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TRANSLATION INVARIANT KOTHE SPACES

BY
GERALD BURTON SILVERMAN

1. The function spaces that this work deals with were first studied by Kothe
in [6], [7], [8] when he examined subspaces of the space of all real sequences put
in weak duality. The theory was later generalized by Dieudonné in [1] to
subspaces of locally integrable functions on a locally compact o-compact
Hausdorff space with a Radon measure. This was further developed by Luxem-
burg in [11], Lorentz in [9], [10], and Welland in [14], [15] among others. Here
we deal with such function spaces defined over a topological group with invar-
iant Haar measure.

2. We need some definitions and facts.

Let E be a non-discrete, locally compact, o-compact, additive topological
group with regular invariant Haar measure u. There exists a 0-neighborhood
base % containing a sequence {U } 3 -1 of symmetric open sets that are relatlvely
compact such that {0} = (), U,and U, , = U, for any n [4]. Let {E }2_, be the
increasing sequence of compact sets whose union is E.

The set of all locally integrable functions on E is denoted by

={f:f | f| du < oo for each n|.
En

For any subset I" of Q we define the Kothe space associated with I" by

A=A(F)={feQ:Lf~gdu<ooforallgel";

A* = A(A(I')) the Kothe dual of A. A is a complete vector lattice with (A, A*)
in weak duality by the bilinear form (f, g> = ¢ f- g dp. A set of functions
H < A* is normal if h € H and |g| < |h| implies g € H. The set A is a com-
plete locally convex topological vector space under the strong topology S
(A, A*) = S defined by the seminorms p(f) = Sy(f) =sup,.x | | fg| dunas H
runs through the weakly bounded subsets of A*. The weak topology or o-
topology on A is generated by the sets {f: || f- g du| < 1} for each g € A*.

The function defined by f(x) = f(x + t) for ¢, x € E are translates of . We
define a Kothe space A to be translation invariant if each translate of f belongs
to A whenever fdoes. A semi-norm p is translation invariant if p(f,) = p(f) for
eacht e E and fe A.
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TRANSLATION INVARIANT KOTHE SPACES 413

3. In this article we give some characterization of the strong topology on a
translation invariant space together with a number of counter examples on
conjectures raised concerning the behavior of translates of functions in such a
space. We then give a theorem which is the main result of this article linking the
convergence of the translation to the original function and the condition that
the Kothe dual be the same as the topological dual under the strong topology.
In general, with the strong topology the Kothe dual is not the same as the
topological dual A’. Witness the fact that (I°, [') are Kothe duals but
(Loo)* — Ll s./= (Loo)"

In addition a sufficient condition is given for the convergence of the trans-
lates to the original function.

4. PROPOSITION 1. A seminorm p on A is translation invariant if and only if
the bounded set B = A* is translation invariant, i.e.

U {9:9€B}=B.

teE

Proof. If we assume B is translation invariant then forat € E, g _,€ Bifg
does. Since p is the seminorm associated with B, we have

pUf)=sup [ [f-gldu=sup [ | g-.|du=p()

geB

For the converse we can assume without loss of generality that the weakly
bounded B = A* is normal, convex and weakly closed in A* and p is transla-
tion invariant. If

B lren: [ 15 glaus1),

then the bipolar

(B°)°={geA*:f]f-g]duglforallfeB"

coincides with B by [14].

If there existed a t € G and an h € Bsuch that h, ¢ B, then because B = (B°)°,
there would exist an fe B® < A satisfying sup,.5[ |f g|du<1 but
{|f-h|du>1. But p being translation invariant and p(f)=
sup,cp | | f 9| du < 1yields a contradiction since

pU)=p(f)=sup [ £ gldu= [ | hldu=[ £~ h] du> 1.
ge *
Thus the proposition is proved.

Remark 1. The space Q and its Kothe dual @, the set of essentially bounded
functions of compact support do not have translation invariant seminorms or
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ones that are translation bounded. The seminorms generating the strong topo-
logy on A are given by

pn(f)=[E Ifld/‘t’ n=12...

If E=R"and f(x)=Y2, (x —n)"" YYpwspneQand t,=n(n=1,2,...),
then p,(f,) > 8 fi, du = 2** (x — n)" 1 dx > 00 as n - oo.

Even if A is a translation invariant Banach space p may not be translation
invariant or translation bounded. For this example let E = R' and set g(x) =
|x| +1€Q Then L} ={fe Q: | f+ g du < oo} can be easily shown to be a
Banach function space with norm p(f) = [z | /- g| du. The function g,(x) =
|x+t| +1 is a multiple of g(x) and the bounded function (|x +
t| + 1)/(|x| + 1) showing that any f for which [, | fg| du < oo will also have
fr1]fg, | du < oo.

Therefore L is not only a Banach space but translation invariant. If we
consider the function f(x) = x~> - y; ; € L}, then for each n,

p(f)=[ fwgdu= |1 g,du= flm x73x 4 n+1)= (n+3)2,

This clearly shows that this Banach space does not have a translation bounded
norm.

PROPOSITION 2.  If the set {g, }7-, is weakly bounded in A* for each g € A*
and sequence {t,} in E converging to O, then for any seminorm p for S(A; A*)and
any compact K < E there exists a seminorm p’' for S(A, A*) such that
sup, ek p(fi) < p'(f) for any f € A.

Proof. Let p and K be given. Let B = A* be the o-closed bounded, normal
subset associated with p; ie. p(f)= Sp(f). We show D = (), B, is weakly
bounded.

If D is not bounded, then there exists an f € A for which

sup sup [ | fg.|dp = co.

teK geB*

Thus we could extract a sequence {t,}*-, = K and non-negative {g,}x-, < B
such that | | £ (g,),,|du > 2" - n for each n. Since {t,} = K is compact, there is
a subsequence of {t,} and t € K which is the limit of the subsequence. Replacing
the subsequence by {t,} and considering {t, — t} we can assume t,— ,0. Since B

is normal,

A=BO=:feA:’f fgdy|_<_1forallgeB
E

is normal and

B=A%= =g € A*: [14].

| fgdu’_<_ 1forallfe A
E
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Ifh,=3"%,g:/2" forn=1,2, ..., then for any r(x) € 4,
o1
Jr-h,,d;u‘g Y = fr~g,-du4$1.
i1 2
Thus h, € B= A° for each n. By [14] there is h € A* which is lim h,. Since

r - h e ['(E, u), we use the Lebesgue dominated convergence theorem to see
that

fr-hdu

As this is true for all r € A4 it follows that h € B. But

= lim jrh,,dulg.

foh, dp= [f(hn)t,duzi [f(g.,)tndﬂZn-*oo.
J 2n .

This contradicts the hypothesis that {h,}<., is weakly bounded. Thus
D=|),.xB, is weakly bounded. Replacing K by the compact
—K ={—t:te K} and denoting p’ as the seminorm associated with D, we
have for any t € K and f€ A,

pU)=sup [| fig| du=sup [ |- g-o| du<sup [ | fgl du=p'().

Hence sup,.x p(f)) < p'(/).
For each t € E we define the function T;: A -> Aby T(f) = f,. Wesay {T}, . ¢

is a partition of the identity I on A if lim,_,, f, = f for the strong topology on A
for each fe A.

COROLLARY 1. IfQ is translation invariant and {T}}, is a partition of I for the
weak topology on A, then for seminorm p of S(A, A*) and K compact, there is a
seminorm p’ of S(A, A¥*) for which sup, .x p(f;) < p'(t) for any f € A.

Proof. Let t,—»0 in E and let fe A. By our hypothesis if ge A¥
lim, |z (f-,, —f)g du| = 0. Thus there exists a positive number M for which

[ /9, du Jf-,ng dp
Thus {g, }, is weakly bounded in A* and the corollary follows from Proposition

2.

COROLLARY 2. If B < A* is g-bounded, normal and there exists an open set
V in E such that | J{B,: t € V} is o-bounded, then | ) {B,: t € K} is o-bounded for
any K < E compact.

+ M for all n.

stff-gdu

Proof. Since V is open there exists a relatively compact 0-neighborhood
Uc E and y € Vsuch that y + U < V. Further

JEf(g)t+y dp = ff_,,g, du forteU
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implies ( J{B,: t € U} is also o-bounded by the hypothesis. Let K be any com-
pact subset of E and f € A. Then there exist n elements {t,, ,, ..., t,} = K for
which K < Jr_, (t; + U).

As (J{B,: t € U} is o-bounded and {f_,}7-, is a finite set of functions in A we
have

sup  sup ’flf-,. g: | du} <

i<n meuv&

Because every s € K is of form s =t; + t for some t € K and some i < n we
have

sup sup f | £+ gs| du = sup sup sup J | /-4 " 9] du < .
seK geB i<n teU geB
This holds for any f € A; so the corollary is proved.
Notice that if A is a Banach space with norm p and satisfies the conditions of
Proposition 2 or its corollaries, since each E,: n=1, 2, ... is compact there
exist numbers {M,: n= 1, 2, .. } satisfying

sup p(f)) <M, - p(f) foreach nand feA.
teE,
As shown in Remark 1 we cannot conjecture any further that there exists a
constant M such that sup, g, p(f;) < Mp(f) for all n.

5. In this section we show that the net {T;} being a partition of I is equiva-
lent to the Kothe dual being the same as the topological dual. The assumption
of Proposition 2 in the previous section is vital to the discussion; we give an
example showing the assumption is not true even in a restrictive case.

Example. We construct Kothe space A which is the intersection of Kothe
spaces associated with the translations of a single function of compact support
and demonstrate that {g, }, is not weakly bounded in A* for a g€ A* and a
sequence t, — 0 in E.

Let E = R! with u Lebesgue measure and let

a0 1 1 —-1/2+1/n4
g(x)= Y n (x - ;) Xit/m, 1/~ 1))
n=2

Then g(x) € ! since

1/(n—1) —1/2+1/n4
f g(x) dx—z j (x——) - dx

Rt n=2M"1n
1 ] 1/2+ 1/n4

1[
"> nin—Un] <Z£<°°~
z _+1 z

2 n*
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The sets L), = {f€ Q: [g: | f* 9.| du < oo} are Kothe spaces for each ¢ € R' as
is the space A = (), L} which is translation invariant.

Let f=x"12 - y10.1;- To see that f€ A we must show f, - g is integrable for
every t € R'. Clearly the only t we need check are t =0, —1/n (n=1,2,...).

Fort=0,
1/(n—1) 1 -1/2+1/n4
jf gdu= Z J’ “I/Z(x—-;) dx

1/(n—1) 1)—1/2+l/n4

1
SZ;’I_I" \/n(x—;
1
SZZ———nm < o0.

For any fixed integer m =1, 2, ... set t,, = —1/m and we have

1/(m— 1)1 1 -1/2 1 -1/2+1/m4
ff_,,m gdu= f (x——) (x——) dx

m m

m— 11 1/(n—1) 1 -1/2 1 -1/2
+ ngl ; J‘”n (x - E) (X — Z) dx

is clearly finite. But
Jf‘ gim du = ff_l,m gdu>m® foreachm=1,2,....

Thus {g,.}m is not weakly bounded in A*.

In view of the preceding remarks we make the following definition.

A translation invariant Kothe space A is Translation Bounded if {g, }, is
weakly bounded in A* for any g € A* and any sequence {t,} in E convergent to
0. Because of Proposition 2 this is equivalent to having
(Utex B:= U:ck {/i: f€ B} weakly bounded in A* for any B < A* that is
weakly bounded and K < E that is compact.

With our consideration of the functions {f;} we have to make use of the

functions Ty ffor f € A and relatively compact 0-neighborhood U < E defined
by

T,,f(x)=;(—1[7)ff(x+t)du(t) for x € E.

From now on we use dt or dx in place of du(t) or du(x). With the obvious
definition {U: U € %} is a directed set and {T;}y .4 is a net.
The following theorem will be useful.
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THEOREM 1. If A is translation invariant and translation bounded, then we
have the following:

(i) IffeA thenTy fe Aforfe Aand U e U.
(i) Ty fis continuous for fe Q and U € %.
(iii) Iff,—>fast—0,then Ty f— fas U—O0 for S(A, A*) and fe A.

Proof. (i) Letfe A,ge A* and U € %. Since U is relatively compact and A
is translation bounded the set {[ f,g du: t € U} is bounded by some constant
M. We then have

[ s gau=] - | e+ dogte) ax

- ﬁ [ ((E ¢ + 1)g(x) dx) dt

=ﬁfu(‘f5f,-gdy)dt<M.
Thus Ty, fe A.

(i) The proof of (ii) runs similarly to the proof of Lemma 2 in [13].

Let fe Q, Ue % and x € E. Let E be a positive number. There exists an
integer n such that x € E,, and an integer m > n such that the compact
E,+U+ U+ U cE,,. Since f is integrable on E,,, there exist a 6 > 0 for
which 4 < E,, and u(A4) < & implies |4 | /| du < p(U)(e/2).

Let V be a symmetric open 0-neighborhood in E such that u(V + U|U) < ¢
and VcU. If yex+ V, then for te V+ U we have t+ye E, and
t + x € E,, implies the following

wU)| Ty f(x) — Ty f(y)] = .[U f(e+x)dt — L £(t+y)de

= f@da—| sea

= f f(t)dt| + J f(t)at
U+x/U+y U+y/U+x

=/ fle+y)de|+ || f(t+x)dt
x—y+U/U y—x+U/U

< fv+v/u | f(t+y)|dt+ fwwu | f(t + x)| dt

< W(U)(e/2) + u(U)e/2)

= u(U)e.

Thus Ty f'is continuous at x.
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(iii) Let B < A* be normal and weakly bounded. If ¢ > 0 is given, then
fi—fas t -0 implies there is a U € % such that Sg(f, —f) <¢ift € U. Con-
sequently, if V < U we have

ST, f~f)=sup | (T,1~f)g du

geB

—sup [ |5 [ (76419 it o)

geB 'E

sup 5 | [ RGCEDEETS dx] dt

geB

(V) ) [S“p (=1 du] dult)

geB

1
=2 ), S = 1) dutt)
<e.
Thus T, f— fas U — 0 for S(A, A*).

THEOREM 2. If A is a translation invariant Kothe space given the strong
topology S(A, A*), the following two statements are equivalent:

(1) A is translation bounded, A* can be identified with the topological dual A’
of A*.

(2) {T}.ck is a partition of the identity in A.

Proof. We first show (1) implies (2). We begin by showing lim, ¢ x4+, = X4
and lim y .y = x4 as V-0 (V € %) ae. and for S(A, A*) whenever A c E
with u(A4) < oo. Since

x| xysa— xa| #0p=pu(V+ A/A)>0 as V>0 (VeZx)

because of the regularity of u, we have lim y,,, = x4 a.e. Further if ¢ > 0 is
given there is a V € % for which u(V + A/A) < ¢/2. Consequently for t € V
symmetric we have
Hx: [ Xa+dx) = xa(x)| # O} = (A + t/A) + p(4/A + t)
= WA + A) + u(A — 1/4)
<u(V+ A/A) + u(V + A/A)

<&
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Thus lim, ¢ ¥ 4+, = x4 a.€. For convergence in S(A, A*)let us consider the case
where A is compact and let B < A* be normal weakly bounded and weakly
closed (without loss of generality). Given ¢ > 0, for each V a compact symme-
tric neighborhood of 0 in E consider the sets

Ay = {ge A*: fg “Xasy du<e}.

The sets are open for the weak topology o(A*, A) in A*. Since each g € A* is
also in Q and u(V + A/4) -0 as V -0, we can always find a V for which
fa+viag <& and therefore {4,:V € U} covers B <= A*. Because of [15,
Theorem 2] B is compact for o(A*, A). Hence there are a finite number of
symmetric O-neighborhoods V;, V5, ..., V, in E such that B < ( Ji_; Ay, Let-
ting Vo = ()i~ V;, we have

fx,ﬂ,,gd,usfx,ﬁyogdu<a for all V< V, and g € B.

Thus

Sp(Xa+v — Xa) = SB(XA+V/A) = sup fXA+V gdu<e forVcl.

geB

We have now lim y,,, = x, for S(A, A*). Now let 4 be a set with p(4) < oo
there is a sequence of compact sets {4}, such that A, c 4,,,n=1,2,...
and | ), 4, = A. Since

X4 = X4, = Xaja, L Mo @ and  guysy = Xa,+v = Xa+via+v | No 3L,
the fact that A* = A’ implies (by [15])
Sp(a+v — XA,.+V) Lng and Sp(xs — XA,,) 10
If ¢ > 0 is given and fixing a ¥}, there is an n for which
S(Xa+ve — Xa,+vo) < &3 and Sp(xa — xa,) <&/3.

For this fixed n there is a V < ¥, such that Sg(xy + 4, — X4,) < &/3. Thus for
Ve,

Seltysa—xa) < Ss(tv+a— Xv+a,)+ Se(tv+a, — Xa,) + Selxa, — x4) < e

Therefore, lim x4,y = x4 for any A of finite measure. We use this information
to show y,,,— x4ast—>0.TodothisfixaV, € Z and let D =  J, .y, B, which
is also weakly bounded in A* because of our hypothesis and the fact that Vj is
relatively compact. Since lim x4,y = x, for any ¢ > O there is a V < ¥, such
that Sp(xa+v — x4) <¢/2. Thenforte V
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Se(Xa+e — X4) = Sp(Xa+a + Xaja+e)
< Sp(Xa+ya) + Se(Xaja+e)

= sup ' Xa+14 9 dp + sup J Xaja+e 9 dp

geB geB

= sup fxmm g du + sup f Xa-i14 91 dut

geB* geB"*

<sup fXV+A/A g du + sup [XV+A/A g-.du

geB geB*

< sup J Xv+a4/4 9 du + sup [XV+A/A gdu
geD geD*

= SD(XA+V - XA) + SD(XV+A - XA)

< E.

Now that we have shown y,.,— x4 as t—0 for the strong topology if
u(A) < oo it follows that S, —» S as t — 0 for S(A, A*) for any simple function S
whose support is of finite measure.

We are now ready to show that {T;} forms a partition of the identity. For this
purpose let f€ A and we will assume without loss of generality that f > 0 a.e.;
let B < A* be normal and weakly bounded, and suppose ¢ > Ois given. If Uis a
relatively compact symmetric open set containing 0 in E; then
D=J{B;:te U} is also weakly bounded in A* because A is translation
bounded. Let {S,}, be an increasing sequence of simple functions each of
whose support is of finite measure such that S, T f a.e. Because A* = A" implies
(by [15] (f—S,) | O for S(A, A*), there exists an n, such that for n > n,,
Sp(f— S,) < ¢/3 for n > ny. Choose an n > ny; since S, is a simple function the
fact that Sg((S,), —S,)—0 as t—0 implies there is a symmetric O-
neighborhood V < U such that Sg((S,), — S,) < &/3 for allt € V. Consequently
for t € V we have

Ss(fi =S) < Sp(f; = (Sa)) + Ss((Su) — Su) + Su(Sa —f)

<sup [ (fi— (Sh)g du+ /3 +sup [ (S,~/)g du

geB 'E geB “E

=sup [ (f=S5.)-g-du+e/3+sup [ (S,—f)gdu

geB 'E geB'E

<sup [E (f—S,)g du + ¢/3 + sup ’ (S, —f) - gdu

geD* geD 'E
=2Sp(f—S,) +¢/3
<eé.

This completes the proof that (1) implies (2).
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Now we show (2) implies (1). First, if {T;}, . ¢ is a partition of the identity for
the strong topology, then it is a portion of I for the weak topology. Because of
this Corollary 1 implies A is translation bounded. We show A* = A’ by show-
ing an equivalent property—A contains a countable dense subset [15]. Fix an
E, and let {V,}2>; be a sequence of relatively compact, symmetric, open 0-
neighborhoods such that V,,, < V,, n=1,2,... and V, | {0}. Since E,, is
compact, for each n there exist a finite number k, and points = {x%: j=1, ...,
k,} such that the sets

(Vi=V,+xjj=1,...,k,}

cover E,. For each n we consider the disjoint sets

JFi pFij

The sets S(n, m) of simple functions with a single rational value on each of these
disjoint sets is countable for each fixed n,m = 1, 2, ..., and the collection of all
such simple functions over all n, m is a countable set. Suppose ¢ is a continuous
function whose support is contained in E,,. Given ¢ — 0, since ¢ is uniformly
continuous there exists an n such that |$(x) — ¢(y)| < eif x — y € V,. Choose
a set of rational numbers {I';: j=1,..., k,} such that |$(x;) —T';| <¢/2,
j=1,..., k,, and let S(x) be the simple function contained in S(n, m) of
previous construction with value I'; on V%/| J;+; Vi(j=1, ..., k,)and value T;
oryon Vi VI/\,zi; V3 (,i=1, ..., k,). If x € E,, there is an index j for
which x € V} = V, + x7 and I'; is the value of S(x). Since x — x’} € ¥, we have
| $(x) — ¢(x;)| <¢/2 and therefore

|6(x) = S(x)| = [$(x) = T;] < [dx) = d(x;)| + |(x;) =] <e.

This shows us that for any continuous function of compact support and any
£>0 there is an Se),,.S(n,m) (a countable collection) such that
6 — Sl <

Now let fe A and B = A* be normal and weakly bounded. Since it is known
that Sp(f- (1 — xg,) | O (see [14]), there is an m such that Sy(f (1 — ) <
¢/3. Since {T;}, . g is a partition of I, Theorem 1 (iii) implies T, f— fas U — 0.
Thus there exist a compact 0-neighborhood U < E such that S(Ty(f - xg,) —
f xe,) < &3; and since Theorem 1 implies that Ty(f - xz,) € A is a continuous
function of compact support contained in E,, + U, thereisan$ € | J,,, S(n, m)
such that

&

ITo(f* xE.) — Sl < Sl + U)°
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Therefore
Ss(f = 8) <Sp(f- (1 — x&,) + Ss(f* X&, — To(f~ X))
+ Sp(Tu(f - x£,) — )
<ef3+¢3+ | Tu(f xe,) — Sl Shte, + U)
<e.
This completes the proof of (2) implies (1) and the proof of Theorem 2.
COROLLARY. If A is translation invariant and {T}, g is a partition of the

identity for the strong topology, then C(E) the continuous functions of compact
support is dense in A for the strong topology.

Proof. This follows obviously from the last part of the proof of Theorem 2.

THEOREM 3. If A is translation bounded and C ((E) is strongly dense in A,
then {T} is a partition of the identity in A for the strong topology.

Proof. We first show that for any ¢ € C,(E) a continuous function of com-
pact support ¢, — ¢ as t > 0. Suppose ¢ has its support in K compact. Let
B = A* be weakly bounded and normal and let ¢ > 0 be given. Fix V a rela-
tively compact open 0-neighborhood in E. If Sg(x) + ) = 0, then because ¢, ¢,
for t € V will have its support in K + V we can easily see

Sa(de~ @) =sup [ (6.~ 9)* 1k g du=0

and the result ¢, - @. If Sp(xy + ) # O, then the uniform continuity of ¢ implies
there exists a 0-neighborhood U < V for which

|o(x) — d(y)| <

€
——— whenever x — y e U.
Ss(xv +x)

Then for t € U, since ¢, ¢, have support in K + V,

Salde = )= sup [ (Bt +x) = $(x)) 2 - 9(x) dx

<supj vk g du
SB(XV+K)

geB

€
= - S
SB(XVH() B(XV+K)

= E&.

Thus {T;} is a partition of I in Cy(E) strongly.



424 GERALD BURTON SILVERMAN

Now let fe A, B < A* weakly bounded and ¢ > 0 be given. As A is transla-
tion bounded we can fix a symmetric relatively compact open 0-neighborhood
V in E such that D = ( J, . B,is weakly bounded. Since Co(E) is strongly dense
in A, there exists a ¢ € Cy(E) satisfying S,(f — @) < &/3. By virtue of {T;} parti-
tioning I in Cy(E) there is a 0-neighborhood U < V such that ¢t € U implies
Sp(é, — @) < ¢/3. For such ¢ we have

Sp(f; = f) < Sp(f— ¢) + Sp(dp — &) + Su(f: — ¢1)

<o/3 453 +sup [ (f; ~ $)g du

geB

= ¢/3 + /3 + sup f (f— d)g-, du

geB

<263+ Sp(f~ ¢)
<é&.

Thus {T}} is a partition of I in A.

COROLLARY. If A is translation bounded and C,(E) is strongly dense in A,
then A* = A'.

Proof. This is an obvious consequence of Theorem 3 and Theorem 2, (2)
implies (1).

Remark. Even though all of our results had the strong topology on A, they
could have been generalized to any of the Kothe topologies on A which are
generated by subsets of weakly bounded sets in A* provided we stipulated that
there always exists a compact 0-neighborhood U < E for which ( J,.y B, is a
member of that set of subsets whenever B is a member.
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