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BIG COHEN-MACAULAY MODULES

BY

DAVID E. RUSH

0. Since M. Hochster initiated the study of big maximal Cohen-Macaulay
modules in [4], these modules have had a wide variety of applications and are
rapidly becoming a standard tool for the homological theory of commutative
rings. In this note we show that a few of the well known properties of finitely
generated Cohen-Macaulay modules can be extended to certain big maximal
Cohen-Macaulay modules. Our first result, Theorem 2.1, shows that ifM is an
R-module with dim M dim R d, then the local cohomology module
Ham(M) has a secondary representation and

Att (Ham(M))
_

{p Ass (M) Idim Rip d}.
In Section 3 we consider some consequences for R of the existence of maximal
Cohen-Macaulay modules with nice properties. The exactness of the Cousin
complex is also considered.
Throughout this note R denotes a local (noetherian) ring with maximal ideal

m and residue field k. The undefined terminology is the same as that in [5], [6].

1. In [9], 10] an R-module M is called secondary if for each x R, multipli-
cation by x on M is either nil-potent or surjective, and in this case
{x R IxM 4: M} is a prime ideal which is said to be attached to M. It is clear
that this in some sense dualizes the notions of primary module and associated
prime, and this has been explored by several authors. For example an R-
module M is said to have a secondary representation if M is a finite sum of
secondary submodules, and if this holds then many of the standard results
about primary decompositions have analogues for secondary representations
[8], [9], [10], [12]. Further, an R-module M has a secondary representation if it
is Artinian [8], [9], [10], [12], or injective [18]. In this section we define and give
some properties of attached primes of arbitrary R-modules.

If M is an R-module, a prime ideal p of R is said to be attached to M if
p (Q: M) for some submodule Q of M. We denote the set ofattached primes
of M by Att (M). This definition agrees with the usual definition of attached
prime if M has a secondary representation [9, Theorem 2.5].
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1.1. LEMMA. Let M be an R-module.

(i)
(ii)
(iii)

M 0:Att (M)= 0.
w Att (M)= {x R IxM 4: M}.
If N is a submodule ofM, then Att (M/N)

_
Att (M). Further, ifone of

the following conditions holds, then Att (M)
_

Att (N) w Att (M/N):
(a)
(b)

M has a secondary representation.
Att (M) consists of maximal ideals.
M is finitely Tenerated.

Proof It follows easily that an ideal p of R which is maximal among
{(Q: M) IQ 4: M is a submodule of M} is prime, so (i) holds since R is Noether-
ian. (ii) and the first part of (iii)are immediate from the definition of
Att (M). (iii)(a) follows from [9, Theorems 2.5, 4.1]. As for (b), let p e Att (M),
say p (Q: M), Q a submodule of M. If N + Q M, then

M/Q (N + Q)/Q N/(N c Q)

so p Att (N). If Q + N 4: M, then we have p (Q" M)
_

[(Q + N)" M] 4: R.
Thus since p is maximal, p (Q + N)" M and hence p Att (M/N).

Part (c) follows from part (b) since if M is finitely generated and S is a
multiplicative subset of R,

Att(S-’M)={S-’pl peAtt(M) and pc S=0}
as is easily seen.

1.2. LEMMA. If M is an R-module with Att (M) {p} where p is a minimal
prime of R, then M is secondary.

Proof It suffices to show that if x p then x"M 0 for some integer n >_ 1.
But since p is minimal, pRp is the nilradical of Rp, so there exists s R p and
an integer n>_ 1 such that sx"=O. But s psM M and hence
x"M x"sM O.

2. An important application of the theory of attached primes and secon-
dary representations has been to local cohomology modules of finitely gen-
erated R-modules [10], [17]. The following result is a generalization of [10,
Theorem 2.2] in the case that dim M dim R, to R-modules which may not be
finitely generated. This applies in particular to the case that M is a maximal
Cohen-Macaulay module in which case d dim M dim R is the unique
integer j such that H(M) # 0 [3, Lemma 2.1].

2.1. THEOREM. IfM is an R-module with dim M dim R d, then H(M)
has a secondary representation and gtt Hd,,(M)

_
{p Ass (M) dim R/p d}.
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Proof. Let X {p Ass (M) dim R/p d} and assume H(M) 4: O. There
exists a submodule N of M such that Ass (M/N)= X and Ass (N)-
Ass (M) X [2, p. 263, Proposition 4]. We get an exact sequence

H(N) H(M) H(M/N) H/ (N)

and the two modules on the end are zero [15, Theorem 6.1]. Thus H(M)-
H(M/N) and so by considering M/N instead of M, we may assume
Ass (M)= X. But then if x w X then x is M-regular implies

is exact which implies

0 M M M/xM0

Ham(M) H(M) H(M/xM)

is exact, and since dim (M/xM) < d, H(M/xM)= 0 [15. Theorem 6.1]. This
gives xn(M)= H(M)and so x w Art H(M). Therefore

Att (M)_ X.

But since X is finite, if p Art H(M) then p
_

q for some q X, and hence
p q X. This shows Art H(M)

_
X.

To show that H(M) has a secondary representation, let

x {p,, p,}.

If n then H(M) is pl-secondary by the first part of the proof and Lemma
1.2, so we may assume n > 1. Let L, be a submodule of M with Ass (Li)
and Ass (M/Li)= X -{p}. Thus by the first part of the proof we have

att Hd.,(Li)
_

{Pi} and att (Hdm(M/Li) Ass (M) -{Pi}.
Thus Hd.,,(Li) is pi-secondary or zero, and in the exact sequence

H(L,) H(M) H(M/Li) O,

ckH(L,) is pi-secondary or zero and H,,(M)/ckH,,(Li) H(M/L,). Therefore

Att Ha.,,(M OH(Li) Att [H(M)/OHd.,(L)] Att [Hd.,(M/L)] O.

Thus Hd(M)= ,7= alpHa(M). Q.E.D.

It can happen that Ha(M) 0 where dim M dim R d. For example if
p e Spec (R) with dim R/p dim R > 0, the injective envelope E E(R/p)of
Rip h.s dim E d and H(E) O.
Some properties of R-modules which have secondary representations are

given in [9]. For example, applying [9, Corollary 2.8] we get the following.
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2.2. COROLLARY. Let M be as in the above theorem, and let I be an ideal ofR
with IHm(M) H(M). Then xH(M) H{M) for some x I.

3. Our first three results in this section are similar to results in [13] where it
was assumed that R is complete. An R-module M is said to have a basic
submodule if M is separated in the m-adic topology and has a pure free submo-
dule F such that F + m"M M for all n > 0.

3.1. THEOREM. Let (x)= (Xx,..., X d) be a system of parameters of R. If
there exists an (x)-regular R-module M such that the submodules O, x M, (x,
x2)M, (Xl, Xd)M are closed submodules ofM in the m-adic topology. Then
dim R/p dim R for every p Ass (M).

Proof We use induction on d dim R, the assertion being clear for d 0.
Assume d > 0. Since x is M-regular and M is a separated R-module, it follows
as in [11, p. 98, Lemma 1] that p + x R

_
q for some q Ass (M/x M). But

then by the induction hypothesis, dim R/q dim R/xx R d l, and hence
dim R/p d.

3.2. COROLLARY. Let M be an R-module as in the above theorem. IfM has a
basic submodule, then R is Cohen-Macaulay.

Proof Since M has a basic R-submodule F, we have Ass (R)= Ass
(F)

_
Ass (M). If d 0 the result is clear ;so assume d > 0. Then since M/xa M

is separated, it follows that F/xF is a basic R/xa R-submodule of M/xM.
Using induction on d we have R/xx R Cohen-Macaulay. But since x is a
regular element of R by Theorem 3.1, then R is Cohen-Macaulay [7,
Theorem 156].

3.3. COROLLARY. If the module M in Theorem 3.1 is R-fiat (or equivalently
has finite projective dimension and is (x)-regular for every system of parameters
(x) of R), then R is Cohen-Macaulay.

Proof This follows from the above corollary and the result [13, Proposition
3] which says that M is R-flat if and only if M has finite projective dimension
and is (x)-regular for every system of parameters of R, and if this holds, M has a
basic submodule.

In [16, Theorem 2.4] it was shown that a finitely generated R-module M is
Cohen-Macaulay if and only if the Cousin complex C(M) of M is exact. For
nonfinitely generated modules we have the following two results.

3.4. THEOREM. If M is (x)-reyular for every system of parameters (x) of R,
then the Cousin complex C(M) ofM is exact.

Proof By [16, Proposition 2.1] it suffices to show that for every
pc Supp (M), ExtiR (R/p, M)=0 whenever i< htMp. Let h htMp. Then
h <_ htRp. Let Xl Xd be a system of parameters of R with Xl Xh P.
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Then for < h we have

Ext,’ (R/p, M)- Homs (R/p, M/(x 1, x,)M)= 0

[7, p. 101].

3.5. THEOREM. If M is an R-module with mM M and dim M dim R
whose Cousin complex C(M) is exact, then M is (x)-regular for ,some system of
parameters (x) of R.

Proof It suffices to show that EXtR(k,M)=0 for i<d=dimR by [3,
Corollary 2.2]. But by the partial exact Cousin complex argument [14, Lemma
4.6] Ext (k, M) 0 if/< d and Ext (k, M) Homs(k, Md).

3.6. Remark. If M is an R-module which is (x)-regular for every system of
parameters (x) of R and p Supp (m) is such that pMp 4: Mp, then

/i(p,m)=0 fori<htp

(where ’(p, M)= dimk,p)Ext (R/p, M)p [1]).

Proof Since pMp 4: Mp it follows that Mp is a maximal Cohen-Macaulay
Rp-module. Thus we have that li(pRp, Mp)=0 for i< htp. But li(pRp,
mp) li(p, M) [1, Corollary 2.4] and so the result holds. Q.E.D.

In [19] the Cousin complex of an R-module M was said to vanish early if
M 0 for some j < dim M, and it was shown that if M is finitely generated
then C(M) does not vanish early.

3.7. Remark. If M is a maximal Cohen-Macaulay R-module with
mM M, then the Cousin complex C(M) does not vanish early.

Proof By [3, Lemma 2.1], Hd,,(M) 0 where d dim M, and Hd,,(M) - Md

by [19, Theorem] (where the Cousin complex for M is C(M)’O-
d- dO

M M M -’" M" -}" ’). It then follows from [14, Proposition
2.?(ii)] that M 0 for 0 _< d.
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