ILLINOIS JOURNAL OF MATHEMATICS
Volume 24, Number 3, Fall 1980
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1. Introduction

In this article we count the number of conjugacy classes in the diffeo-
morphism group, of orientation reversing self-difffomorphisms of order 2p,
where p is a prime, which act on an orientable compact surface of genus n. To
calculate this number we rely heavily on previous work of the author [5], [6]
and [7]. We give some notation which is fixed throughout the entire article. Let
X be a compact smooth surface of genus n > 2 and let g be an orientation
reversing self-diffeomorphism of X of order 2p. Let f= g%, X' = X/{f ), and let
g’ be the map induced by g on X'. Clearly g’ is orientation reversing of order
two. If p is odd then g7 is also orientation reversing of order two. We let ¢ (resp.
pd) denote the number of loops on X which are fixed pointwise by g?
and fixed by f (resp. permuted by f). It follows by [5] that fhas an even number
2a of fixed points. By the Riemann-Hurwitz formula n — 1= p(m — 1) +
a(p — 1), where m is the genus of X'. If X is given a conformal structure so that
g is anti-conformal, then X may be embedded in R? so that f becomes the
restriction of a rotation. We denote the angle of rotation of f by a(f) and
normalize by requiring 0 < a(f) < 2=.

We denote by ¢(n, p) the number of conjugacy classes in the diffeomorphism
group of X, of orientation reversing self-diffeomorphisms g which act on X. We
first calculate ¢(n, p) in the case p = 2. When p is odd we consider separately
three cases. We say g of type one if g’ has fixed points and X'/{g" is orientable,
g is of type two if g’ has fixed points and X'/{g'> is non-orientable, and g is of
type three if g’ has no fixed points. If g is of type three we necessarily have that
X'/{g’> is non-orientable. Also if p is odd then X'/g’ is orientable if and only if
X /g* is orientable and ¢’ has fixed points if and only if g” does.

Our main result is the following.

THEOREM 1.1. If X is a compact surface of genus n, then the number of
conjugacy classes in the diffeomorphism group of X, of orientation reversing maps
on X of order 2p, where p is a prime, is given by the formula

¢, 2) = [(n+ 1)12]
d)(n’ p) = ¢1(n’ p) + ¢2(n9 p) + ¢3(na p), p> 2a
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where ¢ (n, p), the number of conjugacy classes of type i, are given in 3.4, 4.3 and
5.3.

Note. Conjugacy classes are always considered in the diffcomorphism group
of X.

2.p=2

LeMMA 2.1.  The number ¢(n, 2) is the number of pairs (m, a) which satisfy the
equations (1)n=2m +a — land 2)m —a =1 mod 2, wherem > 0,a > 0, and
a+m>0.

Proof. Using the notation of Section 1, if g is an orientation reversing map
of order four, then m and a must satisfy (1) and (2) by 1.1 and 2.1 of [5].
Conversely for each pair of numbers m and @ which satisfy (1) and (2) above, we
construct an orientation reversing map g of order four such that g2 has 2a fixed
points and X/{g*)> has genus m. By 1.1 of [5] the conjugacy class of g is
determined by g, so this is sufficient to prove the lemma. To construct a map g
we let Y be a surface of genus n — m and let F be the hyperelliptic involution.
By (1) and (2), n — m is even and thus by [3], F has an orientation reversing
square root G. We let p;and p;= G(p;), i = 1,2, ..., m be a set of distinct fixed
points of F and let D; and D; be discs about p; and p} respectively, such that
F(D;) = D; and G(D;) = D;. Then by the same argument used in 2.2 of [5] there
are maps W: dD; — dD; such that if we identify x € 0D to W(x) e dD’, the map
G induces an orientation reversing map g on the resulting surface X. Clearly X
has genus n, g* has 2a fixed points, and X/{g*)> has genus m.

PROPOSITION 22.  ¢(n, 2) = [(n + 2)/2].

Proof. By 2.1 we need only count the number of solutions to (1) and (2). By
considering separately the cases in which n is even and n is odd, it is easy to
show that ¢(n, 2) = (n + 2)/2 and ¢(n, 2) = (n + 1)/2, respectively. Hence in
general ¢(n, 2) = [(n + 2)/2].

3. g is of type one, i.e. g’ has fixed points and X'/g’ is orientable

We calculate the function ¢ ,(n, p) of all conjugacy classes of orientation
reversing maps g of type one. Before doing this, however, we need a combina-
torial lemma which we will also use in subsequent sections.

LemMA 3.1. Let a=ay,, m=m, be the solution of n—1=pm—1)+
a(p — 1) for which a is smallest, and m is largest. Then the values of a,and mq are
described in the table below. The number of solutions to the above equation is
[mo/(p — 1)] + 1. Also the solutions (a, m) are given by a = a; = a, + ip and
m=my=i(1—p),i=0,1,...,[me/(p — 1)]
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n a, mg
n=1modp 0 (n+p—1)p
n=0mod p 1 n/p

ngOorlmodp p(l+[npl)+1—-n (1 +[n/p)(1 —p)+n

Proof. Let g and r be integers such that n/p = q + r/p, 0 <r < p. Then
(m+a—-1)p=q+(r+a—1)/p.

The given equation implies that p|(n+a— 1), so that we must have
p|(r+a —1).If r = 0 or r = 1 then the smallest possible values foraarea = 1
and a = 0, respectively. This gives the first two lines of the above table. If n &£ 0
or 1 mod p then p > r > 1 and the smallest value of a occurs when r + a —
l=p,sothata=p+1—r=p+1—p(n/p—[n/p]). It is an easy matter to
calculate the corresponding values of m.

If we list the pairs (a, m) which satisfy n — 1 = p(m — 1) + a(p — 1) in order
of increasing values of a, then we obtain a finite sequence (a;, m;), i=0,1,2,
..., k. Since p|(a; +r —1) we must have a;,, =a;+ p. Also m;,; =m; +
1 — p. Thus a; = a, + ip and m; = my + i(1 — p). The largest value of i such
that m; > 0 is thus [m, /(p — 1)]. Hence there are [mq /(p — 1)] + 1 solutions.

LeEMMA 32. Let a(f) = o be fixed. Then the number of conjugacy classes of
orientation reversing maps g of type one with g* = f is the number ,(n, p) of
4-tuples (a, m, ¢, d) which satisfy:

(1) n—1=pm—1)+alp—1),m=>0;

2) m+1=c+dmod?2;

(3) n+1=c+ pdmod 2;

(4) a+c=0mod 2;

(5) ¢>20,d>0,c+d>0m>c+d—-1,n>c+pd—1

Proof. Assume g is a map of type one and let a, m, ¢, d be as defined in
Section 1. Equation (1) is immediate from the Riemann-Hurwitz formula; (2)
and (3) follow from the fact that X' and X are doubles of surfaces with ¢ + d
and ¢ + pd boundary components; and (4) follows by 2.3 of [7].

Conversely, one may construct a surface X with an orientation reversing
map g such that = g* has 2a fixed points, «(f)= a, g° fixes ¢ + pd loops
pointwise, ¢ of which are fixed by fand pd of which are permuted by f, and X’
has genus m. We first let Y be a surface of genus n + 1 — (¢ + pd) with no
boundary components. This surface has an embeddable map F of order p with
a + c fixed points. One may see this by observing figures 1 and 2 of [2]. Let
a = 2mj/p, 1 <j < p.Ifjis even then some power of F, say H has a(H) = 27j/2p.
If j is odd, then some power of F, say H has a(H) = 2n(j + 1)/2p. Thus in both
cases a(H?) = 2mj/p = a. Again by observing Figures 1 and 2 of [2] it is easy to
see that Y may be embedded so that Y is invariant under a reflection K in the
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x — y plane which fixes pd loops which are permuted by H. Now we let p; and
K(p)=rpi,i=1,2,...,a be fixed points of H and let D; and D be open discs
about p; and pj, respectively, with the property that H(D;) = D;, H(D’) = D;,
K(D;) = D; and K(D;) = D;. We now remove D; and D}, i=1, ..., a, and glue
0D; to 0D; by identifying x € 0D; with K(x) € 0D’. We then obtain a surface X
of genus n. The maps K and H induce maps K’ and H' on X and g = H'K' has
the desired properties.

LeMMA 3.3.  The number Y, (n, p) of 4-tuples (a, m, c, d) which solve (1)-(5) of
3.2 is given by

Z (Z [(e+2)/2] +ki[e+ 1 /2])—j, a, even,
T
2 (Z[(e+2)/2]+ Z[e+1)/2])—j, a, odd,

i=0 \e=1

where k = [my/(p — 1)), k;=[(mo + i(1 — p) + 2)/2], ay and m, are obtained
from3.1,j=1ifn=1mod p or n =0 mod p and j = 0 otherwise.

Proof. We first remark that (3) is redundant. We let m + 1 =c +d + 2j,
where j > 0, and if we substitute for m in (3) we obtain

n+l=c+pd+2(p(—1)+1+ (a+c)p—1)2.

By (4), (@ + ¢)(p — 1)/2 is an integer, so that n + 1 = ¢ + pd mod 2.

To count the number of solutions we fix a solution (m, a) of (1) and count the
number of pairs (¢, d) which satisfy (2), (4) and (5). Let e = ¢ + d. If we require
that e > 0 then there are [(m + 2)/2] solutions to the equations m + 1 =
e mod 2, as can be seen by considering the cases m even and m odd separately.
For each such value e there are e + 1 ordered pairs (c, d), withc > 0andd > 0,
such that e = ¢ + d. Thus for a fixed value of e, a and m there are (e + 2)/2 pairs
(¢, d) which satisfy (2) and (4) if a is even, and (e + 1)/2 pairs if a is odd. Now fix
a solution (a, m) of (1). Then there are Y%_, [(e +2)/2] or Y%_, [(e + 1)/2],

= [(m + 2)/2), pairs (c, d) which satisfy (2) and (4), depending on whether a is
even or odd. We remark that if a; is even then a;, , is odd. The condition (5) will
be satisfied provided we do not have botha + ¢ <2 and ¢ + d = m + 1. This
can only arise ifa=0,c=0,d=m+ l,ora=1,c=1,d=m — 1, which in
turn only occurs when n = 1 mod p or n = 0 mod p. The formula now follows
directly.

PRrOPOSITION 3.4.

b.(n, p) = [((p + 1)2)1(n, p) ifn#1mod p
P oy (n, p) + (0 + 1)/2)74(n p) ifn=1mod p
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where
nnp)= X1+ 221, k= [lmo-+2)2)

t1(n p) = ¥1(n, p) — o4(n, p) and mo=(n+p—1)/p.

Proof. The conjugacy class of an embeddable map f with 2a > 0 fixed
points is determined by a( f). It follows by Nielsen’s Theorem [1, p. 53], that f*
and f7, 1 <i<j < p are conjugate iff j = p — i. Thus there are (p + 1)/2 conju-
gacy classes for f'if f has fixed points. If n = 1 mod p then a, # 0 so by 3.3 we
conclude that

¢1(n, p) = 3(p + 1)1 (n, p).

If n =1 mod p then a, = 0 and by the argument used in 3.3 for a fixed value of
a(f) = a, there are g,(n, p) conjugacy classes of g with no fixed points and
74(n, p) conjugacy classes of g with fixed points. Nielsen’s theorem [1] implies
that if f'is fixed point free, it is conjugate to all of its non-trivial powers. Thus

¢1(n, p) = o4(n, p) + 3(p + 1)t(n, p)
in this case.

4. g is of type two, i.e. g’ has fixed pointsand X'/(g’)> is non-orientable

We first make some preliminary remarks. We note that g’ has fixed points iff
g” does (3.3 [7]), and X'/{g’) is non-orientable iff X /g” is (2.1 [7]). Now let Y be
a surface and K an orientation reversing map of order two with the property
that Y/(K) has boundary components. As in Section 3 of [7], we define an
annular region for K to be a region 4 homeomorphic to an annulus, with the
property that 4/(K) is a moebius strip. By 3.4 of [7], we know that there are
either one or two annular regions for g? on X, each of which is fixed by f and
hence projects to an annular region for g’ on X'. If we remove these annular
regions from X and X', then the quotients of the resulting surfaces by the maps
induced by g and g’ respectively, are orientable. Also, the number of annular
regions depends only on the topological type of X/{g”>. Thus let e = 1 or 2 be
the number of annular regions for g? (and hence also g').

We have the following analogue of 3.2.

LemMA 4.1.  Let o f) = o be fixed. Then the number of conjugacy classes of
orientation reversing maps of type two is the number of 5-tuples (a, m, ¢, d, e)
which satisfy the following.

(1) n—1=pm—-1)+alp—1),a=>0,m=>0.

2) m+1=c+d+emod?2.

(3) n+l1=c+e+ pdmod 2.

4) a+c+e=0mod2.

(5) ¢>20,d>0,2>e>1,c+d>0, m>c+d+e—1, n>c+pd+

e—1.
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Proof. We remark that if g is of type two, then by an argument similar to
that used in 3.2 the conditions (1)-(3) and (5) may be verified. One may prove
(4) by an argument similar to that used in 2.3 of [7]. Thus to each orientation
reversing map of type two we may associate a 5-tuple (a, m, ¢, d, ¢) and clearly
this S-tuple is determined by the conjugacy class of g.

Now let (a, m, ¢, d, e) be an arbitrary 5-tuple which satisfies conditions
(1)-(5)- By 3.2 we may construct a surface Y of genus n with an orientation
reversing map G of order 2p, such that if F = G?, then a(F) = «, F has 2a fixed
points, and X/(F) has genus m. Also there are ¢ + e loops which are fixed
pointwise by G” and fixed by F and pd loops which are fixed pointwise by G?
and permuted by F.

We now construct a surface X and an orientation reversing map g. We
choose e loops which are fixed pointwise by G? and fixed by F. We first
consider the case e = 1. Thus let y denote this loop. The surface Y may be cut
along y to obtain a surface Y’ with two boundary components on which G” and
F both induce maps K and H, respectively. Clearly K and H commute. Let
9;: S1 > Y’, i = 1, 2, be parametrizations of these boundary components with
the property that

K(y1(exp i0)) = y2(exp i) and  H(y(exp i6)) = y1(exp i(6 + a)).

Then K(y, exp if)) = y,(exp i#) and H(y,(exp if)) = y,(exp i(0 + «)). Now
identify y, (exp if) with y,(exp i(6 + «)). We thus obtain a surface X of genus n.
The maps K and H induce maps k and f, respectively, on X. If we let g = kf”,
j=(p+1)/2, then g*> = f and g” = k and there are ¢ loops which are fixed
pointwise by g” and fixed by fand pd loops which are fixed pointwise by g” and
permuted by f. If e = 2 then a similar argument may be used. Thus to each
5-tuple (a, m, ¢, d, e) satisfying (1)-(5) we may associate an orientation reversing
map g of type two. This completes the proof.

LEMMA 4.2. The number of S-tuples (a, m, c, d, e) which satisfy (1)-(5) is given
by

i=0 \r=

i ( kiz[r/2] + kg;[(r + 1)/2]) —Jj, ag even,
'//2('1, P) = k ki ki+1
5 (30214 S+ 021) i ao ode

i=0 \r=1

where k = [my/(p — 1)], k; = [(mo + i(1 — p) + 1)/2}, ao, and mq are obtained
from3.1,and j=2ifn=1mod p, j= 1, if n =0 mod p, and j = 0 otherwise.

Proof. The proof of this lemma is analogous to that of 3.3. It is similarly
true that (3) is redundant. Let r = ¢ + d + e and let (a, m) be a fixed solution of
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(1). We first count the number of choices for r. Since m + 1 = r + 2j, for some j,
and since r > 2, there are [(m + 1)/2] possible choices for r. For each fixed
choice of r we count the possibilities of writing r=c +d + e. If e =1, then
there are r =r — 1 + 1 choices for (c, d), such that (2) holds. Thus for fixed
values of a, r, and m there are [r/2] choices for (c, d) which satisfy (2) and (4) if a
is even, and [(r + 1)/2] choices if a is odd. If e =2 then there are r — 1 =
r — 2 + 1 choices for (c, d) such that (2) holds. Similarly, if we fix values for a, r
and m, then there are [r/2] choices for (c, d) which satisfy (2) and (4) if a is even,
and [(r + 1)/2] choices if a is odd.

The condition (5) will be automatically satisfied provided we do not have
botha+c+ e <2and ¢c+d+e=m+ 1 This can happen only when e = 2,
c=a=0,d=m-—1l,ore=1,c=1a=0,d=m—1,ore=1,c=0,a=1,
d =m — 1. The first two cases occur when n =1 mod p and the last occurs
when n = 0 mod p. The formula now follows easily.

PROPOSITION 4.3.

¢ (n p) — %(p + 1)!//2(71, p) lfn i 1 mOd D-
210 loa(n, p) + X(p + 1W(n, p) if n=1mod p,
where a,(n, p) =Y *_, [r/2] — 2, and t,(n, p) = Y,(n, p) — o,(n, p).

Proof. The proof is analogous to 3.4. We remark that a,(n, p) is the number
of conjugacy classes of maps of type two which have no fixed points.

5. g is of type three, i.e. g’ has no fixed points

LEMMA 5.1.  Let a(f) = o be fixed. Then the number of conjugacy classes of
orientation reversing maps of type three is the number of pairs (a, m) which satisfy
the equation n — 1 = p(m — 1) + a(p — 1), where a is even if m is odd.

Proof. We set up a one-one correspondence between pairs (a, m) satisfying
the above conditions and conjugacy classes of maps of type three. By 1.1 of [7]
the conjugacy class of a map g of type three determines the pair (a, m), and by
4.3 [7] a is even if m is odd.

We now construct a map g of type three given a pair (a, m). Let Y be a
surface of genus n. By 3.2 we may construct a map G on Y of type one which
corresponds to the 4-tuple (a, m, c,d). Here c =0,d = 1 ifaisevenand c = 1,
d = 0ifais odd.If mis odd and a is even then by 4.1 we may construct amap G
of type two on Y corresponding to the 5-tuple (a, m, 1,0, 1). In both cases we
cut Y along the loops which are fixed pointwise by G” and reglue as was done in
3.2 so that G induces a map g of type three on the resulting surface X.
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LEMMA 52. The number of pairs (a, m) satisfying the conditions of 5.1 is

[
Mo +1 if my is even,
(p—1)
[ my . . :
Ys(n, p) =< 26— 1) +1 if mgy is odd and aq is even,
%%%p—)] +1 ifmg is odd and ag is odd.

Here my and a, are obtained from 3.1.
Proof. This follows immediately from 3.1 and 5.1.

PROPOSITION 5.3.  If ¢3(n, p) denotes the number of conjugacy classes of maps
of type three then

baln p) = BOF D3 p) ifn# 1 mod p,
3(m, p) = K + 1)(¥s(n, p) —1)+1 ifn=1mod p.

Proof. This is analogous to 3.4 and 4.3. If n = 1 mod p, then a, and by 5.2,
there is exactly one conjugacy class with f fixed point free.
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