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SEMI-FREE GROUP ACTIONS
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1. Introduction

In the study of equivariant differential topology, there has been consider-
able recent interest in the classification of semi-free actions; i.e. differential
actions of a compact Lie group with every isotropy subgroup being either
the entire group or the unit subgroup. This interest stems largely from the
fact that free actions are ‘“understood’” and that the next simplest case is the
semi-free case to which recently developed tools apply nicely.

The question with which this paper will be concerned is: Given a compact
Lie group G, which unoriented bordism classes of compact manifolds
contain a representative on which G acts semi-freely?

The answer is trivial, of course, for every manifold M admits a semi-free
action which is trivial; i.e. every isotropy group is the entire group, and so
every class contains such a representative. This trivial case must be ex-
cluded, and one seeks those classes which contain a representative M on
which G acts semi-freely and non-trivially in the sense that no component of
M consists entirely of points fixed by G. This problem is somewhat less
trivial.

In Section 2, the necessary general nonsense of setting up appropriate
bordism groups will be accomplished. In addition, the problem will be
reduced to a special class of groups—those G which admit an orthogonal
representation which is free on the corresponding sphere, and which are not
finite of odd order. In Section 3, Conner and Floyd’s methods will be used
to compute the bordism groups partially, or rather theoretically. This
reduces the problem to understanding the classifying space for principal G
bundles and the representations of G. In addition the case G = Z, will be
thoroughly studied, since everything will map into this case.

In Section 4, the work really begins. Based on the general nonsense, and
the partial calculations, one can state exactly what will be proved. This
reduces the problem to verifying certain properties for each group involved,
and in essence gives the plan for the remaining sections.

In Section 5, the infinite groups admitting the appropriate representations
will be studied, and in Section 6 the finite groups will be studied. In Section
7, some examples of groups will be given to show that all potential images in
Ny actually arise, and examples of manifolds to show that the images are
distinct.

Received February 24, 1978.

© 1979 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

666



SEMI-FREE GROUP ACTIONS 667

I am indebted to John Ewing for several conversations about representa-
tions which greatly simplified my original arguments, and to the National
Science Foundation for financial support during this work.

2. General nonsense

Throughout this paper, all manifolds (and manifolds with boundary) will
be compact and differentiable. G will denote a compact Lie group, and all G
actions will be differentiable. If G acts on X and x € X, G, will denote the
isotropy group {ge G | gx =x}.

Following Conner and Floyd’s ideas in [3], one may introduce bordism
groups of G actions:

(a) NE(F), the unoriented bordism group of free G actions.

(b) NF(SF), the unoriented bordism group of semi-free G actions. (Note
that semi-free actions do not come from a family in the sense of [4], but
there is no difficulty in extending the techniques to these actions.)

() NE(SF, F), the relative bordism group of semi-free G actions on
manifolds with boundary for which the action is free on the boundary.

There is an exact sequence of N, modules, where N, denotes the
unoriented bordism ring, given by

RNG(F)——> NE(SF)

#(SE, F)

in which i considers a free action as semi-free, j considers a closed manifold
as a manifold with empty boundary, and 9 takes the class of the boundary.
In each case the module structure is obtained by taking the cartesian
product with a closed manifold and letting G act on the product by acting
only on the “second” coordinate.

One has augmentations

e:NGF)> Ny and &: NF(SF) —> Ny

which ignore the G action, which are 4 module homomorphisms.

There is an Ny module homomorphism t: Ny — NG(SF) which assigns to
M the class of M with trivial G action, gx = x for all x. Since ¢t =1, this is
monic. Being given ¢: GXM — M a semi-free G action, M decomposes
into a disjoint union M, UM,, where M; is the union of those components
of M for which every point has isotropy group G, = G, and M, is the union
of the remaining components. Clearly M, and M, are invariant under the
action of G. Further, if M is a manifold with boundary, (6M), =d(M,) and
(0M), =93(M,), i.e. if some boundary component X belongs to (dM),, the
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entire component of M to which it belongs is fixed pointwise by G. There
are then N, module homomorphisms

m: NS(SF) — NE(SF)

which assign to M the class of M;, i =1, 2, with image , = image t, and with
the image of i, being a complementary summand for image .

The image of r, is the bordism group of non-trivial semi-free actions. As
outlined in the introduction, the main problem of this paper is:

Problem. For a compact Lie group G, what is the image of
e: mNE(SF) —> Ny ?

Similarly, ; may be defined on NEG(SF, F) and if M =M, UM, where M
is a manifold with boundary, then M, must be closed for the action on d(M,)
is both free and every isotropy group is G. (Except when G ={1}, a case we
shall ignore, this gives d(M,)=#0.)

Further i: NG(F) — NE(SF) has image contained in the image of m,
(except for G ={1}), and one has an exact sequence

NG (F)—— mNE(SF)
A i
mNG(SF, F)

This brings one to the first and simplest result:

ProrosiTion 2.1. If G#{1} is a compact Lie group, the image of
e NGF)—> Ny is

(@) all of Ny if G is finite of odd order,
(b) zero otherwise.

Thus, if G is finite of odd order, &: m,NG(SF) — Ny is epic.

Proof. If G is finite of odd order, and M is any closed manifold, M X G
has the free G action given by multiplication in the second variable, and is
bordant to M.

If G is not finite of odd order, then G contains a subgroup Z,, cyclic of
order 2, with generator ¢, and if G acts freely on M, then M is the boundary
of Mx[-1,1}/(m, x)~(tm,—x). W

Having analyzed free actions, one then observes that a semi-free action on
a closed manifold decomposes into 3 disjoint portions, M = M; U M4, U M},
where as before M, is the union of those components pointwise fixed by
G, M} is the union of those components on which every point has isotropy
group equal to {1}, and M3 is the remainder.

Now being given a component N of M}, there is some point ne N with
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gn=n for all ge G, so N is G invariant. However, there must also be a
point n'e N for which G, ={1}.

Being given such a component N, the fixed set of N, F is the disjoint
union of closed submanifolds F* (the union of those components of dimen-
sion k) with k <dim (N)=n. A tubular neighborhood of F* in N may then
be identified with the disc bundle D(v" ™) of the normal bundle v"~ of F*
in N, with G acting linearly in the fibers of »" 7. Since the G action is
semi-free, the induced representation on a fiber is a linear representation
which acts freely on the sphere of that representation. (Note that with an
invariant Riemannian metric, the representation is orthogonal, and so
preserves the unit sphere.)

Groups which admit orthogonal representations which are free on the

sphere have been studied extensively. A very nice reference is Wolf [6].
Summarizing, one has:

ProrosiTion 2.2.  If G does not admit an orthogonal representation which
is fixed point free on the sphere, then every non-trivial semi-free action is free.
Thus i: NG(F)—> mNGF(SF) is an isomorphism and the image of
e: MNG(SF) —> Ny is

(@) all of Ny if G is finite of odd order,
(b) zero otherwise.

Thus, one is left to consider those G which admit an orthogonal represen-

tation which is free on the sphere, and further, need consider only those G
which are not finite of odd order.

Note. For G finite of odd order, one might try to consider actions
¢: G XM — M for which each component of M contains points fixed by G
and points with isotropy group {1} in the hope of splitting off image (i). This
does not work. Being given M as above and a connnected closed manifold
N, one may form a G-connected sum M#g(N X G) by cutting out disc
neighborhoods of an orbit Gm for me M with G,,# G and of n X G for
some n € N and sewing along the resulting boundaries. This gives a G action
of the desired type on a manifold bordant to MU N.

One final point of general nonsense is worth mentioning. If G acts
semi-freely on M and H < G is a subgroup, then H also acts semi-freely on
M. This defines restriction homomorphisms, denoted p§; relating each of the
groups. The elementary properties of these restrictions will play a major role
in studying the bordism problem.

In particular, if G acts orthogonally on V (a representation space) and
freely on the sphere, and if G is not finite of odd order, then G contains an
element of order 2. Since this element acts as multiplication by —1 in V; it
must be unique. Further, it is central in G. This subgroup will be denoted
Z,, and p will denote restriction to this subgroup.
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3. Calculation of the groups

In order to understand the image of € more thoroughly, one needs to
analyze the groups of G actions. It will be assumed that G acts orthogonally
on some representation space, and freely on the sphere, and that G is not
finite of odd order.

First, one recalls the result of Conner and Floyd [3; (19.1)]:

ProrosiTiION 3.1. Assigning to ¢: GXM—> M the class of the map
f: M|G — BG classifying the principal G bundle mw: M — M|G defines an
isomorphism w: NG(F) > NG _aim c(BG)

If G is finite, one may make use of facts about the cohomology of groups
to analyze free actions. One of the main results needed will be:

ProrosiTion 3.2.  If G is finite and S < G is a Sylow 2-subgroup of G, then
the restriction p&: NG (F) — N5.(F) is monic.

Proof. Given ¢:GXM—M, one has the map f:MG—
BG. pf(lvl,¢) is represented by the map f': M/S — BS which is the
induced covering from the diagram

M/S — BS

,fl l,,

M/G — BG.
If f': M/S — BS bounds, then for all xe H*(BS; Z,) and all w=(,...,1i,),
(W, (MIS)U f™*(x), [M/STy=0.
Now 7*w,(M/G)=w,(M/S), so

(W, (M/G) U f*(y), mi[MIST) = (w, (MIS)U 7*f*(y), [M/S])

=(w,,(M/S)f*m*(y), [M/S])
=0

for all ye H*(BG; Z,). Since wi[M/S]=[M/G], all Stiefel-Whitney num-
bers of f: M/G — BG are zero, and f: M/G — BG bounds. W

In order to analyze NE(SF, F), one follows Conner and Floyd [3]. Being
given ¢: C X M" — M" which is semi-free, and free on oM, one gives M" a
Riemannian metric invariant under G. The fixed set F of G is then a disjoint
union of closed submanifolds F* (the union of those components of F of
dimension k) imbedded in the interior of M. Let v,_, denote the normal
bundle of F* in M; G induces, via the differential, an action by bundle maps
on v, _, preserving the Riemannian metric. A tubular neighborhood of F in
M may be identified equivariantly with the disjoint union of the disc bundles
D(v,,_,) with their linear actions, and in fact (M, ¢) is bordant to the union
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of these bundle actions, for ¢ is free on the complement of the tubular
neighborhood.

Now examining the bundle v,_, we see that v,_, decomposes into the
Whitney sum of G-invariant subbundles vY_,, corresponding to the ir-
reducible orthogonal representations V of G for which G acts freely on the
sphere of V, where vY_, is characterized by the fact that each fiber is a sum
of copies of the representation V.

Now letting V be any such irreducible representation of G, let d(V)
denote the real dimension of V, and for each m, let C,,(V)< O(md(V)) be
the subgroup of the orthogonal group of V@---@V (m times) which
centralizes the action of G. The bundle »vY_, (over a given component of F)
has fiber dimension md(V) for some m and is classified by a map into
BC,, (V). It is then immediate that:

ProrosrTion 3.3. Let V,, ..., V, denote the distinct irreducible orthogonal
representations of G with G acting freely on the sphere of each V,. Then the
fixed point homomorphism

F: NI (SF, F) = @gny Ry -5 m,a(BCp, (V) X - - X BC,, (V)

is an isomorphism, where d,=d(V;) and the sum is over all sequences
(m)y=(my,...,m).

Note. The fixed components of M™ of dimension n—) m, d, = n—k over
which each vY", has the dimension m; d; is mapped into

Ble(Vl) Koee XBCm,(‘/r)

to classify the bundles vV'_,.

The term (m)=(0, ..., 0) may be identified with i, and is the image of
;. The remaining summands form the image of .

The homomorphism 8: RE(SF, F) — NE_,(F) may be described as follows:
Given f: F*— BC,, (V)X -xBC,,(V,), one forms the induced vector
bundle and takes the sphere bundle, on which G acts freely.

Thus, to compute NE(F) and NF(SF, F) one must understand in some
detail the classifying space BG and the appropriate representations of G.

This is, of course, all a generalization of the original work of Conner and
Floyd [3] on involutions. Before proceeding, it is useful to summarize this
work, since every case will be mapped into it.

Thus with G = Z,, the results above become

*
NE(F)=Ny(BZ;) and NZ(SF, F)= d Ny_(BO(k))
k=0

with 772%22(SF, F) 5@2(:1 %*_k(BO(k)).

Now for k =1, one has O(k)= Z,, and in fact, the homomorphism d maps
the summand Ny _;(BO(1)) isomorphically onto RZ=(F). To see this, note
that if T:M—M is a free involution, (M, T) is the boundary of
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Mx[—1, 1}/(m, x)”(Tm, —x) with involution induced by T x1 or 1x—1. The
fixed set of this involution is M/Z, and the normal bundle is the line bundle
wM— M/ Z2.

This gives [3, 28.1], and its analog, that the sequences

0 — NZ—1 5 NZ(SF, F)——> NZ(F)— 0
and

0 — m,NZ(SF)—> m,NZ(SF, F)——>NZ(F) — 0

are split and short exact. (Note that every Z, action is automatically
semi-free.) Corresponding to this splitting one has a left inverse to j given by

P: NZ:(SF,F)—>N%> or P: w,N%(SF, F) — m,N%(SF)
which assigns to the bundle £ over N, the manifold

D(®)Ax™—x/x e S(&)}

obtained from the disc bundle of & D(&), by identifying antipodal points of
the sphere bundle, S(£), with the involution induced by multiplication by —1
in the fibers of & This may be alternately described as RP((§D1), the
projective space bundle of lines in the fibers of the Whitney sum of £ and a
trivial line bundle 1, with the involution induced by multiplication by —1 x 1
or 1X—1 in the fibers of £P1.

In particular, P: ®f_, Ny (BO(k)) = m,N%(SF) is an isomorphism, and
£: mNZ2(SF) — N has image the ideal generated by the RP(£®D 1) with & a
vector bundle of fiber dimension at least 2. One may then compute this
ideal, as has been done many times to show

ProrosiTION 3.4, The ideal in N, consisting of classes which admit a
representative with non-trivial semi-free Z, action; i.e.

image {e: m,NZ(SF) — Ny}

is precisely the augmentation ideal of positive dimensional classes.

4. The plan

Again, it will be assumed that G acts orthogonally on some representation
space and freely on the sphere, and that G is not finite of odd order.

For any positive integer d, one introduces an ideal I; =N, as follows:
(1) Let A; =Pr_1 Nu_ia(BO(k)), and let

far Ag— €=Bl RNy (BO())) = m,NZ(SF, F)

be the homomorphism assigning to the bundle & — N in Ny, (BO(k)) the
bundle dé = (¢P- - - D £) — N, the d-fold Whitney sum, in Ny_, ,(BO(kd)).
(2) Let K;< A, be the kernel of the composite

Ay—s 2, MZ(SF, F)—>NZ2 (F).
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(3) Let I, =N, be the image of K; under ePf,;, where
eP: mNZ(SF, F) — Ny

assigns to £ — N the bordism class of RP(£D1).
The main result of this paper will be:

ProrosiTioN 4.1, If G acts orthogonally on some representation space and
freely on the sphere, and if G is not finite of odd order, then there exists an
integer d =dim (V), the dimension of each irreducible representation V of G

for which G acts freely on the sphere, so that the image of €: m,Ng(SF) — Ny
is precisely I,.

Actually, much more will be shown. Specifically, it will be verified that:

Fact 1. The image of the restriction p: m,NF(SF, F) - m,N%(SF, F) is
precisely the image of f,.

Fact 2. In the commutative diagram

mNS(SF, F)——>NG(F)

pl ]o’
7. NG(SF, F)—>N5(F),
p' is monic on image o.

LemMa 4.2. These facts imply Proposition 4.1.

Proof. First note that &: mNG(SF) — N, vanishes on the image of
i: NG(F)— m,NE(SF) and further factors through the restriction to Z,; i.e.
one has the commutative diagram

Wzmg (SF)
9 i
0 — m,NE(SF)/imi—— m,NI(SF, F)—— NZ(F)

o"

|

0— ,,,.29&2_""_, m,MZ(SF, F)—%> NZ(F)

€
l €eP

RNy

[ o

in which the composite £p”0 = ePpj'0 is €: mNE(SF) — Ny.
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For any a € m,N$(SF), ea = ePpj'8(a), and
j'6(a)eker p'd =ker d'p,
so pj'6(a)ekerd, and j'0(a)ef;(A,) by Fact 1. Thus
pi'0(a) € f1(Ky) =fs(Ag)Nker &' and &Ppj'0(a) € ePfy(Ky) = I

On the other hand, if Bel;, B =¢Pf;(K) for some KeK,, and f,(K)=
p(y) for some ye mNE(SF, F). Now 8'p(y)=df,(K)=0 so p’d(y)=0 but
by Fact 2), p’ is monic on imd, so d(y)=0 and y=j'(§) for some 6¢
m,NE(SF)/imi. Since 0 is epic, there is an a € m,NF(SF) with 6(a) = 8. Then

&(a) = €Ppj'0(a) = €Ppj'(8) = ePp(y) = ePf,(K) = B.
Thus imagine {e: mNF(SF) —> N }=1,, M

Note. Actually, this is not quite precise. One must know that dim (V) is
independent of V. This needs to be verified for each group.
There are a couple of minor results which will be useful in the sequel.

LemMma 4.3. If Vis an irreducible representation of G with G acting freely
on the sphere, and if d =dim V, then the image of

p: Wzmg(SF, F)— 7729&2(31:, F)
contains image (f,).

Proof. If £€— N represents a class in N,_,(BO(k)), then dé=£¢DrV
and admits an action of G with each fiber being a sum of k copies of V.
Thus the class of dé — N belongs to the image of p. W

Lemma 4.4. If G is finite, Fact 2 is true for G if it is true for the Sylow 2
subgroup of G.

Proof. Let S be a Sylow 2 subgroup of G and consider

7, NE(SF, F)—— NG(F)

’ G
od Ps

| ,

V
mNE(SF, F)—— NE(F)

[ [

. N%(SF, F)——> N%: (F)

If Fact 2 holds for S, p 9'(x) =0 implies d'(x) =0. Then for
a € mNE(SF, F),
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0=pp§ da)=pd'pS (a) implies 0=0'pF (a) = pS d(a), but by Proposition
3.2, p§ is monic, so d(a) =0, giving Fact 2 for G.
Finally, one should note:

ProrosriTiON 4.5. Facts 1 and 2 hold for G = Z,.

Proof. Clearly A,=mN%Z(SF, F) and f, is the identity, giving Fact 1.
Since p' is the identity, Fact 2 is obvious. Note also that the only irreducible
representation of Z, for which the action on the sphere is free is one-
dimensional. H

5. The infinite groups

The infinite groups admitting appropriate representations are classified in
Bredon [1, Theorem 8.5]. One has:

ProrosiTioNn 5.1. If G is an infinite compact Lie group admitting an
orthogonal representation which is free on the sphere, then G is one of the
following groups:

(1) the circle group S*=U(1),

(2) the group of quaternions of unit norm, S*>=Sp(1),

(3) the subgroup A of the group of unit norm quaternions generated by
S'={exp (2mit)} and j.

It is not difficult to see that the only irreducible orthogonal representa-
tions which are free on the sphere are the standard ones with S acting as
multiplication on C=R? and A <S> both acting as multiplication on
H = R*. Thus, one has:

(a) Every irreducible representation of S* which is free on the sphere is of
dimension 2. The group C,(V) is the unitary group U(m), and
m N5 (SF, F) =&} Ny 2 (BU(K)).

(b) Every irreducible representation of A or S* which is free on the sphere
is of dimension 4. The group C,, (V) is the symplectic group Sp(m), and

*
) iB(SF, F)= Wzma‘?(SF, F)= ke_alm*—4k(BSP(k))~

One now needs the structure of the bordism groups @ N, (BO(k)) and
similarly for the unitary and symplectic groups. The requisite argument may
be found in [2, Lemma 2.2], and the result is:

If £— M and n — N are two vector bundles, their product is represented
by £€®mn — N XM defining products in

DO Nu-i(BO(K)) (or DNy o (BU(K)), or Ny u(BSp(k))).

With this product, the ring is the polynomial algebra over 9y on the classes
of A = RP(n), n=0, where A is the usual line bundle over projective space
(or A = CP(n) or A — HP(n)). In particular, N, _(BO(k)) has a base given
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by the monomials
M@ @®M — RP(ny) X+ - XRP(m), my=---=n,

(and similarly in the other cases).

To obtain the result one wants, it is only necessary to note that the
bundles AQ C=2A — RP(2n) and AQ H =4\ — RP(4n) are also suitable
polynomial generators for

D Ny_2(BU(k)) and D %*_4k(BSp(k)).

Thus one sees that for S, d=2 and A or S?, d=4, the image of
p: NG (SF, F) — w,N%(SF, F) is precisely f;(A,).

Now turning to the free bordism groups, one knows that:

(@) N4 (RP(0))=N4(BZ,) is the free N, module on the classes of the
inclusions RP(i) € RP(x),

() Ny (CP(0)) =Ny (BSY) is the free Ny module on the classes of the
inclusions CP(i) = CP(x), and

(€) Ny (HP()) =N4(BS?) is the free Ny module on the classes of the
inclusions HP(i) < HP().
Taking induced bundles, one has that N¥=(F), N3'(F), and NE’(F) are the
free Ny modules on the classes of the [S}, a], a the antipodal map, or $**
or S*~! with standard multiplication action of S* or S>. Restricting from S*
or S® to Z, gives the antipodal map, so

p: N (F)—> NZ(F) and  p: N’ (F) - NF(F)
are monic.
For A, one has the commutative diagram

NS (SF, F) > NY(F)
P [

mNE(SF, F) > NA(F)

p" Po

L
mNGA(SF, F) > N (F)
and p is an isomorphism. Thus p, d'(x) =0 implies x = p(y) for some vy, so

0=p,8'p(y)=pop’ 8(y) and 8(y) =0 but then &'(x) =8'p(y)=p' d(y) =0.
Thus one has shown:

ProrosriTioN 5.2. Every infinite compact Lie group admitting an approp-
riate representation satisfies Facts 1 and 2 and Proposition 4.1.

Further, one sees that em, N3 (SF) is the ideal generated by the manifolds
CP\ D - DA D1) over CP(n) X+ - X CP(n), k=2 and ew, N5’ (SF) by
the similar quaternionic projective space bundles over products of
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quatemionic projective spaces. The complex and quaternionic projective
space bundles are cobordant to the square and fourth power respectively of
the corresponding real projective space bundles over products of real
projective spaces. Hence one has:

ProrosimioN 5.3. I,=em,N5 (SF) is the ideal in Ny generated by the

squares, and I,=em,N5 (SF) is the ideal in Ny generated by the fourth
powers.

Finally, it should be noted that semi-free actions of S' and S® were
analyzed with bordism methods by Uchida [5]. While stated in the oriented
case, there is no essential difference in the unoriented situation.

6. The finite groups

Now turning to the case in which G is finite, one recalls that the Sylow 2
subgroup of G is either cyclic or generalized quaternion.

If G is cyclic of order 2°, s>1, then the only irreducible representation
for which G acts freely on the sphere is the usual multiplication by 2°-th
roots of unity on C = R?, Thus one has

w5 (SF, F)—— N3 (F)
m,R%(SF, F)—> N%(F)

[ Po

7, M%(SF, F)—— N%:(F)

with p an isomorphism. Since pyp’ is monic, p, is monic on image 9.
If G is generalized quaternion, then the only appropriate representation is
the standard action on H = R* by quaternionic multiplication. Thus one has

N5 (SF, F)——> N5:(F)

= [4 o
» s L
mNE(SF, F)——> NE(F)
p" Po
!

7, NZ(SF, F)—— N%(F)

with p an isomorphism. Since pyp’ is monic, p, is monic on image a.
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Combining these observations with Lemma 4.4 and Proposition 4.5, gives:
ProrositioN 6.1. If G is finite, Fact 2 is true for G.

It now remains only to verify Fact 1 for the finite groups. By Proposition
3.3, one has

SRS(SI':; F) Ese) 9'en—zm,d‘(Ble(‘/1) XX BCm,(Vr))'

From Wolf’s calculations (Theorem 7.2.18) all irreducible complex rep-
resentations of G which are free on the sphere are of the same dimension
and except for G = Z, none are ‘‘real” representations (Note that I am using
quotation marks to indicate the group theoretic use of real in referring to
representations) and so the irreducible real representations all have the
same dimension, which will be denoted d.

There are three distinct possibilities for the group C,,(V). It can be the

orthogonal group O,,, the unitary group U, or the symplectic group Sp,,..
Given

f: M— BC,, (V) X+ - - XxBC,, (V,)

with & — M the associated m;-dimensional R, C, or H bundle, the corres-
ponding bundle over M is the Whitney sum of d copies of £ if the group is
O,,., (d/2) copies if the group is U,,, and (d/4) copies if the group is Sp,,, the
sum being over all i, when considered in Ny(BOs,, )< NZ*(SF, F). Be-
cause, as noted for the infinite groups, the homomorphisms

RC: NyW(BO,,) > Ne(BU,) and Q@ H: Ny (BO,,) — N(BSp,.)

are epic, it is clear that the image of w,NF(SF, F) in m,NZ:(SF, F) is
contained in the image of f,.
Thus one has:

ProrosrTioN 6.2. If G is finite, Fact 1 is true for G.

Special Note. While it is not essential for the argument, it is curious that
in Wolf’s tables all of the irreducible fixed point free representations of G
are of the same type; i.e. self conjugate, or “real” or not self conjugate.

Note. Another way to phrase the above is that a G bundle over a G
fixed space has the form @ M®, HomC (M, )= ¢ where M runs through
the irreducible real representations of G and Dy, =Hom® (M, M) is the
field of the representation. Up to bordism, Hom® (M, £) is equivalent to a
bundle D,;®z M\ and hence £ to a sum MOz Ny,

7. Some examples

A very obvious question in connection with these results is:

Question 1. Which integers d can actually occur?
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Among the groups discussed in the theoretical treatment to this point, one
has only encountered the cases d=1,2, or 4. If these were the only
possibilities, one should know it.

If d=d(G) is odd, then a d-dimensional irreducible real representation
for G is not the restriction of a complex representation and so its complex-
ification is irreducible. Thus G would have an irreducible complex represen-
tation for which the action on the sphere would be free and which is “real”
in the sense used by Wolf. From Wolf’s tables this situation only occurs for
G=Z,when d=1.

Thus one must have d =1 and G =Z, or else d is even.

Going to Wolf’s tables, one finds groups G, of his type I, generated by
elements A and B with relations A™=B"=1, BAB™'=A" provided
m=1,n=1, (n(r—1), m)=1, r*=1(m) such that if k is the order of r in
the multiplicative group of residues modulo m, then n/k is divisible by every
prime divisor of k. For such a group, d =2k.

Claim. Given an integer k>1, one can find m, n and r for which the
group of type I has d =2k.

Given k>1, there are an infinite number of primes p in the sequence
{ak +1}. Choose p =ak +1 which is an odd prime. Then p—1=ak is the
order of the multiplicative group of residues modulo p, and so there is an
integer r with 1<r<p having order k in this group. Taking m = p, n =2k?,
and r as chosen you have r*=1(m) so r"=1(m), you have n/k =2k
divisible by every prime divisor of k, and you have (n(r—1), m)=1 for m is
the prime p which is odd so prime to 2, and prime to (r—1) for 1 <r<p, and
prime to k because 1=p—ak. For this group, one then has d = 2k.

Then it is essential to ask:

Question 2. Do the ideals in R, associated to the integers d actually
depend on d?

First, it is obvious that the ideal associated with d can contain no non-zero
elements of dimension less than d, since the dimension of the normal bundle
to the fixed set of G is divisible by d.

Next, letting k and j be odd, consider M = CP(kj — 1) with the involution

txy, ..o Xg]=[=%1, oo, =X Xiars - -+ 5 X

fixing CP(k—1) with normal bundle (j—1)k¢ and CP((j—1)k—1) with
normal bundle k¢ This class is then in the ideal I,,. However, CP(kj—1) is
bordant to RP(kj—1)x RP(kj—1) and hence is the square of an indecom-
posable in N,

These facts show that one obtains an infinite number of distinct ideals in
4. Further, they eliminate all of the plausible conjectures I have as to the
structure of the ideals. It appears very difficult to determine the ideal
associated with a given d.
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The only general facts I know are the triviality:

Observation. If d divides d’, then I, is contained in I,;
and the not at all obvious:

Observation. I,. contains the ideal generated by the 2°-th powers.

To see this, let a € Ny be a positive dimensional class and let a =[M"]
where M has a non-trivial involution ¢, with fixed data (F*, v"~*) for various
k <n. Then consider the involution

s=tXtX---Xt(2° factors)

On MX::-xXM=N (2° factors). The fixed set of s is the union of the sets
F*:x- - - X F*=* with the normal bundle the Whitney sum. There are an even
number of copies of any such factor for which the k’s are not all the same,
and so the fixed data of s consists of the classes

(Fk X oo 'XFk, v"—kX' . .xvn—k)
in Wzsk(BO2s(n__k)). Now
WX xv)=) w,(¥)®- - ‘Q@w,(v)

summed over all partitions of i and by symmetry the terms in the Stiefel
Whitney numbers will all cancel out except for

w,(Q- - - Qw;(v)

in the wy (v X+ - Xw). Thus if f: BO,_; — BOy,_y, is the map classifying
2%y, every class in the kernel of

f*: H*(BOZ’(n—k); Z,)— H*(BO,_; Z,)
gives zero in the Stiefel Whitney numbers of
(Fk Moo ka, ko X V""k).

That is sufficient to guarantee that this class lies in the image of fy on
bordism, and so a?, the class of N, is in L..
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