EXACT INTERVALS

BY

M. V. MIELKE

1. Introduction

In a previous paper we characterized those cosimplicial k-spaces $T: \Delta \to k$ Top whose left Kan extension $\operatorname{Lan}_R T$ along the right Yoneda functor $R: \Delta \to \operatorname{Simpl}$ (Set) preserves finite products. It was shown that T arises from an "interval" T [1]. In this paper we extend these results by showing that $\operatorname{Lan}_R T$ is an exact functor (preserves finite limits and colimits) if and only if the reflection of T [1] into the category of T_0 spaces is a Hausdorff space. In the classical case, where T is the cosimplicial space of affine simplexes, T [1] is the standard unit interval I and $\operatorname{Lan}_R T$ is the geometric realization functor.

2. Preliminaries

Recall, from [4], that the category Int of Intervals has, as objects, the nonempty, linearly ordered, bounded sets X equipped with a connected compactly generated topology (in the sense of [5]) for which X^n , the n-fold product in kTop, has the weak topology relative to the family $\{gX_n\}$, $g \in S(n)$, the permutation group on n objects, where

$$X_n = \{(x_1, \ldots, x_n) \mid x_1 \leq \cdots \leq x_n\} \subset X^n$$

and

$$gX_n = \{(x_{g1}, \ldots, x_{gn}) | (x_1, \ldots, x_n) \in X_n\} \subset X^n,$$

and has, as morphisms, the continuous, non-decreasing, endpoint preserving maps. Theorem 4.1 of [4] shows that the correspondence $X \to T_X$: $\Delta \to k Top$, where $T_X[n] = X_n$, defines an equivalence between Int and the full subcategory of cosimplicial k-spaces determined by those $T: \Delta \to k Top$ for which T [1] is nonempty and connected, and $\operatorname{Lan}_R T$ preserves finite products. The aim of this paper is to characterize the category EInt of exact intervals, i.e. to explicitly describe those $X \in \operatorname{Int}$ for which $\operatorname{Lan}_R T_X$ is exact. Note that $\operatorname{Lan}_R T_X$ is exact if and only if it preserves equalizers since, in general, $\operatorname{Lan}_R T$ is cocontinuous (it is left adjoint to the singular functor $X \to \operatorname{Set}(T, X)$) and the preservation of finite limits is equivalent to the preservation of finite products and equalizers [2, Section 2, p. 108].

Received November 26, 1979.

594 M. V. MIELKE

3.
$$T_0$$
, T_1 , T_2 intervals

For each property P of spaces, let PkTop (PInt) be the full subcategory of kTop (Int) determined by those spaces with property P (those intervals with underlying space in PkTop). For $P = T_0$, the inclusion $i: T_0kTop \to kTop$ has a left adjoint Q for which the unit of the adjunction $\eta(X): X \to iQX$ is induced by the quotient map of X onto the quotient space QX of X determined by the equivalence relation that identifies points if and only if they have the same set of neighborhoods. Thus T_0kTop is a reflective subcategory of kTop with reflector Q [3, p. 89]. Further, Q lifts to a functor Int $\to T_0$ Int, still denoted by Q, that defines T_0 Int as a reflective subcategory of Int (5.1 of [4]). For the separation properties T_1 and T_2 we have:

3.1 THEOREM. $T_1Int = T_2Int$.

Proof. The following lemma implies T_1 Int $\subset T_2$ Int.

3.2 Lemma. For $X \in Int$, the maps min and max are continuous.

Proof. It follows from the definition of interval, for n = 2, that

$$X_2 \cap \tau X_2 \stackrel{u}{\Rightarrow} X_2 \coprod \tau X_2 \rightarrow X^2$$

is a coequalizer where the maps are the obvious inclusions and $\tau(x, y) = (y, x)$. The map $X_2 \coprod \tau X_2 \to X$ induced by $P_1(P_2)$ on the first factor and by $P_2(P_1)$ on the second factor (P_i) is the i^{th} projection) coequalizes u and v and thus induces a continuous map $X^2 \to X$ that is readily seen to be min (max).

If $a \in X \in T_1$ Int then, since the set $X - \{a\}$ is open, the sets

$$m_a^{-1}(X - \{a\}) = \{x \mid x < a\} \text{ and } M_a^{-1}(X - \{a\}) = \{x \mid a < x\}$$

are also open, where $m_a(x) = \min(a, x)$ and $M_a(x) = \max(a, x)$. This clearly implies $X \in T_2$ Int and thus 3.1 follows.

- 3.3 Remarks. (1) $X \in T_2$ Int if and only if X is a non-empty, linearly ordered, bounded set equipped with a connected k-topology that contains the order topology (5.3 of [4]).
- (2) Each interval X has the structure of a topological monoid under max. Thus X can be used as the monoid in Boardman and Vogt's bar construction for theories [1, p. 72]. As they pointed out in [1, Remark 3.2, p. 74], most of their results do not hold for a general monoid without further restrictions. However, the restrictions imposed on the monoid X by the requirement that X be an interval do allow for certain extensions of their results.

4. Exact intervals

This section deals with the main result:

4.1 THEOREM. $X \in EInt$ if and only if $X \in Int$ and $QX \in T_1Int$.

Proof. We begin with a number of preliminary results. A space $A \in k$ Top is said to have the f-induced k-topology for $(f: A \to B) \in k$ Top if the continuity of fg implies that of g for any function $g: C \to A$, with $C \in k$ Top. Let

$$F \stackrel{j}{\rightarrow} G \stackrel{f}{\rightrightarrows} H$$

be an equalizer in Simpl (Set).

4.2 Lemma. For $X \in \text{Int}$, the functor $|?|_X = \text{Lan}_R T_X$ preserves the equalizer (*) if and only if $|F|_X$ has the $|j|_X$ -induced k-topology.

Proof. The way in which equalizers are computed in kTop clearly implies that $|F|_X$ has the $|j|_X$ -induced k-topology if (*) is preserved. To show the converse it thus suffices to show that, on the underlying set level,

$$|F|_X \rightarrow |G|_X \rightrightarrows |H|_X$$

is an equalizer. Since the underlying set functor $U: kTop \rightarrow Set$ is both continuous and cocontinuous, it readily follows from the coend formula

$$|?|_X = \int_{-n}^{n} R[n] \otimes T_X[n]$$

that $U|?|_X = |?|_{UX}$ and that $|?|_{UX}$ preserves finite products. Thus it is sufficient to show that

$$|F|_{UX} \to |G|_{UX} \rightrightarrows |H|_{UX}$$

is an equalizer in Set. That (**) is indeed an equalizer can be proved by appropriately modifying a proof (in particular the one given in [2, p. 5.1, Section 3.3] of the corresponding classical (X = I) result. We begin by observing that for any point

$$y = (y_1, ..., y_n) \in X_n^0 = \{(x_1, ..., x_n) | 0 < x_1 < \cdots < x_n < 1\} \subset X_n$$

(0, 1 are the endpoints of X) and any point $z = (z_1, ..., z_n) \in X_n$ there is an endpoint preserving, nondecreasing function (not necessarily mono, epi or continuous) $S: UX \to UX$ for which $S(y_i) = z_i$, i = 1, ..., n. Further, S extends to a natural transformation $T_S: T_{UX} \to T_{UX}$ that in turn extends to a natural transformation $|?|_{S}: |?|_{UX} \to |?|_{UX}$ for which the map

$$S_n = |R[n]|_S : |R[n]|_{UX} = UX_n \rightarrow UX_n$$

596 m. v. mielke

satisfies $S_n(y) = (Sy_1, ..., Sy_n) = z$ (S_n acts this way since $|?|_{UX}$ preserves finite products). One now proceeds as in the above mentioned proof in [2] noting that the replacement of I by UX results in the replacement of the affine n-simplex and its interior by UX_n and $U\mathring{X}_n$ respectively. An essential fact needed in that proof is that if $|f|_{UX}(x) = |g|_{UX}(x)$ for $x \in |G|_{UX}$ then $|f|_{UX}$ and $|g|_{UX}$ agree on the "cell" determined by x. That this fact indeed obtains follows as in [2] if one notes that the above observation about S is sufficient to give the necessary results of Section 1.6 [2]. It should be noted that while the group of continuous endpoint preserving homeomorphisms of I is sufficient to obtain the pertinent results of Section 1.6 [2] when X = I, a larger class of endomorphisms of UX is needed to obtain the analogous results involving UX. The rest of the proof of 4.3 now follows as in [2].

4.3 Lemma. $|F|_X$ has $|j|_X$ -induced k-topology if $X \in T_1$ Int.

Proof. If $X \in T_1$ Int then, by 3.1, $X \in T_2$ Int and consequently $\dot{X}_n = X_n - \dot{X}_n$ is a closed subset of X_n . Hence, by an obvious modification of the argument of 2, p. 50, Section 3.2, $|j|_X$ is a closed injection.

4.4 Lemma. The image of $|?|_X$ is in T_0kTop if $X \in T_1Int$.

Proof. Since X_n is a closed subset of the T_2 space X_n , it follows from Fig. 14, p. 44 of [2] that i_n : $|Sk^{n-1}F|_X \to |Sk^nF|_X$ is a closed injection and, inductively, that $|Sk^nF|_X$ is T_0 , for any simplicial set F. Since $|F|_X =$ colimit i_n , 4.4 readily follows.

4.5 Lemma. The functors $iQ \mid ? \mid_X$ and $\mid ? \mid_{iQX}$ are naturally equivalent if $QX \in T_1$ Int.

Proof. Since $Q: \text{ktop} \to T_0 \text{kTop}$ is cocontinuous, product preserving and Qi = id one has

$$iQ \mid ? \mid_{X} = iQ \int^{n} R[n] \otimes T_{X}[n]$$

$$\approx i \int^{n} R[n] \otimes QT_{X}[n]$$

$$= i \int^{n} R[n] \otimes QiQT_{X}[n]$$

$$\approx iQ \int^{n} R[n] \otimes iQT_{X}[n]$$

$$\approx iQ \int^{n} R[n] \otimes T_{iQX}[n]$$

$$= iQ \mid ? \mid_{iQX} = \mid ? \mid_{iQX},$$

where the last equality follows from 4.4.

4.6 Proposition. $X \in \text{EInt } if \ QX \in T_1 \text{Int.}$

Proof. Since the horizontal arrows (from the unit of the (i, Q) adjunction) in the commutative square

$$|F|_X \to iQ |F|_X$$

$$|j|_X \downarrow \qquad \qquad \downarrow iQ|j|_X$$

$$|G|_X \to iQ |G|_X$$

induce the k-topology on their respective domains and, by 4.5, $iQ \mid j \mid_X$ is equivalent to $\mid j \mid_{iQX}$ and, by 4.3, $\mid F \mid_{iQX}$ has the $\mid j \mid_{iQX}$ -induced k-topology it readily follows that $\mid F \mid_X$ has the $\mid j \mid_X$ -induced k-topology. Thus 4.2 gives 4.6.

4.7 Proposition. $QX \in T_1$ Int if $X \in E$ Int.

Proof. In Set, and consequently in Simpl (Set), each mono *i* imbeds in a cocartesian square

$$A \underset{:}{\stackrel{i}{\Rightarrow}} B \rightrightarrows C$$

that is also cartesian; i.e. each mono is an equalizer. Clearly there is a mono

$$i: (R[1])^2 \to (R[1])^3$$

for which $\alpha = |i|_X$: $|R[1]^2|_X = X^2 \to X^3 = |R[1]^3|_X$ satisfies $\alpha(x, y) = (x, x, y)$ (resp. (y, x, x) if $x \le y$ (resp. $y \le x$). Thus X^2 has the α -induced k-topology if $X \in EInt$. If $QX \notin T_1Int$ then there is a subspace $S = \{a, b\} \subset X$ that is neither discrete nor indiscrete. If a < b then the map $x \mapsto (a, x, b)$: $X \to X^3$ induces a continuous map $\beta \colon S \to X^3$ that factors, by $\gamma \colon a, b \mapsto (a, b)$, $(b, a) \colon S \to X^2$, through α . Since S is clearly a k-space, γ is continuous and consequently every neighborhood of (a, b) in X^2 contains (b, a) or vice versa. This implies, in either case, that S is indiscrete, a contradiction. Hence $QX \in T_1Int$ and A.7 is proved.

Theorem 4.1 now follows from 4.6 and 4.7.

REFERENCES

- 1. J. M. BOARDMAN and R. M. VOGT, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. No. 347, Springer-Verlag, New York 1973.
- 2. P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, New York, 1967.
- 3. S. MacLane, Categories for the working mathematician, Springer-Verlag, New York, 1971.
- 4. M. V. MIELKE, The interval in algebraic topology, Illinois J. Math., vol. 25 (1981), pp. 51-62.
- R. M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math., vol. 22 (1971), pp. 545-555.

UNIVERSITY OF MIAMI

CORAL GABLES, FLORIDA