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1. Introduction

This paper continues the study of the method introduced by Bankston [1] for
generating new topological properties from old. Given a class g( oftopological
spaces (tr is closed under homeomorphism), the class of anti-g( spaces is
defined so that X anti-:, if and only if the only subspaces of X which are in
g( are those having cardinalities which require them to be in g(. The anti-
connected spaces are the totally disconnected spaces, the anti-perfect spaces are
the scattered spaces, and the anti-compact spaces are those whose only com-
pact subspaces are finite. This latter class of spaces has been studied quite
extensively in [3], [4], [5], [6].

If g( is a topological class the spectrum of, denoted spec (), is the class
of cardinal numbers x such that any topology on a set of power x lies in g(.

Anti-gC is defined to be the class of spaces X such that whenever Y c X then
r e 3( if and only if rl spec (f). This paper follows the set-theoretic and
notational conventions of Bankston [1]. The symbol | denotes the end of a
proof, and N denotes the set of positive integers.
We show that the anti-(.)operation does not discriminate well between

classes of spaces defined by different separation properties. In fact, the anti-(.)
operation distinguishes only the To spaces from spaces with any higher separa-
tion property. It maps the class of To spaces onto the class of indiscrete spaces,
and the class of T spaces (i > 1) onto the class of spaces with totally ordered
topologies. Here T3 means regular and T, T, means normal and T and so on.
We also consider the relationships between the anti-spaces of some classes of

spaces defined by compactness type properties. Anti-compactness and anti-
sequential compactness were considered in [6], and anti-Lindelof and anti-x-
compact spaces were studied in [1].
Throughout this paper we make extensive use of the following basic result

due to Bankston [1, Proposition 1.2].

PROPOSITION 1. Ifff and are classes ofspaces, g( ///[ and spec (:,ff)=
spec (///) then anti-g( anti-#.
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2. Separation properties

Since any set containing at least two distinct points can have a non-
Hausdorff topology defined on it, we have that Spec ({Hausdorff spaces))=
0, 1) 2. Thus X is anti-Hausdorff if and only if no pair ofdistinct points in X
have disjoint neighborhoods. For example, the set of real numbers with the
left hand topology v which has as a base the family of sets {(-oo, a): a 6 ’ is
anti-Hausdorff. We observe that (?, v) is To. We show that this is a best
possible example in the sense that T1 anti-Hausdorff spaces do not exist.

Remark. Let :(i be the class of topological spaces having the separation
property T, 0, 1, 2, 3, 31/2, 4, 5, , fl, m, t, where T, discrete, T indiscrete,
T,, metrizable, T totally ordered. Then

while spec ()= {0, 1} for all these classes. Hence Proposition 1 implies that
the opposite inclusions hold for the Anti () classes.

THEOREM 1. (a) Anti (ro)= .
(b) Anti (,)= ;Ctfor it {1, 2, 3, 31/2, 4, 5, m, 0}.
(c) Anti ()= ’o.
(d) Anti (’t) ("x.

Proof (a) Let X Anti (o)- If X is not indiscrete, let A and B be two
distinct nonempty open sets such that A B. Let a A B and b B. Then
the subspace {a, b} is To, contradiction.

Conversely, let X be indiscrete. If X q Anti (o), then there exists a sub-
space Y which is To and Y] >_ 2. But Y must be indiscrete, hence not To,
contradiction.

(b) Let X Anti (grg,). If the topology on X is not totally ordered let A and
B be nonempty open sets such that A B and B A. Let a A B, and
b B A. Then the subspace {a, b} is discrete, contradiction.

Next, let the topology on X be totally ordered. If X q Anti (gcg x), then there
exists a subspace Y such that Y is Ta and [YI > 2. Let {a, b} = Y, a 4: b. Then
{a, b} is T1, hence discrete, and there exist sets A, B open in X such that
A& {a,b}={a} and B& {a,b}={b}. Thus aqB, BCA, contradiction.
Hence (b) follows, in view of the above remark.
The proof of (c)is similar to that of (a). Finally for (d), let X Anti (gcg,). If

X q g(, let {a, b} X such that for each set V, open in X, a V b V.
Hence the subspaee {a, b} has totally ordered topology, contradiction, since
spec (3C,) {0, 1}.

Conversely, let X 3f. If X Anti (t), then there exists a subspace Y
such that Y Yft, YI > 2. Let {a, b} Y, a 4= b. Since X W, there exist
sets A, B, open in X, such that a A B, b B A. Then A c Y, B c Y are
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open sets in Y such that A Y 95 B Y and B Y 4: A c Y, contradiction,
since Y ,. |

COROLLARY 1. (a) Anti (Anti (#i))= dUifor i {0, fl, t}.
(b) Anti (Anti (,))= for i {1, 2, 3, 31/2, 4, 5, m, }.

Proof Follows immediately from Theorem 1.

A natural question to consider is the behaviour of the properties of regular-
ity, complete regularity and normality with respect to the anti-(-) operation.
The first two yield to a treatment similar to Theorem 1 and Corollary 1. Let
o, 1, 2, gcr and (, denote the classes of Ro, R 1, regular, completely
regular and discrete spaces respectively. R o and R are the regularity properties
discussed by Davis [2]. Then we have o 1 2 o(cr f, while
Spec {0, 1} for any of these classes. Hence, by Proposition 1, reverse
inclusions hold for the Anti-()classes.

THEOREM 2. Anti (t)= Anti ()= o c ftfor i= O, 1, 2.

Proof First let X gego t- If X q Anti (o) then there is a subspace
E {a, b} which is in o c :’o and hence discrete, contradiction.

Next let X Anti (g,). If X $ :go ogt, then there are two points a and b
such that every neighbourhood of either point also contains the other. Thus
{a, b} is indiscrete and hence completely regular, contradiction. |

Remark. It is interesting to note that while i oUo i+ for 0, 1, 2
(see [2]), the above result shows that Anti (,)= g0 Anti (:g,+1), for
i=0, 1,2.

When it comes to normal spaces the situation seems to be more complicated.
Any topology on a set of at most two points is normal. Furthermore, if
]X] > 3, let X {a, b, c} w E where the union is disjoint, and define a topo-
logy on X by - {0, X, {a} w E, {a, b} w E, {a, c} w E}. Then (X, -)is
not normal, since {b} and {c} are disjoint closed sets which cannot be separated.
Thus Spec ({normal spaces})= {0, 1, 2}. We have not been able to characterize
the class of anti-normal spaces.

3. Compactness properties

Here we consider the anti-spaces of classes of topological spaces defined
by some compactness property . If is any of the properties, finiteness,
compactness, countable compactness, sequential compactness or pseudocom-
pactness then Spec ()= to. If is a-compactness or Lindelofness then
Spec (U)= n.
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THEOREM 3.

In)

(b)

(d)

The following inclusions are all proper.

Anti-pseudocompact Anti-countably compact Anti-compact
Anti-finite.
Anti-compact Anti-sequentially compact.
Anti-countably compact Anti-sequentially compact.

Anti-Lindelof Anti-a-compact.
Anti-compact Anti-g-compact.

Proofi The inclusions (a), (c) and (d) are proved by observing the equality
of the spectra of the classes of spaces involved and then using Proposition 1.
Inclusion (b) was shown to be proper in [6]. To show (e) let X be anti-compact
and A be a a-compact subset of X. Then A J {K.: n N}, where each K is
compact in X and therefore finite. Hence A is countable, so that X is
anti-a-compact.
Examples (i), (ii) and (iii) show that the inclusions in (a)are proper, (iv)

shows that (c)is proper, (i) shows that (d)is proper, and (v) shows that (e)is
proper.

(i) Let X be an uncountable set with the cocountable topology. Then no
infinite subset E of X is countably compact. For, let {x , x2, x.,...} be a
sequence ofdistinct points in E and let V X- {x: n N}. Let V V w {x ,
X2,... Xn} for each n N. Then {V, V, V2,... Vn,...} is a countable open cover
of E which has no finite subcover. Thus X is anti-countably compact. But, since
there are no disjoint open sets in X, any real-valued continuous function on X
is constant, and hence X is pseudocompact, and, in particular, not anti-
pseudocompact. Furthermore, X is Lindelof and uncountable, so it is not
anti-Lindelof.

(ii) Let X be the subspace of fin described by Walker [8, page 189]. Then X
is countably compact and XI < c. In fact, since fin is anti-sequentially com-
pact [6] it follows that IX c. But infinite compact subsets of fin are of
cardinality 2, Walker [8, Theorem 2, page 71]. Hence X is anti-compact and
not anti-countably compact.

(iii) Any topological space is anti-finite, so a non pseudo-finite space is
anti-finite but not anti-compact.

(iv) The Stone-Cech compactification of the integers, fiN, is countably
compact and hence is not anti-countably compact. Suppose A is a sequentially
compact infinite subset of fiN. Then there is a sequence {x,: n N} of distinct
points in A, which has a convergent subsequence {x,: k N} converging to a
point x in a. Then {x} w {x,: k N} is an infinite compact subset of fin of
cardinality less than 2. Hence fin is anti-sequentially compact.

(v) Any compact space which is countably infinite is anti-a-compact,
indeed anti-Lindelof, but not anti-compact. I

Bankston [1, 1.3 (iii)] has shown that anti-compactness and anti-
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Lindelofness are implicationally unrelated. Examples (i) and (v)above provide
an alternative proof of that result.

Local characterizations of anti-compact and anti-sequentially compact
spaces were given in [6]. The proof for anti-countably compact spaces is an
obvious modification of the proof of Theorem 3 of [6].

THEOREM 4. X is anti-compact (anti-countably compact) if and only iffor
each point p in X and each infinite subset A ofX there is an open set G containing
p such that A G is not compact (countably compact).

The icn property discussed in [3], [6] is a local characterization of anti-
sequentially compact spaces [6, Theorem 5].

THEOREM 5. X is anti-sequentially compact ifand only iffor each point p in X
and for each infinite subset A ofX there is an open set G containing p such that
A G is infinite.

We have not been able to produce a local characterization of anti-
pseudocompactness. The obvious modification of Theorem 4 is true in one
direction but false in the other. Let X be an uncountable set with the cocount-
able topology, Example (i) above. Then X is not anti-pseudocompact since X is
pseudocompact. If A is an infinite subset of X and p X, take S {x,: n N}
to be a sequence of distinct points from A {p}. Then G X S is open and
contains p. Furthermore, A G S, so that A G has the discrete topology
as a subspace of X and so is not pseudo-compact.
For anti-Lindelofness we have the following result.

THEOREM 6. X is anti-Lindelofifand only iffor each point p in X andfor each
uncountable subset A ofX there is an open set G containin9 p such that A G is
not Lindelof

Proof Let X be anti-Lindelof. Then A w {p} is uncountable and hence not
Lindelof. So there is an open cover cg of A with no countable subcover. Now
p e G for some G cg. Then A- G is not Lindelof, for otherwise cg has a
countable subcover.

Conversely, let A be an uncountable subset ofX. Let p X and V be an open
set containing p such that A V is not Lindelof. Let cg be an open cover of
A V which has no countable subcover. Then qq w {V} is an open cover of A
with no countable subcover. Hence A is not Lindelof, so that X is
anti-Lindelof. |

We observe that the obvious modification of Theorem 6 does not provide a
local characterization of anti-a-compactness. Again we appeal to Example (i),
X an uncountable set with the cocountable topology. X is anti-a-compact since
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it is anti-countably compact. But for each point p in X and for each open set G
containing p we have X G is countable, and hence is tr-compact.
A sequence characterization of anti-sequentially compact spaces was given in

[6, Theorem 4].

THEOREM 7. X is anti-sequentially compact if and only if no sequence of
distinct points in X has a convergent subsequence.

We now show that a double application of the anti-(.)operation to the class
of compact spaces yields the class of the hereditarily compact spaces of Stone
[7]. First we need a lemma.

LEMMA 1. Every non-compact space has a countably infinite subset which can
be written as a sequence whose initial sediments are relatively open. Furthermore,
ifX is Ro, it has an infinite discrete subspace.

Proof. There is an open cover of X which has no finite subcover. Let
x X, so there is. a U with x U 1- Let x2 X U 1, and U2 ( with
x2 6 U2. Let x3 6 X (U1 w U2), and U3 6 with x3 6 U3, and so on. Then
{xl, x2, xn,... is the required subset.

If X is go, then cl {xl} c U1, and G2 X cl {xl} is open and contains x2.
Hence V2 U2 c G2 is open and x2 6 V2, x V2. By induction, for each n we
obtain an open set V such that xn V and xi V, for 1, 2,..., n 1. Hence
{xl, x2,..., x,,...} is a countably infinite discrete subspace of X. I

Example. Let N be the set of natural numbers with a topology consisting of
all sets of the form {1, 2, n}, n e N, together with b and N. Then N is
anti-compact, anti-Ro, and the only discrete subsets are singletons.

THEOREM 8. X is hereditarily compact ifand only ifX is anti-(anti-compact).

Proof. Firstly we observe that spec (anti-compact)= 09, for the indiscrete
topology on any infinite set is compact and hence not anti-compact.

Let X be hereditarily compact, and suppose X is not anti-(anti-compact).
Then there is a subspace Y of X such that Y is anti-compact but YI
spec (anti-compact). Hence Y is infinite and therefore not compact, contra-
dicting the fact that X is hereditarily compact.

Conversely, let X be anti-(anti-compact) and suppose X is not hereditarily
compact. Then there is a non-compact subspace Z of X. By the lemma, Z has
an infinite anti-compact subspace E. But EI spec (anti-compact), contra-
dicting X is anti-(anti-compact). |

The following result can be proved in a manner analogous to the previous
theorem.

THEOREM 9. X is hereditarily Lindelof ifand only ifX is anti-(anti-Lindelof).
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We observe that spec (hereditarily compact)= o9, and hence from Proposi-
tion 1 we have that anti-compact implies anti-hereditarily compact. The next
result characterizes anti-hereditarily compact spaces.

THEOREM 10. X is anti-hereditarily compact ifand only ifeach infinite subset
ofX contains an infinite anti-compact subspace.

Proof Let X be anti-hereditarily compact and E be an infinite subset of X.
Then E is not hereditarily compact, so there is a non-compact subspace F of E.
By Lemma 1, F has an infinite anti-compact subspace.

Conversely, let E be an infinite subset of X. Then E has an infinite anti-
compact subspace, and hence E is not hereditarily compact. Thus X is anti-
hereditarily compact. |

COROLLARY 2. Any Hausdorff space is anti-hereditarily compact.

Proof If the space is finite, we are done. Otherwise, any infinite Hausdorff
space contains a discrete sequence of distinct points, and hence is anti-
hereditarily compact by Theorem 10.
The observation of Stone [7, page 900] that a T2 hereditarily compact space

is necessarily finite follows immediately from the corollary. We also note that
the real line with the usual topology is an anti-hereditarily compact space
which is not anti-compact. The Hausdorffcondition in this corollary cannot be
weakened to T1, as the cofinite topology on an infinite set shows. The following
example shows that the converse of this corollary is false. Let N have the
topology - with base {{2n- 1, 2n}:n U}. Then (N, Y-)is not To but it is
anti-hereditarily compact since it is anti-compact.
The results of Lemma 1 and Theorems 8, 9 and 10 can be generalized to

higher cardinal numbers as follows. A space X is called 2-compact (2 is a
cardinal) iff every open cover of X has a subcover of power < 2.

LEMMA 2. Every non-;t-compact space has a subspace which is well orderable
in type 2 in such a way that initial segments are relatively open. Such a subspace is
anti-2-compact whenever 2 is a regular cardinal.

THEOREM 11. Let 2 be a regular cardinal. Then X is hereditarily 2-compact iff
X is anti-anti-2-compact.

THEOREM 12. X is anti-hereditarily-2-compact iffeach subset ofX ofpower at
least 2 contains a 2-sequence all of whose initial segments are relatively open.

LEMMA 3. X is hereditarily-2-compact iff X contains no scattered subsets of
power 2. (In one direction use Lemma 2. In the other, show that if Y is
hereditarily-2-compact of power 2 then the set of points of Y with no nbds of
power < 2 is nonempty dense-in-itself.)
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THEOREM 13. X is anti-hereditarily-2-compact iff each subset of power at
least 2 contains a scattered subset ofpower 2.
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