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SURGERY ON A-HOMOLOGY MANIFOLDS

BY

GERALD A. ANDERSON

I. Introduction

Let A be a subring of Q and K the set of primes invertible in A. This paper is
devoted to the problem of finding a cobordism from a map qb" M X, where
M is a A-homology manifold, to a A-homotopy equivalence. Our main result
is"

THEOREM 1.1. Let dp" M- X be a normal map of degree 1 between a A-
homology manifold M of dimension n > 5 and a A-Poincare complex X, so that
dp c3M" c3M tX is a A-homotopy equivalence. Then there is an obstruction
a() Lhn(A[nl(X)]), depending only on the normal cobordism class of dp, so that
a(dp) 0 if and only if q is normally cobordant to a A-homotopy equivalence.

There are also simple and relative versions (cf. Section 5). By normal map we
mean that there are A-homology cobordism bundles [4] v over X and over
M I so that is a trivialization of Tt ) b*v (i.e. IM 0 T, (R) 4*v,
IM x 1 M Ik). A A-Poincare complex is a polyhedral pair (X, t3X)
together with an element [X, t3X] H.(X, c3X) so that c [X, t3X]" Hi(X;
A) -H,_i(X, coX; A); degree 1 has the usual meaning. A A-homotopy equi-
valence is a map f: A--, B so that J’" ti(A) r,(B) for/< 1 and f" t,(A)(R)
A rti(B)(R)A for i>_ 2. Normal cobordism is defined as usual, and
Lh,(A[rtl (X)]) denotes the Wall group of the group ring A[n (X)] [24].

In Section 2, we show that the standard representability and stability proper-
ties hold for A-homology cobordism bundles. Our stability is not as strong as
the result of Matumoto and Matsumoto [17] (for A Z), as there is no
analogue of the Zeeman unknotting theorem, but suffices for our purposes.

Section 3 contains a straightforward generalization of the general position
theorem for maps of Maunder [18] and a general position theorem for
embeddings.
The simply connected case is considered in Section 4. It was claimed

previously by Quinn [19], and the argument here, based on that of Matsui [15],
is considerably simpler. This case is necessary for the argument of Section 5.
The main theorem is proven in Section 5. The results of Section 4 (surgery

below the middle dimension) and Wall [24], Chapter 6, suffice to handle the
odd dimensional case. If n 2k, the argument goes as follows" By Section 4, we

Received November 27, 1978.

(C) 1980 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

653
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can assume Kk(M; A)-nk+i(q)(R) A is the only non-zero homology kernel
and is free over A[nl(X)]. To define the surgery obstruction, we construct a
codimension 0 submanifold ? c M, and a A-homotopy equivalence " N --*/
from a PL-manifold N, containing a basis for nk + 1(4)) (R) A (reminiscent of the
engulfing theorem of Jones [12]). There is a natural splitting of the surjection
Kk(N; A) Kk(M; A), and we define intersection and self-intersection forms
on Kk(M; A) geometrically in N.
The argument is reduced to that of Chapter 5 of [24] by showing that any

element of Kk(M; A) can be represented, up to multiplication by a unit in A, by
an embedded k-sphere in some A-homology manifold hcobordant to M. (W
is an hK-cobordism if c +_ W W are A-homotopy equivalences.)

2. Representability and stability of A-homology cobordism bundles

In this section, we show that A-homology cobordism bundles are represent-
able over Ha-cell complexes and satisfy the same stability properties as PL-
block bundles.
An HA-cell complex is a cone complex in which each boundary is a A-

homology sphere or disc. If X is an H a-cell complex, then we let ka,(x) denote
the set of isomorphism classes of A-homology cobordism S"- 1-bundles over X
(cf. [4]). If X’ denotes a simplicial complex underlying X, then the amalgama-
tion operation of [14] defines a map ka,(x’) - kn,(X). Furthermore, kn,(X’) is
in bijective correspondence with [X’, BHK(n)], where HK(n)is the A-set with
/-simplexes A-homology cobordism S"-1-bundles over A x I.
The first step in showing that ,ff defines a bijection above is the following

existence theorem for normal bundles.

THEOREM 2.1. Let M", Nn+k be compact A-homology manifolds with M
properly embedded as a full subcomplex. Then the simplicial neighborhood
N(M’, N’) in the first derived subdivision N’ is a A-homology cobordism
DR-bundle over the dual cell decomposition M* of M.

Proof We proceed by induction on n. Let A, denote the statement of the
theorem and B,, C, the following statements.

B,. Let Eq-1 C E+k-1 be A-homology spheres. Then 8N(Z’l, E’2) is a tri-
vial A-homology cobordism Sk-l-bundle over El’ and there exists a
trivialization

x s
that extends to an H-cobordism between E- N(Z], E) and cE’ x Sk- 1.

C,. If A" is a A-acyclic A-homology manifold and is an orientable A-
homology cobordism Sk- 1-bundle over A*, then is trivial.
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Clearly A0 and Co hold.
A,_ 1, Cn-1 :: B,. By A,_ 1, t3N(X’, X’2) defines an S- 1-bundle over El’.

Choose a vertex v e Z;1 and let Ai Z’i- D(v, E), 1, 2. By C,_ 1, ]A’ is
trivial. By the argument of Proposition 5.1 of [14], the trivialization G exists as
stated.

A,_ 1, B, = A,. The proof is identical to Corollary 5.2 of [14].
A, C,. Let be an orientable A-homology cobordism DR-bundle over A*

with a zero-section i" A --, E(). By the proof of Corollary 3.7 of [14], it suffices
to show that extends over cA*. Since E() ",i(A), A. implies that

E()- N(i(N), E()’)
defines an isomorphism between the sphere bundle of and

o c3N(i(A’), E()’).
Since both A and E() are A-acyclic, both cA and cE()are A-homology

manifolds. Let r/denote the space over (cA)* defined by N(c(i(A))’, cE()’). Then
r/[A* o and, by A,, r/[ ((cA)*)"’ is a A-homology cobordism DR-bundle. By
amalgamation, we may regard q as a space over cA*.

Let v be a vertex of A so that D(v, A) is an n-cone of A*. As before,
rllc(t3D(v, A)) is trivial, and a trivialization can be chosen to extend the triviali-
zation of olOD(v, A) obtained from the structure of 0 as a bundle over A*.
Therefore there is a trivialization G of rll(D(v, A) w c(cD(v, A))). The total
space E(G) is an HK-cobordism between

q(D(v, A)) r/(c(cO(v, A))) and (D(v, A) w c(c3D(v, A))) x Dk.

Extend G to a trivialization G’ of rl[cD(v, A) by setting

E(G’) c(rl(cD(v, A))w E(G) w (cD(v, A))x Dk);
clearly E(G’) defines a space G’ over cD(v, A), extending G, and an

HK-cobordism between rl(cD(v, A))and (cD(v, A)) x DR. Therefore r/ is a A-
homology cobordism DR-bundle over cA* and so is trivial.

In particular, the tangent bundle TM and stable normal bundle vM of a
A-homology manifold M can be defined over M* by the usual procedures. The
following subdivision result shows that TM, VM are defined over M’. Let X be an
Hr-cell complex and Y a subcomplex whose cells are simplexes.

THEOREM 2.2. Let be a A-homology cobordism Sk-bundle over X. Then
there is a A-homology cobordism Sk-bundle ’ over X’ so that ’] Y .] Y and
o1(’) by an isomorphism extending (I Y) x 1 over Y.

Proof We first prove the result for X’ a A-homology manifold. Let A,
denote the statement of the theorem if dim X’ n and B, the following state-
ment: If A" is a A-acyclic A-homology manifold and is an orientable A-
homology cobordism SR-bundle over A, then is trivial.
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A, B,. Let /A" be an orientable Sk-bundle. By A", there is a subdivision

’ of over the first derived A’. But ’ amalgamates to an Sk-bundle over A*,
and so is trivial by the proof of Theorem 2.1.

A,_ a, B,_ An. The proof is the same as the completion of the proof of
Theorem 4.5 of[14], since Q (ason page 107 of[14]) collapses onto P St(w, P),
for some vertex w, which is a A-acyclic A-homology manifold (so that
D I(P- St(w, P))is trivial by Bn-1).
Thus the result holds for X’ a A-homology manifold. Let p be a prime in K

and M, a compact PL-manifold of the homotopy type of the suspended Moore
space Er(S wp D2). Since //.(M; A)= 0, the argument above implies that
IMp, BSH:(k)] 0. By [1], BSH:(k) is A-local since na(BSHr(k)) 0. There-
fore, by obstruction theory, if A is a A-acyclic simplicial complex and is an
orientable Sk-bundle over A, then is trivial. The proof now follows exactly as
the proof of Theorem 4.5 of 14].

COROLLARY 2.3. ’’ k2(X’ -- k2(X is a bijection.

By the proof of Theorem 2.2 we have the following result.

COROLLARY 2.4. BSHr(n) is A-local.

Theorem 2.2 allows us to define pull-backs. Let be a A-homology cobor-
dism Dk-bundle over a simplicial complex Y and f: X - Y a PL-map. Define
f* to be the amalgamation, over X, of (e x )’IGs where X x Y is sub-
divided so that the graph Gs off is a subcomplex. In particular, we may define
Whitney sums in the usual way.
We now consider stability properties of A-homology cobordism bundles.

Our main result is the following.

THEOREM 2.5. Suppose n >_ max {k, 5- k}. Then rCR(PL~, PL~(n)) (R) A
nk(Hr, Hr(n)) is an isomorphism.

The proof requires a number of lemmas. Let PL(n) be the A-set with k-
simplexes PL (n- 1)-sphere block bundles over Ak x ! which are a product
over Ak x {0, 1}, and PLHr(n) the A-set with k-simplexes block-preserving PL
H:-cobordisms between Akx Sn-a and itself. (W is an H/ccobordism if
H.(W, c3+_ W;A) 0; the prefix PL indicates that W isa PL-manifold.) By [13],
PL~(n) is homotopy equivalent to PL(n). Let denote the group of PL
H/-cobordism classes of PL A-homology n-spheres of [3].
LEMMA 2.6. Let n >_ 2. Then there is an exact sequence

0 d/+k-, (R) A rtk(Hr(n), PLHr(n))(R) A / (R) A O.

Proof Let x tk(Hl(n), PLHK(n)). Then x is represented by a A-homology
cobordism Sn-a-bundle over Akx I, with total space W, which is a block-
preserving PL HK-cobordism over Akx I and the product bundle over
OAk x {0, 1} w Ak-a x I, where Ak-1 is a fixed (k 1)-face of Ak.
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Let/j(x) Hj(W; d/,+k_j_ 1) be the first non-zero obstruction to finding a
PL A-acyclic resolution of W rel (OW)of [23]. Ifj >_ n, then Ulajj(x) 0 for some
u A ( Z and it follows by naturality that la(ux) 0. Define

by
" rtk(nl(n), PLHr(n)) (R) A d/ (R) A

1

u

where u is a unit in A so that the first (possibly) non-zero obstruction of ux is
1,,-1 (ux). (We identify/.-1 (ux)with its image under

Hn_I(W; )--Hn_I(W; t) () i ( i.)

The map a is easily seen to be a homomorphism. To see that a is surjective, let
Z be a PL A-homology k-sphere, and regard cZ as a space over 5 x I as in [13]
Then cZ x S"-1 represents an element x u(U(n), PLUg(n))with a single
resolution obstruction ,-1 (x) [Z].

Let A ker (a), and define fl" A +_ @ A by

1

where u A" is chosen so that o(UX) is the only resolution obstruction. If
fl(x) 0, then there is a A-acyclic resolution, rel ( W), f: N W where N is a
PL-manifold and W represents ux. Since N represents 0 in u(U(n), PLH(n))
and My defines a homotopy from N to W, ux 0. Therefore fl is injective.

Let x A be represented by W as above where W is a PL-manifold except at
vertices v i, v, and let [Z] +_ . Define M to be the connected sum,
along the boundary, of St(, W’), l, m, which we can assume is a sub-
complex of W. Then [/] fl(x). Let Z’= Z(-/)and W’ W#cZ’
along an (n-k-1)-disc lying over (5-5-1)x I. If x u(H(n),
PLH(n)) denotes the element defined by W, then x’ A, since we introduced
only one new singularity, and fl(x’)= fl(x)+ [Z’] [Z]. Therefore fl is
surjective.

Let i: u(U(n), PL(n)) A u(H(n), PLH(n)) A denote the map
induced by inclusion.

LEMMA 2.7. (Im i#) (//nK+k_l ()A)= 0.

Proof Let x rCk(U :(n), PL(n)) be represented by a total space W with only
isolated singularities. Then W] ((A I)is a PL (n- 1)-sphere block bundle,
and so extends to a PL n-disc block bundle . Let Z W w E(); then Z is a
A-homology (n + k)-sphere. Form V Z Int (M)where M is constructed as
in the proof of Lemma 2.6. Then fl(i #(x)) [c3M] 0 since (3M c V and V is a
A-acyclic PL-manifold.
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LEMMA 2.8. If n > max {k, 3 k}, then nk(PLH K(n), PL(n))(R) A
,+ (R) A.

Proof. Let x nk(PLH (n), PL(n)) be represented by a PL Hcobordism
W between A x S"- and itself, which is a PL block bundle over A x I, trivial
over Ak-1 x I. Extend W[8(Ak x I) to a PL n-disc block bundle and let
E W w E() as in the proof of Lemma 2.7. Define " nk(PLHK(n),
PL(n))- /,+k by ?(x) [Z].
The surjectivity of 7 follows essentially as in Lemma 2.6. Let Z be a PL

A-homology (n + k)-sphere. Remove the interiors of two disjoint, trivially em-
bedded copies of Ak x D" and represent the resulting manifold as a space over
A x I. This defines an element x of nk(PLH(n), PL(n)) with ),(x) [Z].

Suppose V(x) 0. We show that ux 0 for some u e A. Let [Z] (x). Then
bounds a A-acyclic PL-manifold N, which we may assume to be simply

connected by Corollary 3.3 of [6]. Let i" c3(A x I) E() be the zero section.
Since nl (N) 0 and/,(N; A) 0, represents 0 in nk(N)() A by the Hurew-
icz theorem, relative to the Serre class of abelian groups G with G (R) A 0. By
replacing x by ux, where u A is so that u[i] 0 in nk(N), we may assume that
is null-homotopic. Therefore if k < n, extends to an embedding of A x I by

general position. (If k n- 1, there may be double points, which can be
eliminated by the Whitney method since n + k _> 4.)

Let r/denote the normal block bundle of A I in N, and r/ the associated
open disc bundle. Represent N E(r/) as a space over A x I. Then N E(r/)
defines a homotopy between ux and the element of nk(PLH (n), PL(n)) defined
by the associated sphere bundle S(O). By [21], S(rt) represents 0, and so ux O.

Proof of Theorem 2.5.
(HK(n), PLHK(n), eL(n))"

0 }’l]lKn+k li() A

0 O+k-1 (R)A
y-1

Consider the long exact homotopy sequence of triple
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The rows in this diagram are exact by the lemmas and the square on the left
commutes by construction. By a diagram chase, o i," nk(HK(n), PL(n))(R)
A q (R) A is an isomorphism for k < n, n > 3, n + k > 5. It follows from [3]
that

nk(Hu(n), Pr(n)) (R) A - (HK, PL) (R) A.

The result for k < n now follows from the exact ladder

" (BnL(n))(R) A n(BH(n))(R) A - n_, (UK(n), nL(n))(R) A ...

"-, nk(BPL)(R) A n(Bn) () A /i:k_ I(HK, PL)(R) A

by Corollary 2.4, since BSH(n)is the universal cover of BHK(n)and

n, (BHu(n)) n, (BHu) - Z/2
by [4].

For k n, the argument above shows that n,(PL, nL(n))(R) A n,(U,
Hub(n)) is surjective, and so an isomorphism if n 3, 7, or n is odd and 2 6 K
(cf. [21]). If n is odd, 4: 3, 7, and 2 K, then

n,,(nL-, PL-(n)) ker (n,,(BPL-(n)) n.(BnL-)) - Z/2

is generated by Ts., which is not fiber homotopically trivial. Since n > 3, the
map BPL- (n) BG(n) --. BGu(n) factors through BH(n) by Theorem 2.7 of[a]
so that Ts. is non-zero in n.(BHu(n)) (since n.(BG(n))’ n.(BG(n))(R) A).

If n is even, then n,,(PL~, PL-(n)) Z is again generated by Ts. and the result
follows as above since n,,(G, G(n)) Z torsion.

3. General position

In this section, we develop general position theorems for maps of a polyhe-
dron to a A-homology manifold. The arguments given are due to Maunder
[18], handling the case A Z. All spaces are assumed to be compact polyhe-
dral and all maps will be PL.

Let f: K L. Recall that the singularity set off is the subpolyhedron of K
defined by

S(f) {x K" f -’f(x) > 1}
and that f is non-degenerate if each point inverse f-(x) is finite.

THEOREM 3.1. Suppose f: K" --, M" where M is a A-homology manifold. Let
P be a subpolyhedron of K so that f lp is an embeddin and dim (K P)= p.
Then there exists a A-acyclic resolution g" K" K and a non-degenerate map
h" K M so that

(1) g’g-l(P)- p, h og-’[P=flP,
(2) dimS(h)<n+p-m.
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The proof requires a number of lemmas. (Compare [18]).

LEMMA 3.2. Suppose L is a full subcomplex of K. Then there is a simplicial
map f K’ - v*E (v q K) so that if x is in the interior of the simplex vbo b,.,
then f-l(x) D(a,, K) D(a,, L).

The map f is defined by

if a L
f(b)

if a r.

LEMMA 3.3 Supposef" K L, where dim K n and Ii(L A) Ofor <__ n.
Then f factors, up to homotopy, throulh a A-acyclic polyhedron.

The proof is identical to the proof of Proposition 2.2 of [18]. Lemma 3.3
immediately implies the following.

LEMMA 3.4. If f K L factors through a A-acyclic polyhedron M, then we
may assume dim M < dim K + 1.

PROPOSITION 3.5. Suppose f" K" --, K where M is a A-homology manifold.
Let P be a subpolyhedron ofK so thatf P is non-degenerate. If n < m, then there
exists a A-acyclic resolution 9 i" --, K and a non-degenerate map h 2 - M so
that g. g-l(p) p and h v- P f P.

Proof The proof is by induction on m. Let Am denote the statement of the
theorem for A-homology manifolds M of dimension < m, and consider the
following statement"

B,,. Let K" be a cone complex, L a cone subcomplex and M a HA-cell
complex with n < k _< m. Let f" K M be a conewise map so that

(a) f is injective on simplexes of K with no vertex in L, and
(b) if v, w are vertexes of p-, q-cones and f(v) w, then q > k n + p.

Then there exists a A-acyclic resolution 9" K"- K, and a non-degenerate
map h" K- M so that

(i)
(ii)

if C, D are cones with f(C) c D, then h(9-’(C)) D, and
if a is a simplex of K with no vertex in L and x a, then g- ’(x)]
and h(y-’(x)) =f(x).

Both Ao and B0 are obvious.

Bm Am. Letf K --, M satisfy the hypothesis of the statement Am. Assume
fis simplicial and P is a subcomplex of K. Then the induced map of the dual-cell
decompositions satisfies the hypothesis of Bin, with L taken to be the subcom-
plex of cones not meeting P, and Am follows.
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(A,,_ 1, Bm- 1) B,,. Let f" K" --* M and L satisfy the hypothesis of Bin,
and let P =f- l(Mtm- 1)). Let g" P P, h" P Mtin- 1) be the maps obtained
from f [P: P Mtin-l) using Bin-1. Since, n < m, g extends to a A-acyclic
resolution P’ K by adding vertexes to P corresponding to vertexes of K not
in P, and h and f define a non-degenerate map P’ M. Thus we may assume
that f]P is non-degenerate.
We first extend the construction over P w /2"-1). Assume f" Q --, M(m-l) is

non-degenerate, where P w/2s-l) Q P w/2s), s < n- 1, and let C be an
s-cone of L, not in Q, whose vertex is sent to the vertex of an m-cone D of M. Let
R f-I(D) Q. Clearly OC = R and fiR" R --, cD is non-degenerate.
By Lemma 3.3, f lcC" cC cD extends to a map f" (7 cD, where C is a

A-acyclic polyhedron of dimension s containing (C as a subcomplex. Let
9" C --. C be the map constructed in Lemma 3.2; 9’ is a A-acyclic resolution
rel (cC), and so defines a A-acyclic resolution 9"" R w C --, R w C rel (R). The
mapsfandf’ define a mapf"" R w C OD, non-degenerate on R. Since cD is a
A-homology manifold, by A,,_ 1, there is a A-acyclic resolution 9" R - R w C
rel (R) and a non-degenerate map fi’: R --, cD so that h 9-11R f"[R. Con-
tinuing in this manner, there exists a A-acyclic resolution 90" g0 P w/2"-1)
and a non-degenerate map h0"/o ---’ Mtm-1) satisfying conditions (i), (ii) above.

Finally, we join up the remaining vertexes of K as before, getting a A-acyclic
resolution 9" K K, and define h" K M by the maps ho and f. It is now
easily checked that 9, h satisfy the conclusion of Bin.

Proof of Theorem 3.1. Again we proceed by induction on m. Let A denote

the statement of the theorem, assuming f is non-degenerate and dim M < m,

and Bm the following statement"
Let K" be a cone complex, Lp a cone subcomplex and Mk an HA-cell complex,

k <_ m. Let f" K --, M be a conewise map so that

(a) f is injective on verticies of cones not in L,
(b) iff identifies the vertices of C and D, then C D or C c D 0,
(c) if v, w are vertices of q-, v-cones and f(v) w, then r > k n + q, and

r > k-p+q if vL.

Then there exists a A-acyclic resolution 9 K" ---, K and a non-degenerate map
h" K-M so that

(i)
(ii)

(iii)

if C, D are cones with f(C) D, then h(g-l(c)) c D,
if a is a simplex of K with no vertex in L and x e a, then g- i(x)
and h(g-l(x)) =f(x),
dimS(h)<n+p-k.

Both Ao and Bo are obvious, and Bm implies A,, as in the proof of
Proposition 3.5.
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(A,,_ 1, B,,_ 1) = B,,. Let K", Lp, M" andf be as in the hypothesis of Bin, and
define P =f-1(Mr"-1). As in the proof of Proposition 3.5, we may assume

f lP is non-degenerate and dim S(f[P) < (n 1) + (p 1)- (tn 1)= n +
p m 1. Again mimicking Proposition 3.5, there is a A-acyclic resolution
90"/(o P LiP- 1) and a non-degenerate map ho"/(o Mt"- satisfying (i),
(ii) above with dim S(ho) < n + p tn 1; together with the mapf these maps
define a A-acyclic resolution 9" K K and a non-degenerate map h" K M
satisfying (i)and (ii).

Casel. n+p-m>_O. In this case, dimS(h) <n+p-m. Suppose
h(v) h(w) is the vertex of an m-cone of M, and v a, w z are q-simplexes of

so that h(v, )= h(w, "c). Since h is non-degenerate, a and z are in
w /2p-l), and it follows easily that q < n + p m 1.

Case 2. p < n or n + p m < -2. In this case the construction above can
be extended to get a A-acyclic resolution 9" K’o P w L and an embedding
h"/(0 Mr"-1). Proceeding as before, we get maps 9"/(’ K, h"/(’ --, M
satisfying properties (i), (ii), (iii).

Case 3. p=nand n+p-m= -1. We must modify h once again. LetD
be a (2n + 1)-cone whose vertex is the image under h of vertices of n-cones C 1,

Ck ofL and at most one vertex of a cone E not in L. Then h: h- 1(c3D) --, c3D
is an embedding and h’c3Ci--, c3D extends to a A-acyclic polyhedron C. By
Am-1 we may assume

dim S(h (h-(c3D) w C w w -k))--O.
The singularities of h[ (h-I(aD) w C1 w w Ck) are of two types"

(a)
(b)

h(x) h(y), x Int ((,), y e

h(x) h(y), x Int ((i), Y e c3E.

To eliminate points of type (a), let U be a small closed neighborhood of x
missing both OCi and S(h)- {x}. Using a collared neighborhood of in D,
deform h, relative to/(-Int (U), to a map sending Int (U) to Int (D). A similar
argument works if more than two points are identified.

For points of type (b), we first apply the argument above to assume that
y Int (E). Let F be a (2n + 1)-cone neighborhood of h(x)in Int (D) so that,
letting C’ h- I(F) Ci and E’ h- (F) E, h[c3Ci and h]c3E’ are disjoint
embeddings.

Since c3D’ is a A-homology sphere or disc of dimension 2n and
dim h(c3E’) <_ n- 1,

Ik(C3D’-- h(t?E’); A)= 0 for k <_ n-

by Alexander duality. By Lemma 3.3, h lcc’. cc’ (OD’ h(c3E’)) extends to a
A-acyclic polyhedron C. Modifying h as before, we exchange our singularity
for a new set of isolated double points away from c3E’, which are of type (a).
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Therefore we may assume h is an embedding of h-I(D) in D. Doing this
for every (2n + 1)-cone, we get S(h)= O.

Remark. By subdividing K, we may assume h is arbitrarily close to f g,
and so h -f g rel g-l(p).

COROLLARY 3.6. Let Po PP, Qq be subpolyhedra ofa A-homology manifold
M with p <_ q, p + q < m. Then there exists a A-acyclic resolution 9" Pp --} P
and an embeddin9 h" P --} M so that

(1) g" g-’(Po) Po, hlg-’(Po) glg-l(Po),
(2) h(P g-l(Po) c Q O.

Proof Let K P Cdpo cQ O and f’K- M induced by inclusion. By
Theorem 3.1, there exists a A-acyclic resolution 9 "/( --* K and a non-degenerate
map h" R-,M so that ff’O-l(Q) Q, /]O-I(Q) =fo Olff-’(Q) and
dimS(_<q+p-m<0. Letting P=-I(P),9=)I p,h=h" p, we get the
result.

4. The simply connected case

In this section we prove the main theorem for simply connected A-Poincare
complexes. Let " M - X be a normal map, where M is a A-homology mani-
fold of dimension n _> 5 and X is a finite polyhedron. We say that b is (k,
A)-connected if #" rci(M) ri(X) for < and i(O) ( A 0 for _< k.
Our first result shows that can be made highly A-connected.

THEOREM 4.1. 4) is normally cobordant to a ([n/2], A)-connected map.

The proof depends on the following embeddability result. (Compare
Matsui [15].)

PROPOSITION 4.2. Let o /Zk+I(M XO) k < n/2. Then there exists a A-
homology manifold M’ of dimension n and a A-acyclic resolution p: M - M’ so
that p #() k(M’, P(Xo) is represented by an embedding.

Proof Represent by a simplicial mapf: (Sk, So)- (M, Xo) and let A1, A2
be disjoint closed k-simplexes of S so that So 63A1; let

N=Sk-(A w A2).
Choose an n-simplex a of M not meeting f(Sk) and an embedding i: Sk-}
Int (a). Let q be a path in M from xo to itso) so that

q(I) c i(Sk) i(so).
Define 9j: Aj- Sk, j l, 2, by Ag-} Ag/cAg Sk, sending cAj to s o, and
h: N---} I by

N-Sk-1 I-I,
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sending c3A1 to 0 and 63A 2 to 1. Finally, define f0: Sk M by

fo }A1 =fo91, fo[A2=ig2, fo JN q h.

Clearly fo - f rel (So).
By Theorem 3.1, there is a A-acyclic resolution p: E ---, S and an embedding

that p-(ai {o}) Ai {o} for some k-simplex

and
f[/- I(A {So} --fo /l[#-’(A {So}

f-fo ! rel -I(A {So}).
Let R be a relative regular neighborhood of (io g 2(A’2), g 2(c3A’2) and Q a

regular neighborhood off(Z Int (A’2))in M Int (R). Clearly Q is A-acyclic.
Define M’ M/Q - (M Int (Q)) w c(c3Q), p" M --, M’ the collapsing map,
and let f’" S --, M’ be the composition

pof

Mt"S
_

A2/c3A2

We have that p #() [po f0] If’] (obtained by collapsing a homotopy be-
tween land f0 as above) and f’ is clearly an embedding.

COROLLARY 4.3. Let O It,k+ (all)), k < n/2. Then there exists a A-acyclic re-
solution p" M M’ and a normal map dp’" M’ X so that el) and el)’ are normally
cobordant, ok’ p - dp and p #(o) is represented by an embedding.

Proof Construct p as in the proposition and define W= M x
I w c(Q x 1). Since f-fo p, 4) ]Q is null-homotopic and so
q5 re l" M x I X extends to " W X. We have cW M w M’, and let

4’ IM’. Let be the trivialization of TM, (R) (bo rl) T v determined by ;
is a homology cobordism bundle over M x I x I, trivial over M x I x 1. Let

i" M x I x I --, E() be the zero-section and

7" (E(IM x I x 1),i(M x I x 1))(M x I x Dr,M x I x 0)
a PL-homeomorphism. Define a A-homology cobordism bundle ’ over
M x I x 1/Q x x I by collapsing i(Q x x I) to a point and identifying
7-1(x, 1, t) with 7-l(y, 1, t) for x, y e Q. Note that ’ is trivial over M x I x
1/M x 0 x 1. Let q denote the contractible resolution W x I (M x
I/Q x 1) x I M x I x I/Q x 1 x I; then q T ’ is the desired trivialization.

LEMMA 4.4. is normally cobordant to a 2-connected map.

Proof Clearly we may assume that 4) is 1-connected. Let 0 e g2((). By
Theorem 3.1, e is represented by an embedding f: S - M missing the dual
2-skeleton of M. Then the normal bundle off is a trivial PL-block bundle by
Theorem 2.5 and the proof follows as in [24].
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LEMMA 4.5. Suppose qb is (k, A)-connected, < k < n/2, and rCk+ l(d?). If
p, qb’ denote the maps constructed in Corollary 4.3, then d?’ is (k, A)-connected and

p # "rtk +1 (q5)(R) A - rtk +1 (qb’)(R) A.

Proof. We have a commutative diagram

where 4 # is an isomorphism, and p is surjective by the Van Kampen theorem.
Therefore b’# is an isomorphism. The result now follows from the Hurewicz
theorem, since

p," K,(M; A) Ki(M’, A) and Ki(M; A) rt,+I(O) (R) A for i<k.

Proof of Theorem 4.1. Assume is (k, A)-connected, k < n/2, and let
0 rk+ 1(4)) be represented by an embedding f: sk M with stably trivial
normal bundle vs. By Theorem 2.5, vs is trivial; let q be a homotopy between vs
and S D"-k. We may assume that r/possesses a zero-section i: S I E(rl)
which is a homotopy equivalence. Since 4) fis null-homotopic and i] S 0 is
a homotopy equivalence, there is a cobordism

0o: W--+X, W=M I w E(rl),
between 4 and b’: m’-+ X so that ’ is (k, A)-connected,

7tk +1 (q) (R) A rk+l (+’) (R) A

(by the Hurewicz theorem since k > 1 and E(rl) is an H/-cobordism of pairs),
and the element corresponding to is represented by an embedding of
S D"- k.

Using the same methods, the following can be proven as Theorem 1.4 of [24].

COROLLARY 4.6. Let qb" (M, cqM) (Y, X) be a normal map where M is a

A-homology manifold of dimension n > 6. Then qb is normally cobordant to a map
4"(M’, cM’) (Y, X) so that c’ is homolovically ([(n + 1)/2], A)-connected,
O IM’ is ([n/Z], A)-connected and qblcM is ([(n 1)/21, A)-connected.

To complete the simply connected case we must extend Corollary 4.3 and
Lemma 4.5 to include k n/2. (See [15] for the case A Z.)

PROPOSITION 4.6. Suppose dp" M2k-- X is (k, A)-connected, k > 3,
HI(X;A)-0, and Zrk+l(b). Then there exists a A-acyclic resolution
p" M - M’ and a normal map dp" M’--. X so that dp and dp’ are normally cobor-
dant, dp’ is(k,A)-connected, p Zrk+ 1() (R) A - Zrk+ 1(’) A, and p() isrepre-
sented by an embedding.
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Proof By the proofs of Corollary 4.3 and Lemma 4.5, it suffices to prove the
analogue of Proposition 4.2. Let f represent e and construct /" E Sk,
f’E M as in the proof of Proposition 4.2; f is an embedding except for
isolated singularities.

Let Xl, x2 e S(f)with f(x l) f(x 2) and choose an embedded path q in
E-Int (Az)from xl to x2, missing S(f)- {xl, x2}. Since Ha(M; A)- H(X;
A) 0, by Lemma 3.3, there is a A-acyclic 2-complex Ao containing S and a
map ho" Ao -* M extending f q. By Theorem 3.1, there is a A-acyclic resolu-
tion r" A Ao rel (S) and an embedding h" A--* M so that hiS =fo q and
h - ho r rel (S). Construct such a map h" Ax M for every 2 R, where R
is a minimal set of generators of the equivalence relation x y ifff(x) -f(y)
on S(f). By Corollary 3.6, we may assume that

-S’) c hy_(A -S1)=b if2:/=..hx(A S’) cf(E)=bandhx(A y

Let E’ f(E) w x R hdA-x), which is clearly a A-homology sphere. The proof
now follows exactly as in Proposition 4.2, letting Q be a regular neighborhood
of Z’-Int (io /2(A)).
We can now prove the main theorem of this section.

THEOREM 4.7. Let dp" M- X be a normal map of degree between a A-
homology manifold M of dimension n >_ 5 and a A-Poincare complex X so that
dplc3M is a A-homotopy equivalence and ha(X)=0 (respectfully, dplc3M is a
A-homology equivalence and Hx(X; A) 0). Then dp is normally cobordant to a
A-homotopy equivalance (A-homology equivalence) if and only if an obstruction
tr(q) L,(A[1]) vanishes.

Proof. Recall that L,(A[1]) is 0 if n is odd, Z/2 (R) A if n 2 mod (4) and
ff’(A), the Witt group of even quadratic forms over A, if n --0 mod (4). If
n 4k + 2 and 1/2 A, then we may define a quadratic form on K2k+ (X,
?X;Z/2) as in [7, III.4.5], and we let rr(4) be the Arf invariant of O. If n 4k,
then Corollary III.3.4 of[7] implies that the cup product pairing on K2k(X, cX;
A)/tor is even if 1/2 A (which is automatic if 1/2 e A) and we define rr(4) to
be the Witt class of this pairing. The proofnow follows exactly as in Chapter IV
of [7] by Theorems 2.5, 4.1 and Proposition 4.6.

5. The general case

In this section, we prove the main theorem of the paper, as stated in the
introduction. It is implicit in the theorem that X has a Stiefel-Whitney class
o: ga(X) --, + 1} and that the involution on A[gl(X)] is twisted by this homo-
morphism. The simple (i.e. zero torsion) and relative cases will be treated at the
end of the section.

If n is odd, then the proof ofTheorem 1.1 follows exactly as in [8, Section 1.2],
or [24, Chapter 6], using Theorem 4.1. Therefore assume n 2k. We first
construct the obstruction a().
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By Theorem 4.1, we may assume b is (k, A)-connected, and that Kk(M; A)is
a free A[nl(X)]-module, adding trivial handles if necessary, by [2], Theorem 2.1.
The Hurewicz theorem implies that nk+ 1(4)(R) A Kk(M; A), and we let g"

V’= S/k -- M be a simplicial map representing a basis for Kk(M; A). Let be a
regular neighborhood of the image of g in M. The following operations show
that we may assume that r1(c3) rl(N) rl(M).

1. By Poincar6 duality and Theorem 3.1, every element of 9(-, /) is
represented by an embedded path "(1, i) ( -Im (0), c3), and we change g
to Int (R), where R is a regular neighborhood of (I), as many times as
necessary to assume r1(c3) rl()is surjective.

2. By Theorem 3.1, every element of 2(, c) is represented by a map
f" D2 --}/ with f IS1" S c3 an embedding. Again, there is a A-acyclic 2-
complex A D S and a mapf" A , factoring throughfand extendingf S1.
Let A be a regular neighborhood of A and change/ to/// a finite number of
times to assume r(c3/) r (/).

3. Since M is a PL-manifold in a neighborhood of its dual 3-skeleton, every
element of rl(M, gr) is represented by an embedding path " (I, 1)---} (M, gr)
intersecting only n- and (n 1)-simplexes. Trading N for N w R, where R is a
regular neighborhood of (I), we may assume r(/) rl(M)is surjective;
n (c.) remains isomorphic to r (N) by the Van Kampen theorem.

4. Do Step 2 to rz(M, N) to get l(t?/) r(h) rl(M).
The proof of Lemma 4.5 shows that the operations above can be accom-

plished through a normal cobordism of 4 to a map that is still (k, A)-connected.
Clearly the image of 9 is unaffected and so/ can be chosen as stated.

Since qSI/ is null-homotopic, the stable trivialization of TM (R) 4*v induces
one of Ts, and so the Spivak fibration vs of has a PL-reduction. This
reduction induces a normal map " N --, N, N a PL-manifold, of degree d A,
which we may take to be a A-homotopy equivalence by [8], Theorem 3.1, since
I((R) I(R) and n >_ 6 (replacing the fundamental class [, c/] by d[N,
c3] to make have degree 1). Since

#" rk(N)(R) A rk(/9)(R) A,

there exist dl, d, A so that, if #" f=, Sf --} /]’.=, S is of degree d, on S,
then 9 lifts to N.

Since N is a PL-manifold, the constructions of [8, Section 1.1], define inter-
section and self-intersection forms 2o, o on

Kk(N; A) ker Hk(N A) Hk(X A)

The lift of 9 to N defines a splitting of the surjection ,: Kk(N; A) Kk(M;
A), and so 20, 0 restrict to a (-1)k-Hermitian form (2, , Kk(M;A)). Define
(4) e Lh,(A[r (X)]) to be the class of this form.

LEMMA 5.1. O’() is well defined.
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Proof Clearly a() does not depend on the units dl,..., drand the number
of trivial handles added to make Kk(M; A) free. Suppose g, 9’: /= S. M
represent bases for Kk(M; A) and let /, R’ be regular neighborhoods of the
images of 9, g’. Extend g, 9’ to maps, , 0"//2= R, R’S so that

OS+ g[S and 0’ S+ g]S. Then there exists a homotopy G" (
S) x I M x I from 0 to 0’; let W be a regular neighborhood of the image of
G. As before, we can assume that there is PL-manifold W and a A-homotopy
equivalence T: (W; N, N’) (W; , ’).
We have a commutative diagram

K+(W, U w N’;A) K(N w N’;A) Kk(W; A)

0 K+a(M x I, M x {0, 1};a) K(M x {0, 1}; A) K(M x l; A) 0

with exact rows. The elements G[S x I, 1,..., r represent a basis for

I(M M {0, h)
and, modulo units in A, have canonical lifts to (W, N w N’). This defines a
compatible splitting of the surjection .. By the proof of Lemma 5.7 of [24],
intersections and self-intersections vanish on K+(W, N w N’; A), and so

is a subkernel of

Kk+I(M I, M {0, 1}; A)

Kk(M {0, 1}; A),
implying the result.

LEMMA 5.2. tr(O) is a normal cobordism invariant.

Proof Let O" V - X I be a normal cobordism, rel (cM), between 4 and
q" M’ X. We may assume that b, ’ and are (k, A)-connected and that
K(V, M w M’; A) 0 by Corollary 4.6. The long exact homology sequence of
the pair (V, M w M’) then reduces to

0 K+,(V, M w M’; A) K(M w M’; A) K(V; A)0,

and we may assume all modules to be free.
Choose simplicial maps

9i’(Sk x I, S x {0, 1})(E M w M’), i= ,r,

hi" SkiM M’, i= 1, s,

representing bases for Kk+ (V, M w M’; A),KR(V; A), that extend to a basis of
Kk(M M’; A). Let denote a regular neighborhood of the union of the
images of 9x,..., 9, h,..., h, modified to have the correct fundamental group
as before. Letting M, ’ M’, we may assume that there is a
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PL-manifold W, with disjoint submanifolds N, N’ cOW, and a A-homotopy
equivalence :(W; N, N’)-" (W; fi .’).
The maps gi, hi define splittings of the exterior vertical maps in the diagram

Kk+,(W, N w N’; A)-" Kk(N w N’; A)-" Kk(W; A)

0- K+ (v, cv; A) /(V; A)
and so induce a splitting of the interior vertical map. By Lemma 5.1, K k(cO V; A),
with 2 and/ induced from Kk(N w U’; A), represents a(4) a(b’). Again by
[24, Lemma 5.7], intersections and self-intersections vanish on Kk+I(W,
N w U’; A), and so Kk+ I(V, cV; A)is a subkernel of Kk(cOV; A).
The crucial step in the proof ofTheorem 1.1 is the following generalization of

Proposition 4.6. (Compare Matumoto [16].)

PROPOSITION 5.3. Let o Kk(M; A). Then there is a normal hK-cobordism
W -" Xfrom dp to a" ff/l -" X and an embedding i" S -" ft.’1 so that f,i,[Sk]

j,(uo) for some u A, where j, j denote the inclusions of M, m into W.
Letfo" S -" be a PL-map representing w for some v e A’. By Theorem 3.1,

there is a A-acyclic resolution g" E -" S and a map h" E -" R, with isolated
singularities, close enough tofo so thatfo(Sk) is contained in a regular neighbor-
hood No of h(E) and h -fo g. It follows from the Mayer-Vietoris sequence
that H,(No; A)H,(U; A), where U is a regular neighborhood of

S for some m, in R2k.Sk A VT=l
LEMMA 5.4. There exists a A-homology equivalence o: No -" U so that

P-- l(Sk) is a A.homology submanifold of No and the surgery obstruction

Proof Since No is a regular neighborhood of a k-dimensional complex, it is

(k + 1)-coconnected. Therefore, by the Hopf theorem, [11], nk(No) Hk(No),
which has rank 1. Let p: No -" S denote an infinite cyclic generator. We also
have rtl(No) H(Uo) is of rank m, and let ql q,,: No-, S denote
generators.

Since S v S - S S -., we can inductively construct, from q 1,..-, qm, a
map

q" No -" / S
i=1

inducing an isomorphism on H( A). By obstruction theory, there is a lift qo
of

p q’No-’Sk (/S1) to sk /k VSIcU,
i=1

which is clearly a A-homology equivalence.
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By [10], fro may be changed by a homotopy to be transverse to Sk, and we get
a normal map ffolP: P Sk with stable trivialization induced from , and
degree a unit in A. If k is odd or 1/2 A, k _= 2 moO (4), then a(ffol P) vanishes
trivially; otherwise we are divided into 3 cases.

(1) 1/2 A, k 0 mod (4). Let tip: Lo(A[1])- W(Fp) denote the second
residue homomorphisms. By [4], Sign (a(@o P)) Sign (P), flp(a(d/o P))
tip(P), and it suffices to show that both vanish. Since 1/2 A, there are
homomorphisms

&" rk(SG(K)/SH(K)) A, &p" rk(SG(K)/SH(K)) W(Fp)
so that if ?" S - SG(K)/SH(K) is the classifying map for o [P, then

r(7) (at deg (o ]P))-’ Sign (P), &p(?) (deg (o P)) ’tip(P).
Since ? is trivial by construction, Sign (P)= 0, tip(P)= 0, and therefore
(o P) 0.

(2) 1/2 A, k 2 mod (4). The same argument holds, using the Kervaire
class of [4].

(3) 1/2A,k=0mod(4). It follows as in case 1 that Sign(P)-0, but
tip(P) need not vanish. Let W, No x I w E x I, where E is a regular neigh-
borhood of P in No,

V U x lw Sk x D x I, V2= U x I w S x D x [0, 1/2],

and define o" No U by

No(No-lnt(E)) x w S(E) x 1 w E x 1c W,
qo x

V, ----* V
U- S x Dk) x w (S x S x I) S Dk x 1" U,

where p: [0, 1] [0, 1/2] is the folding map

It 0 <_ <_ 1/2
-t 1/2<t < 1.

Since 1/2 A, o remains a A-homology equivalence, and -’(S) P w P.
Repeating this process, we get Sign (-(S))=4 Sign (P)=0 and
v( -(S)) 4fly(P) 0 since 4W(F) 0.

Let io: P M be the inclusion; clearly (io),[P] v’ for some v’ A, and
we may assume P is 1-connected by adding handles inside of M.

LEMMA 5.5 There is an hr-cobordism (Wo, Vo)from (M, P) to (M’, P’) so that
P’ is an s-parallelizable PL-manifold. Furthermore, dp extends to Wo.

Proof We consider 3 cases.
(1) k _< 3. In this case P is already a PL-manifold, and we let P’= P.
(2) k > 5. By Theorem 4.7 and Lemma 5.4, o] P is normally cobordant to

a A-homotopy equivalance q/o" Z Sk. Let c" E --. S denote the collapse of the
exterior of a k-simplex and d" S S a map of the same degree as q/o. By the
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Hopftheorem and Theorem 1.7 of[S], nk(E) -- Hk(E) - Ho(E) Z, and so ele-
ments of rk(E) are classified by their degree. Since deg (c) 1, qt

_
do c.

Let F" E x I---} Sk x I be a homotopy between ff’o and d c; F induces a
normal cobordism F" E x ! w Mc S I between qb and d. Combining this
with the normal cobordism from qt o to q/o, we get a cobordism Q from P to S
together with a stable framing of To. By Theorem 2.3 of [19], there is a PL-
manifold Q’ and a degree normal map (in the sense of[19]), h" (Q’; P’, S) --}

(Q; P, s*) obtained from the lift of vo from BH(K) to BPL defined by the stable
framings of To and To vo. Since k >_ 5, we may choose h to be a A-homotopy
equivalence by Theorem 2.1 of [19].
By construction, there is a normal cobordism H" Vo P x I from h P’ to 1 p.

Let x L / I(A[1]) be the surgery obstruction of H and choose a normal map
b," M Sk+ with a(qbx)= -x. (M, may be chosen to be a PL-manifold,
with one singularity if x L,+ 1(); see [4].) Replacing Vo with Vo # Mand H
with H w q, we get a(H) 0, and so may assume that H is a A-homotopy
equivalence by Theorem 4.7.

Let rl" P x I ---} P be the projection. Then Wo M x I w E(H*n’ve) is the
desired h/-cobordism, where Vp is the normal A-homology cobordism disc
bundle of P in M. Finally, 4) extends over Vo since b io is null-homotopic, and

extends to Wo since Vo - E(n*n’Vp).
(3) k 4. In this case, P is a PL-manifold except at isolated singularities,

Xl, Xp. By preliminary surgeries, we can assume that o(X,)= {xi}.
Form Po, So4 from P, S4 by removing small open neighborhoods ofxi, qo(Xi), so
that qo maps (Po, cPo) to (S, c3So4). By Lemma 5.4 and the proof of Theorem
16.6 of [24], qo]Po is normally cobordant to a A-homotopy equivalence, rela-
tive to t3Po. Filling in the neighborhoods we removed, we get that qo[ P is
normally cobordant to a A-homotopy equivalence q/o: E --} S. The proof is
now the same as case 2, with the exception of the construction of the A-
homotopy equivalence h[P’. We may still construct a normal map h" (Q’; P’,
S*) (Q; P, s) and it follows from [4] that the surgery obstruction of hiP’
vanishes since both P and P’ are cobordant to S’. Arguing as before, hiP’ is
normally cobordant to a A-homotopy equivalence.

Remark. If K }, then it follows from [9] that P resolves to a PL-manifold,
and so is’H-cobordant to one. By [22], Section 5, this H-cobordism is actually
an h-cobordism, and so the argument above can be avoided.

Proof of Proposition 5.3. Construct a codimension 0 submanifold N’
engulfing a basis of Kk(M’; A) and a A-homotopy equivalence q" N’/’ as
above. We may clearly assume P’ c/’, and, since Tp, is stably framed and P’
has codimension k > 3, we may choose N’ and q/so that there is an embedding
/of P’ in N’ and q/ll(P’)" l(P’) P’ is a PL-homeomorphism. (See [24,
Chapter 3].)
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The construction of P’ yields a framed cobordism between P’ and Sk. (If
k N 3, /o]P’ is in fact normally cobordant to sk). Let Q=P’x
I w H w W H be a handle decomposition of such a cobordism with no
handles of index 0, l, k or k + 1. By Theorem 1.3 of [24] and general position,
the embedding extends to an embedding L" Q - N’.

Let

Qs=L(P’ x I w H w w Hs)

and write cQs l(P’) w Ps. We claim that there isan hK-cobordism Ws from M’
to M’s, tel (P’), an extension ’ to q/s" N’--, M’s and a framed cobordism
(s -7/s, from P’ to P;, so that 0’s: (Qs, cQs) ((s, c(3 is a a-homotopy
equivalence.
Let W) M’ x I, and construct M’s+l from M’ by the following 3 steps.
(1) Let cs+ 1" Di+ 1, Si) (N’, Ps) be the embedding of the core of Hs+ 1. We

may collapse a A-acyclic codimension 0 submanifold of Ms to a point, as in
Corollary 4.3, to assume that g/ cs+ll Si is an embedding.

(2) Let /" (A, Si) (M’s, P’s) be a map close to Oso Cs+l Di+ 1, rel (S’), in
general position as in Theorem 3.1. Since + < k,/ is an embedding and we
may again collapse a regular neighborhood of the exterior of an (i + 1)-simplex
of A, with an /-face on Si, to a point to assume that 0’s c s+l" (Di+1,
Si) (m’s, P’s) is an embedding.

(3) The normal bundleofDi+1 in M’s is trivial and we may change M’s by an
h-cobordism, as in Lemma 4.4, to assume that

is an embedding.
Define W’s+ to be the union of W’s, the mapping cylinders of the A-acyclic

resolutions constructed in steps and 2, and the h-cobordism of step 3. Clearly,
N’ and, as in Section 4, 4" M’0’s extends to 0’s+ "-- M’s+ 1, - X extends to

M’s+ 1. Define Qs+l by adding the handle of step 3 to (s.
By induction, P’r M’r is a A-homotopy sphere. Collapsing a regular neigh-

borhood of the exterior of a k-simplex in P’, to a point, we have that M’ is

hK-cobordant to a A-homology manifold M so that [P’] e Kk(m’; A)is repre-
sented by an embedding j" S . This implies the result as in Section 4.

Proof of Theorem 1.1. By Lemma 5.2, we need only verify sufficiency. Sup-
pose a(4)= 0, so that Kk(M; A) is a kernel with basis el, fl, e,,, f,,. Let
WX be a normal h/ccobordism from 4 to 4)’: M’X so that

(j’.)-lj.(e,,) is represented by an embedding i: S m’. Let v be the normal
bundle of i. By the proof of Proposition 5.3, we may assume that the basis of
Kk(M’; A) determined by el,f1 e,,,f,, is engulfed in a patch : N’--. M’ so
that -l(sk) -- Sk with normal bundle equivalent (as A-homology cobordism
bundles) to (i -1 g/ g/- l(sk))*Vi.
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Let e, i.[Sk] Kk(M’; A), e (ff-lo i).[Sk] Kk(N; A). Since W is an
h-cobordism, it follows that 2’(e,, e,)= 0, #’(e,)= 0. Letting 20,/0 denote
the intersection and self-intersection functions on Kk(N; A), we have
20(e,, e,) 0,/t0(e) 0 by construction. By [24], Theorem 5.2(iii), the Euler
class of the normal bundle of Sk N vanishes, and so v, is zero in nk(BH(K)k)
by Theorem 2.5. Arguing as in the proof of Theorem 4.1, we may change M’
by an h/-cobordism to represent e, by an embedding of Sk x Dk. The proof
now follows from the proof of Theorem 5.6 of [24].
Theorem 1.1 can be extended to cover the simple case. Define Wh(n; A)

KI(A[n]/G, where G is the subgroup generated by n and A. A-Poincare
complexes, A-homotopy equivalences and h-cobordisms determine well-
defined torsions in Wh(n; A), defined as in [2], [24], and the prefix simple
is applied to those objects above with vanishing torsion. By the proof of
Theorem 2.1 of [24], a A-homology manifold is a simple A-Poincare complex.

THEOREM 5.6. Under the conditions of Theorem 1.1, if X and lc3M are
simple, then the obstruction tr(dp) lies in L,(A[rtl(X)]), and vanishes if and only if
dp is normally cobordant to a simple A-homotopy equivalence.

The proof is the same as that of Theorem 1, noting the following two facts.
(1) Theorem 3.1 of [8] extends to the simple case when .- is the map

Z[rt] ---, A[rt] and torsion is computed in Wh(rc; A). (Note that our Whitehead
group differs from the one defined in [8].)

(2) In Proposition 5.3, (V; M, M)is a simple h-cobordism, since V is found
from M I by adjoining simply-connected h-cobordisms and mapping
cylinders of maps of the form M (M Int (A)) w c(t3A), where/.(A; A) 0
and rl(A)---, r(M)is 0, which clearly have zero torsion.
The relative versions of Theorem 1.1 may alscr be considered. The crucial

geometric result is the following "t-rt Theorem".

THEOREM 5.7. Let q: (M; c3 /, M, 3_M) (X; c / X, c_ X) be a normal
map of degree 1 between a A-homology manifold triad M of dimension n >_ 6
and a (simple) A-Poincare triad X, so that cklc3_M is a (simple) A-homotopy
equivalence and rcx (t3 + X) - rt (X). Then dp is normally cobordant, rel
to a (simple) A-homotopy equivalence.

Proof Case 1. n 2k + 1. This case follows exactly as the proof of
Theorem 3.1 of [8].

Case 2. n= 2k. By Corollary 4.6, we may assume that blc3+M is
(k- 1, A)-connected and ]M is (k, A)-connected; as before, we may take
Kk(M, c +M;A) to be free, with a basis represented byf: (Dk, Sk- 1) (M, c +M),
i= 1, r. The following lemma reduces the proof to the construction in
[24, Chapter 4], or [8, Theorem 3.1].
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LEMMA :5.8. There is a A-acyclic resolution p" M--, M’, rel (0_M), and a
map ’" M’--, X so that c and ’ are normally cobordant, dp’o p -dp, dp’,
p’lt3+M are (k, A)-, (k- 1, A)-connected, respectfully and the maps p fi,

1,..., r, are homotopic to disjoint embeddimjs.

Proof.
maps

By Proposition 4.2, there is a A-acyclic resolution q" M Mo and

a,. to s -, (Mo,
homotopic to q of, so that oilSk-l, i= 1, r, are disjoint embeddings.
Applying Theorem 3.1, there exist A-acyclic resolutions #i: At Dk rel (Sk- 1)
and maps hi: Ai Mo in mutual general position so that #i # = ht rel (Sk- 1).

For each double point x of hi: Ai Mo, choose embedded paths 0, fl
along different branches from x to t+Mo, missing.all other singularities, and
let be a path in c+Mo from (1) to fl(1). Since rl(O+Mo) nl(M0) (see
the proof of Lemma 4.5), the loop ’7"- is null-homotopic and so extends
to F: D2 M0. By general position, *7*fl-1 can be engulfed in a A-acyclic
2-complex. The remainder of the proof follows from Proposition 4.6, Corollary
4.3 and Lemma 4.5.
Theorem 5.7 may be used, exactly as in Chapter 9 of [24], to set up a

geometric obstruction theory for surgery on A-homology manifold m-ads.
Details are left to the reader.
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