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REPRESENTATIONS OF INTEGERS BY POSITIVE
DEFINITE FORMS OVER ARITHMETIC PROGRESSIONS

BY

CHUNGMING AN AND ALAN H. STEIN

1. In previous works, the authors have analyzed Dirichlet series associated
to positive definite integral forms F(x) and applied the results to obtain asymp-
totic estimates for ft)_< y 1. In this note, we refine our estimates and analyze
the behavior of F(/) as the components of /vary over arithmetic progressions.

Let F be a positive definite integral form of degree d in n variables and let

(1.1) ((F, fl, s)= F(7)-Se((fl,
Zn {0}

where s=a+it, flRn, indicates the standard inner product onR
and e(a)= exp (2ria).

In [2] it has been shown that ((F, fl, s) can be continued analytically as a
meromorphic function of s with only a simple pole at s n/d occurring when
e Zn. It was shown [4] that if fl Z and tl _> then

(1.2) ]((F, fl, a + it)l <

tln-d n 1 n 1
if <a<-

(n ad)(n 1 ad) --l-- d log

n 1
log It[ if a >

We shall prove that the restriction on can be removed.

THEOREM 1. If fl R and It >_ 2, then (1.2) holds.
Let 7-(’1 7n), A=(A1, An), B=(B Bn)Zn. Let
B(mod A) mean )’i Be(mo0 Ai) for i= 1, n. Let A*--1-[- Ai,
Ress=n/d (F, O, s).

We shall use Theorem 1 to prove the following:

THEOREM 2.

2d
(1.3) Z 1 y,/d + O(yt,-1/2)/d log y), y > ed.

A*nF(7)< y,
B(mod A)

2. Since we know (1.2) holds if/3 Zn, we shall assume fl Zn. Without loss
of generality, we assume 0 < fll < 1.
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Ifx (x 1, x,) R", let 2 (x2, x,). Let K -[[tl], Ill- max I,1
and assume a > (n 1)/d. Since the series representation for ((V,/3, s)is valid
for a > (n 1)/d [3], we may write

(2.1) ’(F,
o< Ilyll <K IlYll K

The first term is bounded by o< I111 <K F(7) -. Since

we obtain

(2.2) Z F(7) <{ Z
0< II[I <K m<K

which is bounded by the right hand side of (1.2). So we are left to consider the
second term of (2.1). To that end, let Cm= e(ml)/(e(l)-- 1). Thus
e(mfll) C,,+1 C,, and Cm O(1). Since

(2.3) e(<fl, 7>) e(<fl, 9>)(C, +1 C)
we can rewrite the second term of (2.1) as

(2.4) E e((, ))Cm+ (F(m, 9) --- F(m + 1, )-)
([l II, Iml) g

+ e(<, >){c_+,v(- + , )--c_,v(- , )-").
o< l’t <g

The second term of (2.4) is clearly It I"- -,a, so we need concentrate only
on the first term, which is bounded by

2.) s E [VCm, )-- Fm+ ,
(l II, Im I) g

Furthermore,

.m+l

.6) F(m, )-- V(m + , )- j (, )-- V(, ) a.

Since

and

we obtain

m+l

(2.7) V(m, )-- r(m + 1, )-<{ I’l (u, ) -,a-1 du.

The integral is certainly < (m, 7)ll-,a-1 yielding

(2.8) S Itl Y W
-ad-1 < Itl mn-ad-2"

K m> K



614 CHUNGMING AN AND ALAN H. STEIN

Since K Itl, the right hand side of (2.8)is < the right hand side of (1.2),
completing the proof of Theorem 1.

3. Let A, fl Z" be fixed. We use the following lemma to prove Theorem 2.

LEMMA.

-t’- O(y(n-1)/d log 2 y), y

7B(modA) d a-Jr’l A*

Pro#[ Let ’ represent a sum over all 0 Q" where oi pi/Ai, Pi Z and
0 _< Pi < Ai. Let

(3.2) (ma(F, s)= ’ e(--(a, B))((F, , s).
We easily conclude from our knowledge of ((F, , s) that (ma(F, s) is mero-

morphic with only a simple pole of residue 2 at s n/d and that, for
> (n- 1)/d, It 2,

if <
(n ad)(n cd) d log

n
log t] if c d -iOn---it

If r > n/d we can write

(3.4) +/a(F, s)= Z’ e(-{o, B)) Z e((, 75)F(7) -s.

Since the series representation for ’(F, , s) converges absolutely if a > n/d,
we can interchange summations, obtaining

(3.5) ,/A(F, S)= Z F(7) Z’ e({, 7- BS).

If 7 B --0 (mod A) then it is clear that Z’ e({, 7- B))= A*. Suppose
7-B 0 (mod A). We may assume, without loss of generality, that
71 B1 0 (mod A1). We can then factor out

We thus obtain

(3.6) mA(F, s) A* E F(7) if a > n/d.
0 : B(mod A)

Consider

n.ts+ix,/a(F, s)Y
ds where fl +(3.7) I 2Hi .it_ -S(]- :[i)- d logy
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Using (3.6) we obtain

(3.8) I A* Z 2Hi -(S-O ds.
0 B(mod A) iy

Since

The error term is

yielding

" y"/a Z F(7)-[3
7:0. ynla- m- [3 +

m=l

y,,/a-
n--

(3.10) I" A E (1 v(]))) + o(yn/d_ log fl).
0 q= U(mod A), Y

v()<_

We now estimate 1 via contour integration. Let fl’ (n 1)/d + 1/log y, C1
be the straight line contour from fl + iy to fl’+ iy, C2 be the straight line
contour from fl’ + iy to fl’ iy and C3 be the straight line contour from fl’ iy
to fl iy. Let Co be C1 + C2 + C3 + the straight line contour from fl iy to

fl + iy. Let

ic B/A(F,s)Ysds for j=0, 2, 3

Then 1 Io (11 + 12 + I3)" Since the only singularity of
[,/a(F, s)y]/[s(s + 1)] inside Co comes from the pole of ,/A(F, s) at s n/d,
we obtain

2y’,la
(3.12) I -(I + I2 + I3).

d +1
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Along Ca, (3.3) implies that (I/A(F, s)Y O(Y +<"-1)/d log y). Since

along C1, we obtain

(3.13) 11 O(y(,-a)/d log y/y).

The same estimate clearly holds for 13. To estimate I 2, we first observe that

(mA(F, s)Y
ds + O(y"-

2,{t[ 2

We again use (3.3)to estimate (ma(F, s)= O(]t log y)if seC2, t 2,
obtaining

(3.14)

so that

I 2 " y(,- )/a log y fc ilttl at + O(y(,-1)/a),
2,It[ 2

12 O(y(n-)/a log2 y).

We combine (3.12), (3.13), and (3.15)to obtain,ynld
(3.16) I 4- O(yt"- 1)/d iog2 y).

d / +1

Combining (3.10) and (3.16) completes the proof of the lemma.

4. Let ak represent the number of solutions to F(7)= k for which
/-= B(mod A). Then we may write

(4.1) E
F(,)_< y,
B(mod A)

1--
k<_y

Combining (3.1), (4.1)and multiplying by y yields

(4.2) ak(Y- k)=
k<_y

yl + n/d

d
+1

+ O(yl + <n- )/d 1og2 y).

If we let A(z)= Zk_z ak and assume y is an integer, then (4.2) becomes

(4.3) Z
k<y

+ O(y + 0,- )1 log2 y).
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It is clear that (4.3) must also hold if y is not an integer. Now let

x y-1/2d log y.

Then

(4.4) Z A(k) yl +,/a(1 el +,/a) + O(yl +,,,-1)/a log2 y)

Since
obtain

__< (1 z)yA(y).
+,/d (1 + n/d)(1 ) + O((1 )2), if we divide by we

(4.5)
2 d

y,/n + O(y,/n(1 )) +A(y) > - O(yO,- 1)/a log2 y)

With our choice for , (4.5) becomes

2 d
y,/d + O(yt,-1/2)/a log y).(4.6) A(y) > 4-* n

Letting fl 1 + y

(4.7)

-1/2d log y and considering y_<k<y A(k) we obtain

2 d
y,/e + O(y,_ 1/2)/d log y).A(y) <_ A* n

Combining (4.6)and (4.7) yields Theorem 2.

So
result

We observe the relationship between Theorem 2 and the corresponding

(5.1) Z d
/],yn/d + O(yt,,-1/2)/d’log y).

F(7) 12

in [4].
Indeed, Theorem 2 essentially combines (5.1) with the fact that F(7) behaves

similarly as 7 varies over different congruence classes. The latter can be ex-
pected since F(?)/I1711 "/ is bounded, a related question is whether the values of
F(7) are evenly distributed over different congruence classes, i.e., is

2 d
yn/d9Z A*nF()_< y,

F(-;) B(mod A)

This leads one to investigate

Z F(7)e
B
A F(7))
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It has been shown [3] that such functions can be continued analytically with
at most a simple pole at s n/d, but effective bounds have not yet been
computed.
The authors would like to thank the referee for his or her helpful suggestions.

REFERENCES

1. C. AN, On a generalization of the gamma.function and its application to certain Dirichlet series,
Bull. Amer. Math, Soc., vol. 75 (1969), pp. 562-568.

2. m., A generalization of Epstein’s zeta function, Michigan Math. J., vol. 21 (1974), pp. 45-48.
3. -, On the analytic continuation of certain Dirichlet series, J. Number Theory, vol. 6 (1974),

pp. 1-6.
4. C. AN and A. H. STEIN, Representations of integers by positive definite forms, Bull. Inst. Math.

Acad. Sinica, vol. 6 (1978), pp. 7-14.
5. R. Avoua, An introduction to the analytic theory ofnumbers, Amer. Math. Soc., Providence, 1963.

SETON HALL UNIVERSITY
SOUTH ORANGE, NEW JERSEY

UNIVERSITY OF CONNECTICUT AT WATERBURY
WATERBURY, CONNECTICUT


