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I. If X and Y are finite CW complexes with isomorphic fundamental
groups, one would like to know when X and Y are homotopically equivalent.
One obvious necessary condition is that X and Y have the same Euler
characteristic. This was shown to be sufficient for 2-complexes with cyclic
fundamental groups of prime order by Cockcroft and Swan [6], and for
arbitrary cyclic groups by Dyer and Sieradski [7]. On the other hand, Metzler
[11] produced examples of finite 2 complexes with isomorphic finite abelian
fundamental groups and the same Euler characteristic which were not of the
same homotopy type. The major link of the geometry of the problem to
algebra and a method of attack is given by a theorem of MacLane and
Whitehead [19] and Wall [18] who show that two finite n dimensional
complexes X and Y are the same homotopy type if and only if there exists an
isomorphism

0" nt(X, ,)--, n,(Y, *)

and the chain complex of the universal cover of X is chain homotopy
equivalent to the chain complex of the universal cover of Y as rrl(Y,
,)-complexes.

This theorem demonstrates the importance of the study of the chain
homotopy types of free ZG-complexes. This was done by W. Browning in his
thesis and a series of papers [2], [3], [4], [5] for G a finite group. For certain
groups he classifies the chain homotopy types of a fixed Euler characteristic by
means of a certain finite abelian group. In Section II, we review briefly
Browning’s work and then in the following sections develop some exact
sequences relating Browning’s groups to more familiar objects of integral
representation theory. We conclude with some calculations of these groups
based on these sequences.

II. For the material in this section the reader is directed to Browning’s
thesis and papers [2], [3], [4], [5] for details.
G will always denote a finite group and A the integral group ring of G. B is

an arbitrary A-lattice (i.e., finitely generated-torsion free as an abelian group).
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If

P," Pm Pro-1 Po B 0

is a truncated finitely generated A-projective (A-stably free) resolution of B, i.e.,
exact except at P,,, the Euler characteristic of P,, z(P,), will be the integer

rkA Pm rkA Pro- + + (-- 1)mrkA Po, where rkA Ps rkz Pj

Let 3re(B, l) (resp. F"(B, l)) denote the category of all truncated finitely
generated A-projective (resp. A-stably free) resolutions of B of length m and
Euler characteristic l. If P,, Q, Bin(B, l), a map [h]" P, Q, is a chain
homotopy equivalence class of A-chain maps from the complex Pm’" Po
to the complex Qm"’Q0 which induce the identity on B.

Let u be a finite set of primes of Z containing all those dividing the order
GI of G. Denote by fl(B, 0 (resp. F(B, l)) the category whose objects are the

objects of fl(B, 0 (resp. Fm(B, O) localized at A. Z G and whose maps are
A,-chain homotopy classes of A.-chain maps inducing the identity on B..
Notice that this includes maps which are not localizations. Let G(A) be the
Grothendieck group of finite A-modules whose Z-annihilators are relatively
prime to u, i.e., those finite A-modules X such that X 0, and relative to
short exact sequences. If

[hi" P,, Q,u

is a A-homotopy equivalence class, then

Hm(h) : Hm(a,).o Hm(Q,)

is an isomorphism and is independent of the representative h. Choose s 6 Z
with (s, u) 1 and such that s: Hm(P,) Hm(Q,). Define

2[hi (Hm(Q,)/shHm(a,)) (Hm(Q,)/sHm(Q,)) G(A).

This is well defined and gives a homomorphism 2 from the groupoid

Eq.(fl(B, )= {[hi" P, Q,I h is a A-homotopy equivalence}

into G(A). The image of 2 is equal to G(Hm(Q,)), the subgroup of G(A)
generated by all (X) with X 0 and X a quotient of H,(Q,). (If P,, Q, 6

tim(B, 1), then one can show that G(H,(P,))= G(Hm(Q,)).) Fix an arbitrary
P, 6 tim(B, and let

AutP, {[hi" P, P,lh a Au-homotopy equivalence}.

Finally define

cl + *(G, B, G(Hm(P,))/2(Aut P,).
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If Era(G, B, l) (resp. EFm(G, B, l)) denotes the isomorphism classes of tim(B, 1)
(resp. F(B, l)), then Browning proves the following.

(1) Given any P, fl(B, l), there exists a well-defined epimorphism

< P,>u: Era(G, B, l)--, cl + I(G, B, l).

(2) elm. + I(G, B, l) is a finite abelian group.
(3) If Hm(P,) is an Eichler module for some P, tim(B, l) and hence for all

P, tim(B, l), then (, P,>u’ Em(G, B, l) cl"+ t(G, B, l)is a bijection.

Note. A-lattice M is an Eichler module if the semi-simple rational algebra
EndQ (QM) has no simple components of dimension 4 over its center which
ramifies at some archimedean prime of the center [12].

(4) The map t: G(A)--,/o(A), given by t<X> [P] [Q] if
0--, Q --, P--, x --, 0 is exact and P is A-projective (hence Q also since x. 0),
factors over cl + (G, B, l). If h+ (G, B, l) denotes the kernel of t: cl + (G, B,
/)--,/o(A) and if P, e Pro(B, 1) with Hm(P,) Eichler, then

(, P,),: EPm(G, B, l)-. hm + I(G, B,/)

is a bijection.
(5) If (G) denotes the set of primes dividing the order of G, then for each u

there exists an isomorphism

Ku" clm. + I(G, B, 1)--- ct’’+ X(G, B, l) elm+ l(G, B, l)

making the following diagram commute.

Em(G,

cl"+ (G, B, l)

B, l)

clm+ I(G, B,/).

The aim of the remainder of the paper will be to develop some exact
sequences relating elm+ (G, l) =_ clt% t(G, Z, l) and hm+ x(G, l) -= ht x(G, Z, l)
to more known groups and to use these sequences to make some calculations.

III. In this section we state and prove a theorem which gives a method of
constructing chain maps of one truncated projective resolution to another.
Throughout the section R will denote a subring of the rational numbers , P,
and Q, will denote partial projective resolutions of R of length m. We will
write M, N for Hm(P,), H(Q,) respectively. As usual, G is always a finite
group.
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We have the following:

(i) There exists a canonical isomorphism

k,," Ex*m+ (R, M) I(G, R) R/ Gig’RG ..
such that k,,[P,] [1] R/[ G IR.

Given anyf HR,(M, N), define the degree offby

degf go, f, k, [ 1] ko, f,[P,] g/[ G R.

Clearly deg (f 0) deg f. deg 0 wheneverf O is defined.

(ii) If HomR (P,, Q,) denotes the chain homotopy classes of RG-hain
maps from P, to Q, which induce the identity on R ( Ho(P,)), then there
exists a well-defined groupoid homomorphism

H: nom (P,, Q,)-, nomg (H,(P,), H,(Q,))

given by H([h])= H,(h).

THEOREM. The sequence

1 Homg (P,, Q,)
H dcg

Hom (H.(P,), H.(Q,)) R/IGIR

is exact and is natural with respect to inclusions R c S
_

Q.

Proof The last statement is clear since R
_
S is a flat extension.

(a) deg H [1]. If h: P, Q, is a chain map inducing id on R, then (see
[9], for example) iff H,(h),

f,[P,] [Q,] m Ext*+’ (R, N)

and hence deg (f) k,[Q,] [1].
(b) Supposef: M-- N and deg (f) Ill R/[ G R; i.e.,

f,[P,] [Q,] Extm+ t(R, N).

Since P, is a partial projective resolution of R, we have the exact sequence

i* A

HomR (Pro, N) HOmR (M, N) m+l,Exta (R,N) ,0

where A(h)= h,[P,]. Let : P,--, Q, be any lift of the identity and let 9
Hm(O): M-, S. Then A(9)= [Q,], and, since A(f)=f,[V,] [Q,], there
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exists u" P,. N such that u i-f-g. Define " P,--, Q, by k- ]k for
k < m and Om #m / i’ U where i’" N Qm. Then is a chain map since

Ore- - mVs ds(Vm + i’u) dmOm
and

( + i’ u)i + i’ u i= i’# + i’(f ) i
Therefore Hm()

(c) We are left with showing that if h,, h" P, Q, are chain maps (lifting
id) and Hs(h) Hm(h’ then h and h’ are chain homotopic as maps P, Q,.
Now any two lifts of id" R R are chain homotopic in the following sense.

There exist maps s: PQ+, 0 j m, where we set Qm+ N and
+ t, such that

(i) So ho h.
(ii) d)+s+s_d=h-h}, 1NjNm,

(iii) H(h)- H(h’)= s i.

In our case since Hm(h H(h’) we have s 0. So if

K coker {i" M P},
there exists a map " K N such that } sin" Pm N. (Note"

M P K
is exact.) Now K Pro_ , and I claim there exists a map p" Pro_ N such
that p lKm . If K im "PP_ , then 0KP_ K_ 0
is exact and it is sucient to prove that

Ext (r._ , s)= (0).

Since each P is projective and Ko R, we see that

Ext (r._ , s) = Ext (R, ) = ’(, ).

Since

o N "Qm

is exact with each Q projective, we have

’Qo ,R ,0

I"(G, N) I-(G, R) " NR/IR (0)

and the claim is proved.
To construct the homotopy from h to h’, we let 3 st, 0 < j < m 1, and

let
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Then, for j < m 2, clearly

+ lj "- j- j hj h),
while for j rn 1,

c, 3, + 3, 2 c3, t3,(Sm + i’p) + S, 2 t3,_ hm h,

and for j m,,_ t, (s,_ + r’p)c s,_ c, + i’s h h’. |

Before we state some corollaries to this result we give an obvious but useful
lemma.

LEMMA. Let

P,: OMPm--" "-- Po RO

be a truncated projective resolution of R and let a RG be a central element. If
La: M-- M is left multiplication by a, then

(La)." Ext (R, M) E’xtR’m+t (R, M)

is multiplication by e(a) R.

Proof. Clearly,

0 ,M Pm Po ,R ,,0

0 ,M ,P, Po ,R

commutes so therefore

k,." Ex*’+, (R, M) I (G, M) R/ G IJ

Ex’’+ (R, M) /o (G, M) R/[ G IR
commutes, and (La), obviously induces multiplication by ea on R/I G IR.
COROLLARY 1. IfP. is a truncated projective resolution of R, then

H deg

1 Aut (P.) Auts (Hm(P.)) (R/[ G IR)*

is an exact sequence ofgroups, where (R/ G R)* denotes the units of R/ G R.

Proof. This is immediate from the theorem and the fact that deg is onto by
the lemma.
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COROLLARY 2. Let Z
_
R
_

S
_
Q’P,, Q, truncated projective resolutions

of R. Suppose the natural map z: R/ G R S/ G S is mono. Then, [liven h
Homs (S (R)R P,, S (R)R Q,), there exists t . Hom (P,, Q,) with (R) t h
(chain homotopy equivalent) if and only if there exists

s noms (Hm(a,), Hm(Q,))
such that (R) Hm(h Homs (S (R)s Hm(P,), S (R) Hm(Q,)). Moreover, if l
exists it is unique (up to chain homotopy).

Proof. By the naturality of the exact sequence of the theorem we have
H deg

Homua!P,, Q,) HOmRa.(HmP,, H,Q,) R/IGIR

H deg

Homs (S (R) P,, Homsa (S <g), Hm(P,), S/[GIS
S (R) t Q,) S () Hm(Q,))

Since HmP, and Hm Q, are R lattices, the middle map is a monomorphism
and the last statement is immediate. The first statement is an immediate
consequence of the commutativity of the diagram, the fact that z is mono, and
the fact that im H (deg)-1 [1].
As a final application of the theorem we prove a result first deduced by

Williams [20].
Let u be a finite set of primes containing all primes dividing the order of
GI. Let R Z , Zt,).

COROLLARY 3. If P,, Q, are truncated projective ZG-resolutions of Z with
the same Euler characteristic, then there exists an RG-homotopy equivalence
h: P,u---* Q,u.

Proof. Since P, and Q, have the same Euler characteristic and since all
projective RG-modules are free, we have, by Schanuel’s lemma,’that

Hm(P,) 0)(RG) Hm(Q,) (RG) for some s Z.

Since RG is semi-local, this implies Hm(P,) - Hm(Q,). Letf: M, N, be any
isomorphism and let degf= I-r-I (Z/I G Z)* (R/IGIR)*. Then r-if:
Hm(P,)u Hm(Qr) is an RG-isomorphism and deg (r-f) [1]. Therefore, by
the theorem there exists an RG-chain map h: P,, Q, such that Hm(h) =f/r,
an isomorphism. The following, I believe well-known, proposition completes
the proof,

Let R be a ring with l; (A,, d), (B,, d’) chain complexes over R and f:
A, B, a chain map. The mapping cone of f is defined by C(f)o Bo,
C(f)q Aq_ O) Bq, q >_ 1; c31 (fo, d’),

Cq+ (-d 0 )" C(f)+d’+
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PROPOSITION. Consider thefollowin9 statements.

(i) C(f) has a contracting homotopy.
(ii) fisa homotopy equivalence.

(iii) f,: H,(A)-- H,(B) is an isomorphism.

Then (i)=> (ii)=,. (iii) and if A and B are complexes of projective modules, then
(iii) => (i).

Proof. (i) =,. (ii).
write

let : C(f)- C(f)q+l be the contracting homotopy and

where 9: B--- A, c3j: Aj-- Ag+ 1, t: B Bg+ 1, wg: Aj--- Bj+ 2. Then an easy
calculation shows that 9: B A is a chain map and s: af - id, t: f9 id.

(ii)(iii) This is immediate from the standard exact sequence relating
H,(A), H,(B) and H,(C(f)).

(iii) =:, (i) If A and B are complexes of projectives, then C(f) is a complex of
projectives and iff,’ H,(A) H,(B) is an isomorphism, then C(f) is exact and
so has a contracting homotopy.

IV. In this section we develop the exact sequences relating Browning’s
groups, clm+l(G, l) and hm+l(G, l) to more familiar objects of integral
representation theory.

Let M be a A ZG lattice and u a finite set of prime ideals in Z containing
all primes dividing the order of G. Let f End (M). According to Bass [1],
there exists an exact localization sequence

(1) K1(f) K1(flu) -- GUo(f) -- Ko() Ko(fu)

where G(f) is the Grothendieck group based on finite D-modules whose
Z-annihilator is relatively prime to u;

where " f, flu" is an isomorphism and s" n__ n, (S, U)= 1. Moreover,
A(X) [P] [Q] where0 Q--, P--, x 0 is exact and P is f-projective.

Let G(A)(M)= Grothendieck group generated by finite A-modules whose
Z-annihilator is relatively prime to u and which are quotients of M. (See
Section II, where this is denoted G(M)). M is a A-ta-bimodule where f acts
on the right of M and if nd/4’, Ad/t’ denotes the category of left f, A modules
respectively, then M (R)n: n’--* A/. Since annz (M (R)n U)

__
annz U we see

M (R)n: G(f)-. G(A)(M).
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Note. (1) M (R)ta preserves exact sequences since if 0A B--- C0 is
exact and a Z is a common annihilator, then localizing at a does not change
the sequence and Ma is Aa projective since Aa is a maximal order. (2) If U is a
simple f2-module, then U is a quotient of f2, hence M (R)n U is a quotient of M.
Since

GL,(f,)
_

AutA. (M"),

we can define a map 0: Kl(f,) G(A)(M) by

0[] <m"/sm") <m"/sm"), (s, u) 1, s: m"-- m".

If

is exact then
0--, f2" ---, f2" --, f2"/f2" ---, 0

f2" M (R) nM(R)a

commutes, so we have the proposition.

M"/M"

PROPOSITION 1.

commutes.

The diagram

K,(.) G)()

G)(A)((R)"

PROPOSITION 2. M (R)n" G(fl)-- G)(A)(M) is an isomorphism.

Proof Let u’ be the complementary set of primes to u, then

G(fl) G(Op) and G)(A)(M)= G"o(p)(lp),
p u’ p u’

where Op, ’n are the completions of fl, A at the prime p and , , (R)A M.
If F is a maximal order containing A, then / f’, for all p u’ since u
contains all primes dividing [GI. So we may assume A is a maximal order. If
QG -(A, where the As are simple algebras corresponding to the
idempotents es, then A (As where As Aes is a maximal order in As and
M O)M, Ms=(Aes)M. Moreover, if f: MiM and ij, then, since
es Ms Ms, ei Mj O, we havef 0 so

f EndA (M)= 3 EndA, (Ms)= ) f)s.
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So we may assume A is a maximal order in a simple algebra A.
Consider anna M

_
A. This is a 2-sided ideal in A so Q(ann^ M) (0) or A

since A is simple. If Q(ann^ M)= (0) then M is faithful since anna (QM)_
Q(annA M) and M is a lattice. Since A is a maximal order M is projective and
hence a progenerator. Therefore by the Morita equivalence

M (R)ta: G(f)--- G(A) G(A)(M)

is an isomorphism.
If Q(annA M) A QA then Q(A/annA M)= (0) and there exists n Z

such that n lA annA M; i.e., nM 0. But M is a lattice so M (0) and
therefore f EndA (M) (0). Hence

M (R)a: G(A)-- G(A)(M)

is an isomorphism since both groups are zero. |

Let EM be the category consisting of all A-modules N which are direct
summands of M for some s, and let DM be the Grothendieck group of this
category based on split exact sequences. It is well known that M (R)_, Hom^
(M,-) provide a pair of inverse isomorphisms Ko(f)--- DM, (Reiner [13]).
Define a: G(A)(M)--- Dm as follows: If U is simple, a[U-I [M] IN] where
0--- N M U 0 is exact. It is then clear that

A

G() Ko(F)

-1M(R)n -1M(R)n

G(A)(M) DM
commutes.
Combining these propositions and the exact localization sequence of Bass

we obtain the following sequence (compare to Roggenkamp [ 14", p. 165]):

(2) K(f)-- K(f)-- G(A)(M)-- (M)-- 0

where

(M) ker i" Dm--- Dmu Dup.
p

Note. t(M) {(N1) (N2) N2 EM, NI v N2}. N v N2 means N1 and
N2 are in the same genus. By a result of Roiter [15] and Jacobinski [8], there
exists N v M such that M N2 - N N1; i.e., [N] IN2] [M] IN].
Therefore (M) is the "reduced genus group of M" consisting of
{[M] [N]IM v N} and addition given by

([M] IN,I) + ([M] IN2] [M] IN3] where N1 N2 - M N3.
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THEOREM. Let P, be a truncated projective resolution of Z of length m and
Euler characteristic and M Hm(P,). Then there exists an exact sequence

det p

K(EnOA M) (z/Ial)* clm+(G, l) t(M) O.

Proof. Recall, we have an exact sequence
;t

AUtAu (P,u) G(A)(M)--- cl’’+ X(G, l)--, O.

Since u is finite, l) is semi-primary and hence

AutA M GL(1, ) K()

is onto. Moreover, it is obvious that 2 0. H. Hence we have defined p by
the following diagram:

Autnu (P,u) G(A)(M) cl"+ X(G, l) ,0

0

AUtA Mu G(A)(M) (M) ,0.

The map is induced by n 0. This follows since, in the diagram below, the
top row is exact, 0 H 2 and n 2 0. One

H deg

1 AUtAu (P,,) AUtAu Mu (Z/I G I)* 1

G(A)(M)

clm+ (G, l)

easily checks that 0[r] rc(M/rM>.
Let [] K(EndA M) be represented by GL(n, f) Aut^ M". Then,

Extm+ (1, ): Ext, + (Z, M")) Ext + (Z, M"))

(Z/I G I)*") (Z/I G I)*")

is an automorphism, so lies in GL(n, Z/I G I); hence det * (Z/I G I)*. More-
over, it is clear that det (, 1) det , so

det: Kx(EndA M)-* (Z/I G I)*

given by det [] det , is well defined.



FINITE COMPLEXES AND INTEGRAL REPRESENTATIONS 453

This defines det, , p. Exactness at (M) is obvious.
(a) p / 0. If [r] (Z/I G I)* then p[r] pnO(r) where r" Mu Mu is

the automorphism given by multiplication by r, but prO(r) trO(r) O.
(b) ker p

_
im . Let x cl+ I(G, l), px 0 and let x ny, y G(A)(M).

Then px pny try 0. So there exists / AUtAu M. with O(h-)= y. Hence
there exists a chain map

h" P,. P,. with n,(h)=//deg/.

Suppose s/" M M, then (r deg/)

sl rs---’h-h M M,

so 2[hi (M/sM) (M/rsM) while

y O(h-)= (M/sM) (M/sM).

Since (M/rsM)= (M/rM + (M/sM), we have 2[hi y- (M/rM) and
therefore

x roy rc(M/rM> =/[r].

(c) / det 0. Let [] e KI(EndA M) be represented by

GL(n, f) AutA M".

The following diagram commutes

K(n) K(n,,)

o ut M "’ (Z/

and Ooi=O from

cl’+ (G, l)

the sequence (2). Now, det [] ffdet i[-!.
i[0] jh. Then det jh deg h det i[0], and

o det [] i(deg h) aO(h) fO(h) fOjh Oi[od 0

Let

since Oi O.
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(d) Ker
_
im det. Suppose if[r] 0; i.e., <M/rM) im 2. Then there

exists

/: P,. P,.
such that (m/rM) (m/shm) (m/sM)h Hm(). h is an automorphism
of m, and O(h) 2[/] (m/rm) O(r). From sequence (2), there exists [a] 6

Kl(f) such that i[a] h-1 r. But

det[]=deti[g]=deg(h-1 or)=degh-1 or=r

since deg h 1, because h H(/)and deg o/-/= 1. I

Recall from Section 2, there exists an exact sequence

0--* hm+ 1(6, l)-- clm+ 1(6, l)-- /(’o(A),
where is induced from the map

G)(A)(M) --,/o(A)
given by projectively resolving (X) G)(A)(M); i.e.,

(x) P] EQ]

where 0--- Q-- P---, X-- 0 is exact. Consider the map 0. From the above
description of and the fact that [r] r(M/rM), we see that Or] [P]

[Q] if 0--. Q P M/rM 0 is exact and P is projective. Let X a g
denote the norm elemen of A, and

SW^" (Z/I G I)*---, Ko(A)

the homomorphism which maps r (Z/I G I)* to the class of the projective
ideal (r, Z) generated by r and E in A.

PROPOSITION 3. t7 1)m + SWA.

Proof Since (Z/IGI)* is generated by the primes not dividing GI, it is
enough to show these two maps are the same for all primes qXIGI. Since
0 M Pm " Po Z 0 is exact and Aq is a maximal order,

0-- Arq (16m)-- -- (fio) -- 0

splits completely and so Ar @ (Pm- 1) ’’" - (lm) ’’" Dividing out the
ideal generated by q, we have

M/qM Pm-1/qPm -1 -- Pm/qPmThis gives

(M/qM) (- 1)m+l (Z/qZ) + <Pm/qPm> <Pm- 1/qPm 1> +""
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in G(A). Therefore,

t(M/qM) (-1)’+ lt(Z/qZ) + t(PqP,)- t(P,-1/qP,-l) +’".

But t(P/qPj) 0 since

0--, P ---, Pj --o P/qP -, 0

is exact. It is well known that one obtains the class of (r, E) by projectively
resolving Z/rZ;hence the result. |

Let detM denote image det" KI(EndA M)---, (Z/[ G I)* and let SW(A) denote
the kernel SWA" (Z/I G I)*--’/(o(A). Since det 0 we see detM

_
SW(A)

and we see easily from the last theorem that we have the following exact

0 0 0

0 SW(A)/detz hm+ I(G, 1) ker ,0

(,) 0 (Z/IGI)*/detM clm+ I(G, 1) ,(M) ,0

0 Im SWA Ko(A) ,/(o(A)/Im SWA ,0

where is the obvious induced map. An easy chase of the definitions shows is
given as follows. Let [M-I I-N] ,0(M). Then by Roiters lemma, since M V N,
there exists an embedding tk’N M with annz (coker t#) relatively prime to
IGl. If

0 Q---, P--, coker tk-- 0
is exact and P is projective then I([M] INI) r([e-I [Q]).

Let Fu be the subgroup of ,(M) given by

{[M-I [N] M V N, M 3 F N F, F free}.
This is easily seen to be a subgroup. We record for use in the next section the
following proposition.

PROPOSITION 4. ker I Ft.

Proof. Suppose/([M] i-N]) 0. Then, if

0--o N--- M--- X---0 and 0--- Q---, P--- x--,0

are exact, where (annz X, u) 1 and P is projective we must have

[P] l-Q] Im SWA.
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It follows that for some r (Z/l G I)* there exists an exact sequence
O---}Q’--}P’M/rMO with P’ projective such that [P]- [Q]
[P’] [Q’]. Hence there exists a projective module S such that

PQ’S_P’QS.

On the other hand, since M M----} M/rM is also exact and M is a lattice we
have M 0) Q’ M 0) P’ and M Q

_
N ) P, (Roggenkamp [14, Chapter

VIII). Hence

NPO)P’S - MQP’S’MPQ’S MPP’S.

Choosing a complement to P P’ S gives the result. |

V. We will use the exact sequences of the last section to make some
calculations of the groups hm+l(G, l) and clm+(G, l). We will assume
throughout this section that there exists a stably free resolution of Z of length
m and Euler characteristic I.

THEOREM 1. Suppose there exists a periodic (stably free) resolution of Z of
length m and (necessarily) Euler characteristic 0, then

clm/ (G, 0) (Z/I G I)*/(__+ 1) and hm+ (G, O) SW(A)/( +_ 1).

Proof. Since M Z it is obvious that (M)= 0 and EndA (M) Z which
gives the results. I

We can say somewhat more in the case of a cyclic group. Swan has shown
that the ideal (r, E) is free if and only if there exists a unit u A/(E) such that
eu [r]. Hence the following well-known result is useful [17].

LEMMA 1. If G Z/n, then e: (A/(E))*---}, (Z/I G I)* is onto.

COROLLARY. If G Z/n, then heVen(G, 0) (Z/I G I)*/( + 1).

Note. This agrees with the classification of m dimensional lens spaces.

COROLLARY. Let G Q8. Then h4s+ (G, O) (0).

Proof It is known in this case (Martinet [10]) that (3, E) is the non-zero
element of/(’o(Q8) Z/2.

THEOREM 2. Suppose there exists a periodic (stably free) resolution of length
m, and (A/(:E))* (Z/I G I)* is onto, then

clm(G, 1) ,(A/(E)) and hm(G, 1) (0).
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Proof. We may assume (by dualizing) that Fm A. Hence there exists a
complex of length m-1 of Euler characteristic 1 and M A/(E). By
hypothesi,s, det" Kl(EndA M) (Z! G )* is onto, and hence

clm(G, 1) / (M), hm(G, 1) ker I.

By Proposition 4 of Section IV, ker
_
FM. But if [M-I [M1-1 Fu then

MAMIA
and, since M A/(E) and M V M1, E M1 (0), we have

M A/(E) M1 A/(E);

and therefore, [M] [M13 [M] I-M] 0 in (M).

COROLLARY (Dyer-Sieradski [7]). IfG Z/n, then hdd(G, l) (0).

Proof. This is immediate from Lemma 1 and the above result.
As our last example we consider the case where there exists a truncated

projective resolution of Z of length m and Euler characteristic l- 1, (tim(G,
1-1) 0).

PROPOSITION 1. tim(G, l- 1) tp if and only if there exists P, tim(G, l) with
M Hm(P,) M Afor some M.

Note. The proposition is also true if we use Fro(G, l) instead of tim(G, l).

Proof. If P, m(G, 1), let Pj P, j < m, Pm P-m 1A and t?m (COm,
0), then P, s tim(G, l) and Hm(P,) Hm(P,) ( A. Conversely if P, exists, then

k 6m
0 M(A Pm B 0

is exact. Consider

(,) 0--- A Pm Pm/A 0 where j k i.

Since 0---, M Pm/A Bm 0 is exact, Pm/A is Z torsion free and therefore
(,) splits, since A is weakly injective. Hence Pm/A is projective (stably free if Pm
is) and

P," M --. Pm/A -- Pro-1 -- -- Z--Ohas P, e tim(G, l- 1).

LEMMA 2. Suppose Hm(P,) M A. Then
det

K(End (Hm P,)) (Z/I G I)*

is onto.



458 JAMES A. SCHAFER

Proof.

then, since

If

( ) AUtA (M A)

Exts+ (Z, M) Extm+ (Z, A) Extm+ (Z, M ) A)

Ext+ (Z, M) Ext+(Z, A) Ext+ (Z, M A)

commutes and Ext+1 (Z, A) (0), we have

det( fl) =deter...
Let [r] (Z/IGI)*, (r, IGI) 1. Choose a, b e Z such that ar + s lGI 1,
then

( r -ba) ( r -ba)=detr=[r]. .
GI AutA (M A) and det

GI

THEOREM 3. (i) If fl’(G, 1) b, then cl"+ I(G, l) - (M).
(ii) If F’(G, 1) 4: b, then h"+ I(G, l) (0).

Proof. (i) By Proposition 1, there exists

P. e fl’(G, l) with H,(P.) M A.

From Lemma 2, det is onto and hence cl’+ I(G, l) - l(ffl A).

(ii) We may assume M =/ A. If [M] [M1] e Fu then

MA M1 A.
Since AIM we may conclude [M]- [M1] [A]- [A] 0. Hence Fu 0
and so ker I (0). This gives (ii).

In all the examples computed so far, it turns out that ker l (0). So we end
this paper with the following question" Is h"+ I(G,/) always a subquotient of
(Z/[ G I)* or more precisely is ker always equal to zero ?
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