(4.2) OG/O@j (OG/Owj).

The condition that f be wi-analytic is Of/Ofv =0. If (z, w) I)-D then
Izl>R(w), and we can write K=Ra(w)/ with IKI<R(w). Using (4.2) to
apply O/O@i to (4.1), we find that the condition for f to be wi-analytic in
fl-D is

(4.3) (2UR(w))f(K, w)
OR
+fw,(K,w)=0, ]=2,...,N,
Ow

where f and fw, are partial derivatives with K regarded as an independent
variable, and O/Owj is still the Wirtinger operator, not necessarily a differen-
tiation.

If f vanishes identically in IIf3D, then equations (4.3) show that f is
constant. Otherwise (4.3) is equivalent off the zero-set of fa to the equations

(4.4) 0(log R)/Owi -f,(K, w)/Kf(K, w)

a set of equations valid in some open set.f’. Now since the right-hand side
of (4.4) is holomorphic, it is sent to zero by O/O@k, and also the left-hand side
of (4.4) is twice-continuously differentiable on fY. We have

O2(log R)/Ow Ovk 0 for all ], k,

which means log R(w) is pluriharmonic in the projection of f’ onto w-
space.

5. Proof of Theorem B

First, fix w in S. Because of hypothesis (iii) and the fact that f2(z, w)7 0
for fixed w S, the function f(z, w) is a function of bounded type, as a
function of z, relative to the disc Izl < R(w), hence by well known theory (cf.
[6, pp. 185 ft.]) has a representation

R(w)ei’ + z
du(w, t)(5.1) f(z, w) (Bl(z, w)/Ba(z, w)) exp

R(w)eit- z
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where, w being fixed, B1 and B2 are Blashke products in z relative to the
disc Izl < R(w) and v(w, t) is a function of bounded variation in t. The zeros
of B1 and B2 are bounded away from the arc

(5.2) R(w)eit

Thus, as is not hard to show, B and B2 converge uniformly out to (5.2) (for
each fixed w S) to continuous functions of unit modulus. Thus, for each
fixed w S, the function

2 R(w)eit + z
Re

R(w)e,t_ z
c/(w, t)

has vanishing radial limit on the interval L It follows trivially from a
uniqueness theorem of Lohwater [5], that dr(w, t) vanishes identically on I
for each w S. We infer that for w S, f(z, w) is z-continuous out to and on
the arc (5.2), and being of unit modulus on the arc can be continued
analytically across the arc by reflection.
Thus f is z,analytic on a set T ={(z, w): z R(w)K, w S} where K meets

the conditions imposed in Lemma 3.3. Because of hypothesis (i), we can
apply Lemma 3.3 to infer that f and log f are holomorphic on an open patch
of c3D of the form

T’ ={(z, w): z R(w)e’, w U}

with U an open subset of B(w, ). In particular f and log f are continuous
on the set T’; thus, since S is dense in U and Lf(O, w)=0 on Ix S we have
in fact

(5.3) Lf(O, w) O, (0, w) I x U.

We can now apply Theorem A to the function log ,, which is z-analytic
on T’ and, by (5.3), real valued on T’ fqOD. We conclude that either f is
constant or log R(w) is pluriharmonic on some open subset of U.

6. Proof of Theorem C

We show first that it is sufficient to prove Theorem C for the sub-class
(D). If f 2(D) we can form a new function g 0 of where

o(r) exp {(e + r)/(e )}.

The relevant properties of 0 are well known; 0 is a singular inner
function of the unit disc, and I0()1-- 1 uniformly as tends, in any
manner, to a point of the circumference other than e. It is easy to check
that g is holomorphic in D, non-constant, and ]g] < 1 in D. We have

lim g(tR(w) (1_3 )e w)= 0 f(tR(w)e, w)
t--l --0 0
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unless

(6.1) lira f(tR(w)ei, w) e.
t--)l--O

Therefore L,((, w)-0 unless (6.1) is true. Thus (D) unless (6.1) holds
on a set of positive measure on [0, 2r /). This latter possibility, however,
can happen for at most countably many O, which we may assume have been
avoided in our choice of 0.
Suppose now that CD(f, p) is nOt the full disc. Then CD(f, p) omits some

open subset of the disc, and by looking at the (multiple-valued) function
we see that Co(g, p) is not the full disc.
We next prove a simple lemma.

LEMMA 6.1. Let f(D), D the slice domain (1.1). Then, for almost
every w D, f(z, w) is a singular inner function of z for the disc

Proof. Lebesgue measure on I/ can be decomposed as dm- dO dw.
By dominated convergence

0 Lf(0, w) dm= Lf(O, w) dO dw

and since Lf is non-positive we must have

(6.2) Lf(O, w) dO 0

for almost all w e D.
Let V/ be the set where (6.2) holds. For w e V, f is either a constant

function or a singular inner function in z. Unless f =0, the zero set of
does not have positive measure, so either f(z, w) is a singular inner function
of z for almost every w e V, or f is independent of z throughout D. In the
latter case, Ill 1 for almost all w in/3, and as a holomorphic function of w
alone f must be constant, contradicting the definition of (D).

Now let Poe OD. If CD (f, Po) is not the full disc, then we infer by a simple
diagonal argument that there is a neighborhood N of Po on OD such that
CD(f, p) is not the full disc for any p e N. We may assume

N={(z,w)’z=R(w)e’, 0 I, w e U}

where I and U are open. Let

S ={w" w U, f(z, w) is a singular inner function of z for

From duster set theory of functions of one variable [1, p. 95] we find that f
is z-analytic across exp (i/) when w e S, and Ill=-1 on that set. Because of
Lemma 6.1, S satisfies the hypothesis of Theorem B. Applying Theorem B
with fl f, f2 1, and E the unit disc, we have completed the proof.
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