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THE EXPONENTIAL FUNCTION CHARACTERIZED BY
AN APPROXIMATE FUNCTIONAL EQUATION

BY

P. D. T. A. ELLIOTT

THEOREM. Let p be real, p > 1. Let the complex-valued function f(x) belong
to the Lebesgue class (0, z)for each real z > O, and satisfy

(1) z-,oolime-ZffoIf(x+y)-f(x)f(y)lpdxdy=O
for eachfixed e, > O.

Then either there is a (possibly complex) constant fl so that

(2) f(x) eIJx

almost surelyfor x > O, or

(3) ,-,oolim e -" o1 f(x) dx 0

for eachfixed e > O.
Each of the conditions (2), (3) is sufficient to guarantee the validity of that at

(1).
The proof of this theorem depends upon the possibility of analytically

continuing the solution of certain Riccati differential equations in the complex
plane.

Since Ilal bll -< a- b[ condition (1) is also satisfied by If(x)[. For the
time being we shall assume thatf(x) is real and non-negative.

It is convenient to define

’f(J(z) x) dx

for z > 0.

LEMMA 1. There is a non-negative constant B so that

J(z) <_ eB

holdsfor z >_ 3.

Received November 7, 1980.
Partially supported by a John Simon Guggenheim Memorial Foundation Fellowship. Par-

tially (but not simultaneously) supported by the National Science Foundation.

1982 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

503



50 P. D. T. A. ELLIOTT

Proof. The proof is by induction on z, and it is convenient to establish a
stronger inequality

(4) J(z) < e-2).

We begin with the inequalities

f(y) dy J(z)

fz f= {f(x + y) f(x)f(y)} dx dy
=z-1 0

<_fZo olf(x+y)-f(x)f(y)ldxdy<-cleZ,
the last following, with a certain constant cl, from the hypothesis (1). In
particular

J(2z-1)_< r J(z+y)dr

_< f: {J(y)+f(y)J(z)} dy +

< J(z) + J(z){J(z)- J(z- 1)} + cie=.
We may assume that for all large , J() > 1, otherwise the lemma is already
established. Thus

J(2z 1) <_ (J(z)) + c,ez,
a(z) <_ (a(z + 1)/2)) + c, e

for all z > 1.
Suppose now that inequality (4) is valid over an interval < z < Zo, and

that Zo < z < Zo12. Then (z + 1)/2 < Zo, and applying our inductive estimate,

J(z) < eilz-){e -l + ciell+i-il):}.

If Zo > 5 and B is sufficiently large then the expression in the curly brackets is
less than 1 in value, and the induction will proceed.
By fixing B at a value which is also large enough that

J(z) <_ e( <_ e=-)
for < z < 5, we obtain the inequality (4) for all z > .

This completes the proof of Lemma 1.

It is convenient here to deduce the following"
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LEMMA 2. Let 0 min (1 p-1, 1/2). Then

J(z + h)- J(z)= O(hOeaD
holds uniformlyfor z > 0 and 0 < h < 1.

Proof. After an application of H61der’s inequality with p-1 + q-1 1, we
deduce from our hypothesis (1) that

fz+h fzZ+h(f(x)f(y) f(X + y)) dx dy O(h2/e/l).

Set e Bp and note that

f(x + y) dx dy (J(y + z + h)- J(z)) dy O(he2BZ),

the last step by Lemma 1.
Then,

(J(z + h)- J(z))2 O(e2BZ(h + h2/q))

from which the asserted result follows.
This completes the proof of Lemma 2.

For complex s tr + iz, tr Re (s), define the Laplace transform

w(sI- e-f(xI dx.

In view of Lemma 1 an integration by parts shows that this function is well
defined in the half-plane tr > B.

If the integral

converges for every positive value of a then we shall already have the result

lirn e fof(X dx 0

for every e > 0. As we shall show later, this already leads to the condition (3)
in the statement of the theorem. We shall therefore assume that there is a
positive a so that the integral converges for a > a but not for tr . In
particular the integral converges uniformly absolutely in each half-plane
tr > + di, i > 0, and so defines an analytic function w(s) in the half-plane

Let

l(x, y)=f(x + y)-f(x)f(y),
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and define

O(s) e- + rl(x, y) dx dy.

For u > O, e > 0 we deduce from (1) that

;;e-,x + Y) ?(x, Y) dx dy < e-u rl(x, Y) dx dy

u<x+y<2u

O(e(- ).).
It follows readily that g(s) is analytic in a > O, and bounded above uniformly
in ery half-plane a 2 5. Of course, we expect this bound to get worse as 5
decreases in size. We need the following, better estimate.

LEMMA 3.

lim g(a + iz)= 0

uniformly in every strip (0<)

Proof. Let e > 0 be given. For any particular a > 0, the integral defining
g(s) converges absolutely and we can find a number v so that

f.flrl(x,y)le-(x+)dxdy<.
x+y>v

The finite Fourier integral

ff rl(x, -(o + )(+) dxy)e dy

x+y<v

approaches zero as I1--, oo, with the usual Riemann-Lebesgue argument.
Hence

lim sup I(s) -<

and since e was arbitrary positive we obtain the result on each line Re(s) > 0.

The uniformity may now be deduced by means of a Phragm6n-LindelSf
argument (e.g., Titchmarsh [4-1, p. 180).

This completes the proof of lemma 3.

LEMMA 4. W satisfies the Riccati differential equation

(5) w’ + w"= -o(s)

in the half-plane a > , and 9(s) is analytic in a > O. Here denotes differen-
tiation with respect to s.
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Proof Multiply both sides of the identity f(x + y)-f(x)f(y)= rl(x, y) by
e -stx+y) and integrate over the positive quadrant of the (x, y)-plane. The
change of variables x r(Cos 0)2, y r(Sin 0)2, with associated Jacobian
r Sin 20, transforms the integral involvingf(x / y) into

oo /2e_Sf(r) r Sin 20. dr dO -w’(s).
=0 dO=O

This completes the proof of Lemma 4.

We seek to analytically continue the solution w to this differential
equation into the strip 0 < tr < .

Let So ao + izo be a point in the half-plane a > . One may rgard ao as
being "near" to . Let c, c2, t bc positive numbers and dfinc a rcctangl

A’-cx<a<+c2, Z-zol<tx.
We shall assume that ao < 0 + c2 so that So lies inside A.

It is convenient to use L to denote cx + c2 + 2tx, so that 2L is the length of
the perimeter of A.

Let M be a positive number. The space S of all functions h(x, y), considered
as functions of the pair (x, y), which are continuous and bounded by M on A,
is complete with respect to the sup norm

I]h]l sup ]h(x, y)], (x, y) A.

Consider the map T, of S into S, given by

Th wo + {-h2(s)- O(s)} ds
o

where Wo is a complex number to be specified presently, and the integration is
along the half-rectangle F" So to ao + iz to s. Clearly

IIThll Iwol + L(llh211 + Iloll) M

if (say)

(6) 31wol < M, 3LM < 1, 3LII011 M,

so that Th belongs to S.
Moreover, if the conditions (6) are satisfied, then for any two members h, h2

of S

IIThx Th211 LIIh2x h2211
_< Lll(hx + h2)(hl h2)ll

2LMIIhx h211.
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Since 2LM < 1, T is a contraction map and has a unique fixed point w,

w Wo {w + 0(s)} ds.
o

If, instead, we integrate along the (other) half-rectangle i, so to tr + i% to s,
then we obtain a fixed point k of the corresponding map 7.

Since T"(M), 7"(M), n 1, 2, are analytic inside A,

w lim T"(M)= lim 7"(m)= .
In particular,

+ O) Jf(w + 0)ds ds.

It is now straightforward to prove that t3w/&r and -iOw/Ox exist, are equal,
and are continuous, at points inside A. Thus w is analytic in the interior of A,
and there (uniquely) satisfies the Riccati equation (5) with the boundary con-
dition W(So)= Wo.

In order to obtain in this way an analytic continuation of our function w(s)
from the half-plane tr > e into the interior of A, we need to satisfy the
conditions (6).

Regarding ao( > e) as fixed, just as we argued in the proof of lemma 3 we can
prove that

lim w(tro + ix) lim e -(’ + ’)"f(x) dx O.

Let e > 0, 6 > 0 be given. We shall set ca - 6, c2 ao + 6, tl 1,
so that A becomes

6 < a < ao + 6, Ix- Xol< 1.

If Xo is sufficiently large then from lemma 3 we deduce that Iloll e. Since L is
now fixed, M (3L)- will satisfy the middle condition at (6).’ With this value,
3LIIo[I < M will certainly hold if e is sufficiently small. Similarly 31W(So)l < M
will hold for all large

Since we have proved that there is a unique solution to the differential
equation (5) in the interior of A, which has the value W(So) at So, and since A
overlaps the half-plane a > in the strip < a < ao + 6, Ix- xol< 1, our
solution to the Riccati equation is an analytic continuation of {w(s), a > a}.
By keeping ao fixed, and sliding Xo up (or down as the case may be), we can

cover the semi-infinite strips 6 < a < ao + 6, I1 > o 1 and so arrive at the
following result.

LEMMA 5. For each 6 > 0 there is a number x so that the function w(s),
initially defined in o > , may be analytically continued into the semi-infinite
strips, 6 < a < + 1, I1>

Moreover, w(s) is uniformly bounded in these strips.
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Proof Only the last assertion of Lemma 4 calls for comment. In our
construction of the solution w to the differential equation we obtained the
bound [[w(s)[[ sup[w(s)[ <_ M (3L) -x on each A. Here L did not depend
upon the value Zo associated with the rectangle A immediately under consider-
ation.

This ends the proof of lemma 5.

We cannot give a precisely similar treatment of the Riceati equation in the
box 6 < a < + 1, [[ < zt, since we expect a singularity at the point s .
Even if we didn’t, the above argument does not apply directly since larger
values of []01[ and W(So)[ are to be expected, and these will only be compatible
with the inequalities (6) if L is small. Thus we would not be able to reach as far
left as the line a 6.

Consider now the situation when the rectangle A has associated point So
with [Zo] _< zt, and W(So), which is given to us in advance, is "large".

Let 2 be a positive number. We look for a solution w to the differential
equation which is analytic in A, and satisfies wt(so)= 2. For the moment we
abandon hopes of it analytically continuing {w(s), a > }.

Let o(s)[ _< Co, Co > 0, hold for a > 6. We apply our above space S with a
box At defined by

1 1 1
go < < + I*-*ol<

12c---w/Co
a_ go

12o 12o
that is with (in our old notation)

1 1 1
ct --ao++, c2=ao--+ tt--12w/o 12o 12o

We shall assume that ao < (24xo)-t. Since Co is fixed, this can be safely
arranged.

For our upper bound M in the definition of the space S we take x/o. Then
3L eft t/2 so that 3LM 1. Moreover, 3LIIoll < eft t/2co M.

If 3121 < x/o then the conditions (6) will all be satisfied and we shall obtain
a (unique) solution w to the Riccati equation, valid in the box At, analytic in
the interior of A1, and satisfying the boundary condition w(so) 2.

Let wt, w2, w3 be three such solutions, obtained by the restrictions W(So)=
2, 22, 32, where 2 is (for the moment) any number for which 0 < 9121 < o.

It is a property of the Riccati equation (for example, see Ince [3], Chapter I,
Section 12, pp. 22-23) that any further solution co must satisfy the cross-ratio
condition

(7)
o9- w2 wa w
(D 1411 W3 W2
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for some constant It. Thus the functions co may be parametrized by It. In
another form (7) becomes

-lwi(w3 w) + w(w3 w)
wa w #(w3 w2) m

say, where and m are analytic in A. The function m has the value A(2 #) at
So, and so will not be identically zero unless It 2.
We now look for a solution co so that co(So)= W(So). From (7) this

determines # by

It 3\
and conversely. This will certainly be possible if 2 is chosen so that 2 W(So),
2 W(So)/4 (this last ensuring that It q= 2).

In this way we obtain a meromorphic continuation co* of w(s) into the
interior of
We may now slide our box A1 to the left and continue with this argument.

We first note that function m obtained above has only finitely many zeros in
the interior of A 1, say N. Thus one of the strips

1 1
O"0 - Ve2 < O" < t-(V + 1)e2,

12x/o
_ao

12x/o
v 0, 1, N, must be free of them. With a small enough value of e2 we can
choose such a strip A as near to the line Re(s) ao -(12o)- as we like. If
we replace z zll < (12x//o) in the definition of A1 by

Iz zll < (12x/o) -1 e2,

then our solution co* will be analytic in our (z-truncated) strip and we can
apply the above argument to a space of continuous functions defined on a new
rectangle A2, with A at its right-hand end (overlapping itl. Any point in
A c A2 may play the r61e previously assigned to So, and the only change is a
slightly smaller value of L.

It is clear that in this manner we can meromorphically continue {w(s),
a > } into the half-plane a > 6.

LEMMA 6. In the notation of lemma 4, w(s) may be meromorphically
continued into the strip 6 < a < + 1, I1 < xx / 1.

If w(s) has a pole in this reoion it must be simple, and have residue 1.
For any
+ ca, on which w(s) is uniformly bounded.

Proof. The third assertion of Lemma 6 may be obtained by constructing
zero-free strips in the manner used during the meromorphic continuation of
w(s).
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Concerning the second assertion, near a pole p of w(s) we shall have

D
w(s)

(s p) +

say. Since w(s) satisfies the Riccati equation (5),

(s p)*+ +""
(s p)* + a(s)

must be analytic in a neighbourhood of t9. Hence 2k < k + 1 must hold, and
this allows only k 1. Then -D + D2 0 also holds, which leads to D 1.

This completes the proof of Lemma 6.

Define

,(z) f oJ(U) du, z >J O.

Integration by parts shows that J(z) has the Laplace transform w(s)s-’, and a
Fourier inversion gives

1 f+ w(s)
eszJ(z)

-,oo -- lfor every real c > .
Let e > 0 be given, and choose t$ so that e/2 _< i < 2e/3 and w(6 + iz) is

bounded uniformly for all z. Let P l, Pn denote the poles of w(s) in the
half-plane tr > di. Moving the above contour to Re (s) we pass over these
poles and obtain the estimate

(8) d(z) pf 2e’Jz + O(eO, z > O.
j=l

To estimate J(z) let > z (see Lemma 6) be a real number to be chosen
presently. Then starting from

1 fc+ioo eSw(s)
J(z)

c_, s
ds

we deform the contour into the line-segments

c i-- c it-- 6 it-, + it--, c + it- c + i.

The integrals over the line-segments Re (s)= c, I1 we put together to
obtain

1
eC ei w(c + iz)

(9) 2--’ c + iz
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If > 2c then we can replace c __+ iz in the denominators by __+ ir’ at the expense
of an amount

0 eCr" -2 sup Iw(s)l dr, O(t-e).

The remaining integral is then

eC Iu (;o )--lim f(x)e Sin z(z x) dx
dr"

u-* 7 r"

eCZn fo f(x)e-CX (foo Sin z(zr" -x)dr’)dx,
sincef(x)e belongs to the class L(0, ).
An integration by parts shows that the innermost integral in the last ex-

pression is O(min (1, (tlz x I)- 1)). Then

+ /’1 f(x) e cx dx O(e Oe)
1/t

by Lemma 2, whilst

If(x)le- Iz-xl) dx O If(z- u)lu du
/t

Define the function

F(v) fo f(Z u) du,

for real v, 0 < v < z. Applying Lemma 2 gives

F(v) J(z)- J(z- v)= O(venZ).
Integrating by parts we have

f(z u)u -1 du [-u-lF(u)]/t- u-2F(u) du
It It

O(t -Oe).
Hence

o
/’f(x)e-CX(t z x I)- dx O(t-ea),

and a similar estimate holds for the corresponding integral over the range
x>_z+t-1.



AN APPROXIMATE FUNCTIONAL EQUATION 513

Assuming (as we may) that c > B, we obtain for the integral at (9) the upper
bound O(t-e*).
The remaining integrals in the representation of J(z) are easily estimated to

contribute

O(e*z fds]) e*,+ O(t-
and we arrive at

(10) J(z) pf ePJZ + O(e log + t-ec)
j=l

valid for all > max (2, 2c). Choosing to be exp (cz/O) we obtain for the error
term the bound O(e6z log z), which is O(e0.
We now study the possible values for the poles pj by means of the following

result.

LEMMA 7. Let

E Cj edjz <_ Ae’

holdfor some real A, w, and all real z >_ O.
Thenfor each j with c :/: O, Re (d) <_ w must hold.

Proof We write
k

E Cj eajz= X eruPt(z)
j=l

where the functions P(z) have the form

P(z) ae’,

the 0 are real, so arc the r and r > r > .... Without loss of generality the r
and w may be assumed non-negative.
We may assume that r Re (dr) Re (dj) for every j, and that c 0.

Otherwise there is nothing to prove. The function Pt(z) is then not identically
zero for real z.
We assert that

lira sup [P(z)[ d > 0.

For otherwise P(z) 0 as (real) z , so that

h

I= lira Tlath IP(z) dz O,
h=l T

which possibility has been ruled out.
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Then

e’le(z)l < Ae"z + emle,(z)l
/=2

and by letting z approach infinity through a suitable sequence of values, we
shall obtain a contradiction unless r < w.

This completes the proof of Lemma 7.

Returning to our hypothesis (1), with p replaced by 1, we have

Jx(2z) 2dr(z) (J(z))2 O(e*z)

for each fixed, > O, and in particular for a value not exceeding z/3.
In view of our estimates (8) and (10),

(P]-(eo’z- 2e’=)- P7 *e’" + O(eO
j=l j=l

for all real z > 0.
Suppose that amongst the Re (&) at least two distinct values r > r2 > 5

occur. Then from the squared bracket a non-zero term involving (say)

et,l +,,)z, Re (px) rx, Re (P2) r2,

will arise which cannot be cancelled by any term of the form e2pjz or epj’.

Applying Lemma 7 we deduce that rx + r2 < max (25, rt + 5), so that r2 < 5.

Without loss of generality we may therefore assume that the & all have the
same real part.

In our present circumstances w(s) is the Laplace/Fourier transform of a
non-negative function, and since its defining integral diverges when a , we
must have Re (p)= . (See, for example, Elliott [2], Chapter 2 coneluding
remarks.)

Let p + ion, Oj real, j 1, n. Then

( )2j=l j=l

for all z > 0. The expression P(z) on the left-hand side of this estimate is of the
same form as the Pt(z) considered during the proof of lemma 7. Moreover, it
approaches zero as z c. It must therefore vanish identically for all real
z>0.
We can regard P(z) as a function of the complex variable z. It is then an

integral function which vanishes on the positive half of the real axis, and so
over the whole complex z-plane. In particular it vanishes on the imaginary
axis. However, considering P(iy) for real y, after the manner of lemma 7, we see
that this is possible only if there is not more than one number 0.
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We have now arrived at an estimate

(11) J(z) or- te + O(e*O

valid for every fixed e > O.
From our hypothesis (1),

y2z f:zf(x + y) dy f(x) f(y) dy
=0

dx O(e*Z),

J(2z)
J(2z + x)-

J(Zz) J(x)) -f(x) dx O(e*Z).

From our estimate (11),

so that

and

(J(2z + x) J(x))/J(2z) eX{ 1 + O(e(3- 2),)}

’J(2z) e" f(x) dx O(eta+a)z)

ex f(x) dx O(etae’-z).

Letting z--, we obtain the almost sure representation f(x) e’.
At this stage we recall the earlier alternative that

lirn e f:f(x) dx 0

for each fixed e > 0.
From our initial hypothesis (1), using the inequality (a + b)’ < 2’- t(a’ + b’)

and Holder’s inequality, we obtain the bound

(J(z))t’ fff(x)t’ dx

<_ 2 f:lJ(z)f(x) {J(z + x)- J(x)} dx + 2 :,J(z 4-x)- J(x)l’ dx

< 2" z, If(x)f(y)-f(x + y)I dy dx + O(ze’O

O(zp + 1era).
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If J(z) is zero for all z > 0 then conclusion (3) of the theorem is trivially valid.
Otherwise

f(x)’ dx O(ez’‘z)

for every fixed e > 0 and we obtain conclusion (3) anyway.
We now abandon our assumption that f(x) be real and non-negative and

summarise our results in the following form

LEMMA 8. Either there is a positive t so that If(x)l--e"x almost surely for
x >_ O, orfor each e > 0

lim e -*z f:lf(x)Iv dx 0

is satisfied.

For the remainder of the proof of the theorem we shall assume that the first
alternative of this lemma holds.
We can carry out analogues of the above arguments with (the implicit)

If(x) everywhere replaced by a now complex-valuedf(x). We shall then either
reach an almost sure representation f(x) eax for x > 0 or the estimate

(12) f:f(x) dx O(e’), z > O,

for each fixed positive e.
We shall show that this last possibility can only occur iff(x) has the form (2)

or is almost surely zero, and thus complete the proof of the theorem.
We modify the argument given following the estimate (11), by

yo )f(x + Y)O(Y) dy f(x) f(Y)O(Y) dy dx
0 =0

< If(z + y)-f(x)f(y)ldx dy O(e"),
0 =0

where

]exp (--i arg f(y)) if f(y) 4: O,
0 if f(y) 0.

In this definition we take any value of the argument off(y). Thus qt(y)l _< 1
andf(y)q(y) f(y)[.
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Hence

f(y) dy f(x) dx k(y) f(x + y) dx dy + O(eZ),
=0 =0

O(e’0,

this last step by means of (12). In view of Lemma 8 (see (11)) we have

(13) J(z) f f(X dx O(e’- 2)z).

The Laplace transform

w(s) f(x)e dx s J(x)e dx

is now well defined and analytic in the half plane tr > -2, and (letting z---,

in the estimate of (13)) satisfies w(0) 0.
For each real z we can carry out the whole of the above argument with

e’Xf(x) in place off(x). Unless we obtain a desired estimate of the type (2) in
the statement of the theorem this leads to w(iz) O.
The function w(s) then vanishes on the imaginary axis, and so in the

half-plane tr >-2. A Fourier transform inside the half-plane tr > now
shows that J(z) 0 for z > 0, so thatf(x) vanishes almost surely for x > 0.

This completes the proof of the theorem.

Concluding Remarks. If we assume only that

limz-2fo folf(x+y)-f(x)f(y)ldxdy=O
mustf(x) ea" almost surely, or

lim z- Ilf(x)ip dx 0

hold?
If we strengthen the hypothesis to

limz-lfo folf(x+y)-f(x)f(y)lVdxdy=O
mustf(x) eax hold almost surely ?

Analogues of these results are certainly valid if the equation which is im-
plicitly under consideration is that of Cauchy (see the author’s paper [1]).
What if 0 < p < 1 is allowed ? Will it help iff(x) is assumed real ?
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