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EXACT INTERVALS

BY

M. V. MIELKE

1. Introduction

In a previous paper we characterized those cosimplicial k-spaces T: A-
kTop whose left Kan extension Lang T along the right Yoneda functor
R: A Simpl (Set) preserves finite products. It was shown that T arises from
an "interval" T [1]. In this paper we extend these results by showing that
Lang T is an exact functor (preserves finite limits and colimits) if and only if the
reflection of T [1] into the category of To spaces is a Hausdorff space. In the
classical case, where T is the cosimplicial space of affine simplexes, T [1] is
the standard unit interval I and LanR T is the geometric realization functor.

2. Preliminaries

Recall, from [4], that the category Int of Intervals has, as objects, the non-
empty, linearly ordered, bounded sets X equipped with a connected compactly
generated topology (in the sense of [5]) for which X", the n-fold product in
kTop, has the weak topology relative to the family {gX}, 9 S(n), the permuta-
tion group on n objects, where

x, x"

and

x
and has, as morphisms, the continuous, non-decreasing, endpoint preserving
maps. Theorem 4.1 of [4] shows that the correspondence X Tx: A kTop,
where Tx[n] X,, defines an equivalence between Int and the full subcategory
of cosimplicial k-spaces determined by those T: A kTop for which T [1] is
nonempty and connected, and Lana T preserves finite products. The aim of
this paper is to characterize the category EInt of exact intervals, i.e. to explicitly
describe those X Int for which Lan Tx is exact. Note that Lana Tx is exact if
and only if it preserves equalizers since, in general, Lana T is coontinuous (it
is left adjoint to the singular functor X --, Set (T, X)) and the preservation of
finite limits is equivalent to the preservation of finite products and equalizers
[2, Section 2, p. 108].
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3. To, Ta, T2 intervals

For each property P of spaces, let PkTop (Pint) be the full subcategory of
kTop (Int) determined by those spaces with property P (those intervals with
underlying space in PkTop). For P To, the inclusion i: TokTop kTop has
a left adjoint Q for which the unit of the adjunction q(X): X iQX is induced
by the quotient map of X onto the quotient space QX of x determined by the
equivalence relation that identifies points if and only if they have the same set
of neighborhoods. Thus TokTop is a reflective subcategory of kTop with
reflector Q [3, p. 89]. Further, Q lifts to a functor Int --, ToInt, still denoted by
Q, that defines ToInt as a reflective subcategory of Int (5.1 of [4]). For the
separation properties Ta and T2 we have:

3.1 THEOREM. Taint T2Int.

Proof The following lemma implies Taint = T2Int.

3.2 LEMMA. For X Int, the maps min and max are continuous.

Proof It follows from the definition of interval, for n 2, that

X2 "ITX 2 X2 I.I zX2 -- X2

is a coequalizer where the maps are the obvious inclusions and z(x, y)= (y, x).
The map X2 H zX2 X induced by Pa(P2) on the first factor and by P2(Pa) on
the second factor (P is the ith projection) coequalizes u and v and thus induces a
continuous map X2 - X that is readily seen to be min (max).

If a X e Taint then, since the set X {a} is open, the sets

m-a(X-{a})={xlx<a} and M-a(X-{a})={xla<x}
are also open, where ma(X)= min (a, x)and Ma(x max (a, x). This clearly
implies X e T2Int and thus 3.1 follows.

3.3 Remarks. (1) X T2Int if and only if X is a non-empty, linearly
ordered, bounded set equipped with a connected k-topology that contains the
order topology (5.3 of [4]).

(2) Each interval X has the structure of a topological monoid under max.
Thus X can be used as the monoid in Boardman and Vogt’s bar construction
for theories [1, p. 72]. As they pointed out in [1, Remark 3.2, p. 74], most of
their results do not hold for a general monoid without further restrictions.
However, the restrictions imposed on the monoid X by the requirement that X
be an interval do allow for certain extensions of their results.



EXACT INTERVALS 595

4. Exact intervals

This section deals with the main result:

4.1 THEOREM. X Elnt if and only if X Int and QX Tllnt.

Proof We begin with a number of preliminary results. A space A kTop is
said to have thef-induced k-topology for (f: A B) kTop if the continuity of
fg implies that of 9 for any function 9: C A, with C kTop. Let

f
(*) F-G H

be an equalizer in Simpl (Set).

4.2 LEMMA. For X Int, thefunctor [? [x Lann Tx preserves the equalizer
(*) if and only if [r Ix has the [j Ix-induced k-topology.

Proof The way in which equalizers are computed in kTop clearly implies
that [F [x has the [j[x-induced k-topology if (*)is preserved. To show the
converse it thus suffices to show that, on the underlying set level,

[r[x[G[x[H[x
is an equalizer. Since the underlying set functor U: kTop Set is both contin-
uous and cocontinuous, it readily follows from the coend formula

I? Ix f R[n] (R) Tx[n]

that U l?[x [?[t:x and that [?]vx preserves finite products. Thus it is
sufficient to show that

(**) IFl,x Ialvx ]Hlvx
is an equalizer in Set. That (**) is indeed an equalizer can be proved by
appropriately modifying a proof (in particular the one given in [2, p. 5.1, Sec-
tion 3.3] of the corresponding classical (X I) result. We begin by observing
that for any point

y- (y,, y,) X, {(x1, Xn)[0 < X < < X, < 1} X

(0, 1 are the endpoints of X) and any point z (zl, z,) X, there is an
endpoint preserving, nondecreasing function (not necessarily mono, epi or con-
tinuous) S: UX UX for which S(yi) zi, 1,..., n. Further, S extends to a
natural transformation Ts: Tvx Tvx that in turn extends to a natural trans-
formation ?Is: ? [vx ? [vx for which the map

S,, R[n] Is: [R[n] ]t,x ux. us.
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satisfies S,(y)= (Syl,..., Sy,)= z (S, acts this way since ? [tx preserves finite
products). One now proceeds as in the above mentioned proof in [2] noting
that the replacement of I by UX results in the replacement of the affine n-
simplex and its interior by UX, and U.,, respectively. An essential fact needed
in that proof is that if If [t:x(x) IX [t:x(x) for x [G [t:x then If [vx and
[g [t:x agree on the "cell" determined by x. That this fact indeed obtains follows
as in [2] if one notes that the above observation about S is sufficient to give the
necessary results of Section 1.6 [2]. It should be noted that while the group of
continuous endpoint preserving homeomorphisms of I is sufficient to obtain
the pertinent results of Section 1.6 [2] when X I, a larger class of endomor-
phisms of UX is needed to obtain the analogous results involving UX. The rest
of the proof of 4.3 now follows as in [2].

4.3 LEMMA. IF Ix has [j Ix-induced k-topology/fX e Tlint.

Proof. If X e TInt then, by 3.1, X e T2Int and consequently
2, X, J, is a closed subset of X,. Hence, by an obvious modification of
the argument of 2, p. 50, Section 3.2, [j Ix is a closed injection.

4.4 LEMMA. The image of[? Ix is in T0kTop/fX e TInt.
Proof. Since X, is a closed subset of the T2 space X,, it follows from Fig. 14,

p. 44 of [2] that i,: [Sk F Ix [Sk"F [x is a closed injection and, inductively,
that ]Sk"F Ix is To, for any simplicial set F. Since IF Ix colimit i,, 4.4 readily
follows.

4.5 LEMMA.
QX TInt.

The functors iQ ?Ix and [?[,ox are naturally equivalent if

Proof Since Q" ktop TokTop is cocontinuous, product preserving and
Qi id one has

i(217 Ix iQ J" R[n] (R) Tx[n]

j" R[n] (R) QTx[n]

=if R[n] (R) QiQTx[n]

iQ j" R[n] (R) iQTx[n]

iQ j" R[n] (R) Tiex[n

iQl? I,ex I? I,ex,
where the last equality follows from 4.4.
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4.6 PROPOSITION. X Lint/f QX Tlint.

Proofi Since the horizontal arrows (from the unit of the (i, Q)adjunction)
in the commutative square

[FIx+iQ[FIx

IGIx- iQIGIx
induce the k-topology on their respective domains and, by 4.5, iQ J]x is equiva-
lent to ]j Iex and, by 4.3, ]F ]ex has the [j ],ex-induced k-topology it readily
follows that F ]x has the ]j Ix-induced k-topology. Thus 4.2 gives 4.6.

4.7 PROPOSmON. QX TInt (X Elnt.

Proof In Set, and consequently in Simpl (Set), each mono imbeds in a
cocartesian square

A BC

that is also cartesian; i.e. each mono is an equalizer. Clearly there is a mono

i" R[1]) R[1])
for which ]i]x" ]RIll2]x=X2Xa= ]R[1]a[x satisfies (x,y)=
(x, x, y)(resp. (y, x, x) if x y (resp. y x). Thus X2 has the -induced k-
topology if X Elnt. If QX TInt then there is a subspace S (a, b} X
that is neither discrete nor indiscrete. If a < b then the map x(a, x,
b)" X X3 induces a continuous map fl" S X3 that factors, by " a, b (a,
b), (b, a)" S X2, through . Since S is clearly a k-space, is continuous and
consequently every neighborhood of (a, b)in X2 contains (b, a)or vice versa.
This implies, in either case, that S is indiscrete, a contradiction. Hence
QX TInt and 4.7 is proved.
Theorem 4.1 now follows from 4.6 and 4.7.
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