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I. If X and Y are finite CW complexes with isomorphic fundamental
groups, one would like to know when X and Y are homotopically equivalent.
One obvious necessary condition is that X and Y have the same Euler
characteristic. This was shown to be sufficient for 2-complexes with cyclic
fundamental groups of prime order by Cockcroft and Swan [6], and for
arbitrary cyclic groups by Dyer and Sieradski [7]. On the other hand, Metzler
[11] produced examples of finite 2 complexes with isomorphic finite abelian
fundamental groups and the same Euler characteristic which were not of the
same homotopy type. The major link of the geometry of the problem to
algebra and a method of attack is given by a theorem of MacLane and
Whitehead [19] and Wall [18] who show that two finite n dimensional
complexes X and Y are the same homotopy type if and only if there exists an
isomorphism

6: nl(X, *)_’ 7rI(Yv, *)

and the chain complex of the universal cover of X is chain homotopy
equivalent to the chain complex of the universal cover of Y as m(Y,
*)-complexes.

This theorem demonstrates the importance of the study of the chain
homotopy types of free ZG-complexes. This was done by W. Browning in his
thesis and a series of papers [2], [31, [4], [5] for G a finite group. For certain
groups he classifies the chain homotopy types of a fixed Euler characteristic by
means of a certain finite abelian group. In Section II, we review briefly
Browning’s work and then in the following sections develop some exact
sequences relating Browning’s groups to more familiar objects of integral
representation theory. We conclude with some calculations of these groups
based on these sequences.

II. For the material in this section the reader is directed to Browning’s
thesis and papers [2], [3], [4], [5] for details.

G will always denote a finite group and A the integral group ring of G. Bis
an arbitrary A-lattice (i.e., finitely generated-torsion free as an abelian group).
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If

Bm %o

P*:Pm Pm—l >t 'Po B 'O

is a truncated finitely generated A-projective (A-stably free) resolution of B, i.e.,
exact except at P, the Euler characteristic of P, x(P,), will be the integer

rkoa P, —rka P, _y + -+ + (=1)"rky, P,, where rk, P; = %
Let p™(B, ) (resp. F™(B, 1)) denote the category of all truncated finitely
generated A-projective (resp. A-stably free) resolutions of B of length m and
Euler characteristic I. If P,, Q, € "B, l), a map [h]: P, — Q, is a chain
homotopy equivalence class of A-chain maps from the complex P,,— ---— P,
to the complex Q,,— * - - — Q, which induce the identity on B.

Let u be a finite set of primes of Z containing all those dividing the order
|G| of G. Denote by B(B, I) (resp. F}(B, 1)) the category whose objects are the
objects of f™(B, l) (resp. F™(B, I)) localized at A, = Z,G and whose maps are
A,-chain homotopy classes of A,-chain maps inducing the identity on B,.
Notice that this includes maps which are not localizations. Let G§(A) be the
Grothendieck group of finite A-modules whose Z-annihilators are relatively
prime to u, ie., those finite A-modules X such that X, =0, and relative to
short exact sequences. If

[h]: Pyu— Qy
is a A,-homotopy equivalence class, then
H,(h) = h: H,(P,),— H,(Q,),

is an isomorphism and is independent of the representative h. Choose s € Z
with (s, u) = 1 and such that sh: H,(P,)— H,(Q,). Define

A[M] = <Hp(Q,)/shHp(P,)> — CHW(Q,)/sHA(Q,)) € G(A).
This is well defined and gives a homomorphism A from the groupoid
EqB}B, 1)) = {[h]: P,, — Q,.|his a A,-homotopy equivalence}

into G§(A). The image of A is equal to GH(H,(Q,)), the subgroup of Gy(A)
generated by all (X) with X, =0 and X a quotient of H,(Q,). If P, Q, €
B™(B, 1), then one can show that G4(H,(P,)) = G5(H,(Q,)).) Fix an arbitrary
P, € f™(B, ) and let

Aut, P, = {[H]: P,,— P,,|h a A,-homotopy equivalence}.
Finally define
cli*Y(G, B, ) = Gi(H,(P,))/MAut, P,).
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If E™(G, B, l) (resp. EF™(G, B, 1)) denotes the isomorphism classes of f™(B, )
(resp. F™(B, 1)), then Browning proves the following.
(1) Given any P, € (B, I), there exists a well-defined epimorphism
< s P*>u: Em(G, B’ I)_’ CI:H-I(G, B’ l)

(2) cI™*Y(G, B, ) is a finite abelian group.
(3) If H,(P,) is an Eichler module for some P, € f™(B, I) and hence for all
P, € B"(B, I), then ¢, P,>,: E™(G, B, )— cl*!(G, B, |) is a bijection.

Note. A-lattice M is an Eichler module if the semi-simple rational algebra
Endys (QM) has no simple components of dimension 4 over its center which
ramifies at some archimedean prime of the center [12].

(4 The map ¢t:G4A)— KyA), given by (X)=[P]-[Q] if
0— Q— P— X — 0is exact and P is A-projective (hence Q also since X, = 0),
factors over cI™* (G, B, I). If h"* (G, B, I) denotes the kernel of ¢,: cI™* (G, B,
l)— Ko(A) and if P, € P™(B, I) with H,(P,) Eichler, then

¢ Py EP™(G, B, )— K} '(G, B, )
is a bijection.
(5) If (G) denotes the set of primes dividing the order of G, then for each u
there exists an isomorphism
K,: cl7* (G, B, ) cli) '(G, B, ) = cI"* (G, B, ))
making the following diagram commute.

E™G, B, )

< Padu PG

cm* (G, B, ) - cI"* (G, B, ).

The aim of the remainder of the paper will be to develop some exact
sequences relating cI™* (G, I) = clig; '(G, Z, ) and h"* (G, ) = hig} (G, Z, )
to more known groups and to use these sequences to make some calculations.

III. In this section we state and prove a theorem which gives a method of
constructing chain maps of one truncated projective resolution to another.
Throughout the section R will denote a subring of the rational numbers Q, P,
and Q, will denote partial projective resolutions of R of length m. We will
write M, N for H,(P,), H,(Q,) respectively. As usual, G is always a finite
group.
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We have the following:

(i) There exists a canonical isomorphism
ke,: Extz3' (R, M) x H°(G, R) ~ R/|G|R
such that kp [P,] =[1] € R/|G|R.

Given any f € Hgg(M, N), define the degree of f by

deg f = ko, fy k¢, [1] = ko, f,[P,] € R/|G|R.
Clearly deg (f - g) = deg f - deg g whenever f o g is defined.

(i) If Homgg (P,, Q,) denotes the chain homotopy classes of RG-chain
maps from P, to Q, which induce the identity on R (x H(P,)), then there
exists a well-defined groupoid homomorphism

H: HomRG (P*’ Q*)_') HomRG (Hm(P*)’ Hm(Q*))
given by H([h]) = H,,(h).
THEOREM. The sequence

Homgg (P,, Q,)
H deg

Homgg (H,(P,), H.(Q,))

is exact and is natural with respect to inclusions R = S = Q.

1

R/|G|R

Proof. The last statement is clear since R < S is a flat extension.
(a) dego- H =[1].If h: P, — Q, is a chain map inducing id on R, then (see
[9], for example) if f = H,,(h),

fi[P,]=[Q,] € Ext"*! (R, N)

and hence deg (f) = ko, [Q,] = [1].
(b) Supposef: M— N and deg (f) =[1] € R/|G|R;ie,

fi[P,]=[Q,] € Ext""!(R, N).
Since P, is a partial projective resolution of R, we have the exact sequence

ix A

HomRG (Pm9 N) HomRG (Ma N)

Extid! (R, N) ——— 0

where A(h) = h,[P,]. Let §: P,— Q, be any lift of the identity and let g =
H,(G): M— N. Then A(g) =[Q,], and, since A(f)=f,[P,]=[Q,], there
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exists u: P,,— N such that u o i =f—g. Define §: P,— Q, by g, =g, for
k<mandg, =g, + i cuwherei': N— Q,,. Then § is a chain map since
gm—lam = gm—lam = a;ngm = a:n(gm + ilu) = a;ngm
and
Gmel=@mtioui=g,citicuci=ig+i(f—g)=if

Therefore H,(g) = f.

(c) We are left with showing that if h,, b} : P, — Q, are chain maps (lifting
id) and H,(h) = H,(h') then h and k' are chain homotopic as maps P, — Q,.

Now any two lifts of id: R — R are chain homotopic in the following sense.
There exist maps s;: P;— Q;,;, 0 <j<m, where we set Q,,; =N and
0,1 = i, such that

(i) 0yso=ho — ho.

(ii) 6;+1SI+SJ_laJ=hl—h;,ISjSm,

(i) H,(h)— H, (W)=s, i

In our case since H,(h) = H,(h') we have s,, o i = 0. So if

K, = coker {i: M— P,},
there exists a map §,,: K,,— N such that §,, - 9,, = s,,: P,,— N.(Note:
i om
M > P, K,

is exact.) Now K,, € P,,_,, and I claim there exists a map p: P,,_; — N such
that p|K, =3,. If K;=im 0;: P;— P;_,, then 0»K,—P,_,—K,_;—0
is exact and it is sufficient to prove that

Extrg (Kp-1, N) = (0).

Since each P; is projective and K, = R, we see that
Extig (K- 1, N) = Ext}g (R, N) =~ A™(G, N).

Since

0 - N Qm Qm—l -
> Qo R >0

is exact with each Q; projective, we have
A™(G, Ny~ H 4G, R) ~ NR/IR = (0)

and the claim is proved.
To construct the homotopy from h to ', we let 5;=5;, 0 <j<m — 1, and
let

Sm—1 = Sm-1 + i/p: Pm—l_'Qm'
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Then, for j < m — 2, clearly
0j4+15;+ 5;-10; = h; — hj,
while forj=m — 1,
OmSm—1 F Sm-20m—1 = Op(Sp—1 +7Pp) + Sp—20pm-1 =hppy — hpy_y
and for j = m,
Spm—10m = Spu—1 + ¥P)00 = Sy 10 + 'Sy =hpy — H,.. 1

Before we state some corollaries to this result we give an obvious but useful
lemma.

LEMMA. Let
P:0->M—->P,—» —>P,—>R—-0

be a truncated projective resolution of R and let a € RG be a central element. If
L,: M — M is left multiplication by a, then

(Lp),: Extn! (R, M)— Ext2¢! (R, M)
is multiplication by ¢(a) € R.

Proof. Clearly,

0 » M . P, P, R > 0
jLa JL,, lLa lL.,
» M P, . P, R » 0

commutes so therefore

~x

ke,: Extnd! (R, M) H° (G, M)~ R/|G|R

(La)x l l(La)*

Ext2d Y(R, M) H° (G, M)~ R/|G|R

commutes, and (L,), obviously induces multiplication by eéa on R/| G| R.

COROLLARY 1. If'P, is a truncated projective resolution of R, then

H deg

Autgg (Py) Autgg (H,(P,)) — (R/|G|R)*
is an exact sequence of groups, where (R/| G| R)* denotes the units of R/| G| R.

1

Proof. This is immediate from the theorem and the fact that deg is onto by
the lemma.
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COROLLARY 2. LetZ= R<= S < Q;P,, Q, truncated projective resolutions
of R. Suppose the natural map t: R/|G|R— S/|G|S is mono. Then, given h €
Homg; (S ®g Py, S®g Q,), there exists g € Homgg (P,, Q,) with I® g =h
(chain homotopy equivalent) if and only if there exists

g € Hompgg (H,(P,), H,(Q,))

such that |® g = H,(h) e Homgs (S ®p H,(P,), S ®x H,(Q,)). Moreover, if g
exists it is unique (up to chain homotopy).

Proof. By the naturality of the exact sequence of the theorem we have
H

deg
Homgg(P,, Q,) Homgs(H,P,, H,Q,) R/|GIR

ids®Rr l id®Rr J T
H deg

Homgg (S ®x Py, Homgs (S @ H,(P,), — §/|G|S
S ®R Q*) S ®R Hm(Q*))

Since H,,P, and H,,Q, are R lattices, the middle map is a monomorphism
and the last statement is immediate. The first statement is an immediate
consequence of the commutativity of the diagram, the fact that = is mono, and
the fact that im H = (deg) ™! [1].

As a final application of the theorem we prove a result first deduced by
Williams [20].

Let u be a finite set of primes containing all primes dividing the order of
|Gl.Let R=Z, = (,cu Z.

1

1

CoROLLARY 3. If P,, Q, are truncated projective ZG-resolutions of Z with
the same Euler characteristic, then there exists an RG-homotopy equivalence
h:P,,— Q,,.

Proof. Since P, and Q, have the same Euler characteristic and since all
projective RG-modules are free, we have, by Schanuel’s lemma,that

H,(P,),® (RGy = H,Q,),® (RG)y for some s e Z.

Since RG is semi-local, this implies H,(P,), ~ H,(Q,),. Let f: M,— N, be any
isomorphism and let degf=[r]e(Z/|G|Z)* =(R/|G|R)*. Then r~'f:
H,P,),— H,Q,), is an RG-isomorphism and deg (r~'f) = [1]. Therefore, by
the theorem there exists an RG-chain map h: P,,— Q,, such that H,(h) = f/r,
an isomorphism. The following, I believe well-known, proposition completes
the proof.

Let R be a ring with 1; (4,, d), (B,, d) chain complexes over R and f:
A,— B, a chain map. The mapping cone of f is defined by C(f), = B,
C(f)q = Aq—-l G-)Bq’q 2 1; al = (fO’ /1)’

a.,H(“’f" 0 ): C(f)gs1— C(f)y
q q+1
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ProrosITION.  Consider the following statements.

(i) C(f) has a contracting homotopy.
(ii) fis a homotopy equivalence.
(iii) f,: H,(A)— H(B) is an isomorphism.

Then (i) = (ii) = (iii) and if A and B are complexes of projective modules, then

(i) = (i).

Proof. (i) =(ii). let5,: C(f),— C(f),+1 be the contracting homotopy and

write
—S,_
§0=(g°>, §q=< a-1 g“), q=1

where g,: B,— A, 0;: A;— A;j.4, t;: Bj— Bj,(, w;: A;— Bj,,. Then an easy
calculation shows that g: B— A is a chain map and s: gf ~ id, ¢: fg ~ id.

(i) = (iii) This is immediate from the standard exact sequence relating
H,(A), H,(B) and H,(C(f).

(iii) = (i) If A and B are complexes of projectives, then C(f) is a complex of
projectives and if f, : H,(A)— H(B) is an isomorphism, then C(f) is exact and
so has a contracting homotopy.

IV. In this section we develop the exact sequences relating Browning’s
groups, cl™*}(G,I) and h"*}G,]) to more familiar objects of integral
representation theory.

Let M be a A = ZG lattice and u a finite set of prime ideals in Z containing
all primes dividing the order of G. Let Q = End (M). According to Bass [1],
there exists an exact localization sequence

0 A
)] K(Q)— K,(Q,)— Go(Q) — Ko(Q)— Ko(Q,) .

where G{(Q) is the Grothendieck group based on finite Q-modules whose
Z-annihilator is relatively prime to u;

o[a] = <Q"/saQ"> — (Q"/sQ">

where a: Qf— Q) is an isomorphism and sa: Q"— Q" (s, u) = 1. Moreover,
A(X) = [P] — [Q] where 0—» Q— P— X — 0 is exact and P is Q-projective.
Let G4(AXM) = Grothendieck group generated by finite A-modules whose
Z-annihilator is relatively prime to u and which are quotients of M. (See
Section II, where this is denoted Gj(M)). M is a A-Q-bimodule where Q acts
on the right of M and if o.#, ,.# denotes the category of left Q, A modules
respectively, then M ®q: o — A4 . Since anng (M ®, U) 2 ann, U we see

M ®q: G5(Q)— Go(AYM).
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Note. (1) M ®q preserves exact sequences since if 04— B—C—0 is
exact and a € Z is a common annihilator, then localizing at a does not change
the sequence and M, is A, projective since A, is a maximal order. (2) If U is a
simple Q-module, then U is a quotient of Q, hence M ®, U is a quotient of M.
Since

GLn(Qu) >~ AUtAu (M”)’
we can define a map 6: K,(Q,)— G§(A)(M) by
O[a] = (M"/saM™y — {(M"/sM™), (s, u) = 1, sa: M"— M".

If
0—-Q"— Q" Q"/aQ"— 0
is exact then
1®a
M®q Q" M®q, Q" M ®q Q" /aQ)"
M — M" — M"/aM"

commutes, so we have the proposition.

ProPOSITION 1. The diagram

K,(€,) G

9 M®q

G5(AXM)

commutes.
PROPOSITION 2. M ®q: G§(Q) — G4(A)NM) is an isomorphism.

Proof. Let u’ be the complementary set of primes to u, then

4Q) = @ GYQ,) and GHAYM) = @ G§A,)M),
peu peuw

where QP, ﬂp are the completions of Q, A at the prime p and M = f\p ®4\ M.
If T' is a maximal order containing A, then ﬂp =r , for all pew since u
contains all primes dividing |G|. So we may assume A is a maximal order. If
0G ~ ®A;, where the A; are simple algebras corresponding to the
idempotents ¢;, then A = @A; where A; = Ae; is a maximal order in 4; and
M= @M, M,=(Ae)M. Moreover, if f: M;— M; and i#j, then, since
e;M; = M; e;M; =0, we have f=0so0

Q = End, (M) = ® End,, (M) = ® Q..
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So we may assume A is a maximal order in a simple algebra A.

Consider ann, M < A. This is a 2-sided ideal in A so Q(ann, M) = (0) or 4
since A is simple. If Q(ann, M) = (0) then M is faithful since ann, (QM) =
Q(ann, M) and M is a lattice. Since A is a maximal order M is projective and
hence a progenerator. Therefore by the Morita equivalence

M ®q: Go(€) = Go(A) = Go(AXM)

is an isomorphism.

If Q(ann, M) = A = QA then Q(A/ann, M) = (0) and there exists n € Z
such that nl, € ann, M; ie., nM =0. But M is a lattice so M = (0) and
therefore Q = End, (M) = (0). Hence

M Qq: Go(A)— GH(AYM)
is an isomorphism since both groups are zero. |}

Let E, be the category consisting of all A-modules N which are direct
summands of M for some s, and let D,, be the Grothendieck group of this
category based on split exact sequences. It is well known that M ®,-, Hom,
(M, —) provide a pair of inverse isomorphisms K(Q)— D, (Reiner [13]).
Define o: G§(A)M)— D,, as follows: If U is simple, 6s[U] = [M] — [N] where
0— N— M — U— 0is exact. It is then clear that

A
o(€Y) Ko(€)
~ | M®q = IM®q
o(A)(M) Dy

commutes.
Combining these propositions and the exact localization sequence of Bass
we obtain the following sequence (compare to Roggenkamp [14; p. 165]):

6 ¢
2 K(Q)— K (Q,)— G(A)(M)— g(M)— 0
where

g(M) =ker i: Dyy— Dy, = @ Dy,

peu

Note. G(M)={{N,> —<{N,>|N, € Ey, N;v N,}. N,V N, means N, and
N, are in the same genus. By a result of Roiter [15] and Jacobinski [8], there
exists NV M such that M@ N, ~N® N,; ie, [N,] —[N,] =[M]—[N].
Therefore §(M) is the “reduced genus group of M” consisting of
{{M] — [N]| M v N} and addition given by

(M] — [N,]) + (IM] — [N,]) = [M] — [N;] where Ny@ N, M@ N,.
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THEOREM. Let P, be a truncated projective resolution of Z of length m and
Euler characteristic | and M = H,(P,). Then there exists an exact sequence

det [

(Z/| G —— "G, ) —— §(M) 0.

K,(End, M)

Proof. Recall, we have an exact sequence

A n
Aut,, (P,,) — G4AYM)— cI™*Y(G, h— 0.

Since u is finite, Q, is semi-primary and hence
AutA“ M“ = GL(I, Q“)—> KI(Q“)

is onto. Moreover, it is obvious that A = 6 - H. Hence we have defined p by
the following diagram:

Aut,, (Py,) : o(AXM) - ™G, ) ——0
l" | .
0 4
Aut,, M, o(A)M) g(M) — 0.

The map § is induced by 7 o 6. This follows since, in the diagram below, the
toprow isexact,§ - H=Aand 7 - A = 0. One

H deg

Aut,, (P,,) Aut, M,

< F
G'a(T(M) ,

Clm+ I(G, l)

easily checks that 0[r] = nd{M/rM>.
Let [«] € K,(End, M) be represented by o € GL(n, Q) = Aut, M". Then,

Ext™*1(1, o): Ext?*Y(Z, M®) — Ext?*! (Z, M™)

1

/161y —— 1

~ ~

Z/1G 1y /1G]y

is an automorphism, so lies in GL(n, Z/| G|); hence det a* € (Z/| G|)*. More-
over, it is clear that det (o, @ 1) = det a, so

det: K,(End, M)—(Z/|G|)*

given by det [a] = det a, is well defined.
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This defines det, 0, p. Exactness at §(M) is obvious.

(@ p-0=0.If [r] € (Z/|G|)* then pf[r] = pnb(r) where r: M,— M, is
the automorphism given by multiplication by r, but pnf(r) = ¢6(r) = 0.

(b) ker p <im 6. Let x € cI"* (G, I), px = 0 and let x = 7y, y € G4A)YM).
Then px = pny = gy = 0. So there exists h € Aut,, M, with 6(h) = y. Hence
there exists a chain map

h:P,,—P,, with H,(h) = h/deg h.
Suppose sh: M — M, then (r = deg h)
rsh
r

sh=—: M- M,

so A[h] = (M/shM) — {M/rsM) while
V= 008) = (M/shM — (M/sM>.

Since {(M/rsM) = {M/rM) + {(M/sM), we have A[h] =y — (M/rM) and
therefore

x =ny = n{M/rM)> = [r].
(c) 6o det=0.Let[a] € K,(End, M) be represented by
o € GL(n, Q) = Aut, M".

The following diagram commutes

K,(Q) K,(€)

det
i

deg
o\ Auty, M,
0

(Z/1G1)

‘6(/[)(M)
clm + I(G, l)

and 0oi=0 from the sequence (2). Now, 6 o det [o] = @ det i[a]. Let
i[a] = jh. Then det jh = deg h = det o i[a], and

g o det [o] = O(deg h) = ub(h) = ab(h) = abjh = @dil«] = 0

since 0i = 0.
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(d) Ker 6 <im det. Suppose 0[r] =0; ie, (M/rM)> €im A. Then there
exists
h: P.—P,,

such that (M/rM> = (M/shM) — {(M/sM»h = H,(h). his an automorphism
of M, and 0(h) = A[h] = {M/rM) = 6(r). From sequence (2), there exists [«] €
K ,(Q) such that i[«] = h~* o r. But

det [0] =deti[a] =deg(h ™ 'or)y=degh tor=r
since deg h = 1, because h = H(h)and deg - H=1. |

Recall from Section 2, there exists an exact sequence

t
0_> hm+1(Ga l)—') Clm+1(G, I)_> KO(A)’

where t is induced from the map

§(AM)— Ro(A)
given by projectively resolving {X) € G§(A)M); ie.,
KX) =[P]-[Q]

where 0— Q— P— X — 0 is exact. Consider the map ¢ o §. From the above
description of ¢ and the fact that 0[] = n{ M/rM), we see that t o 0[r] = [P]
—[Q]if0 > Q - P— M/rM -0 is exact and P is projective. Let ==, . ¢
denote the norm element of A, and

SWy: (Z/1G|)*— Ko(A)

the homomorphism which maps r € (Z/| G|)* to the class of the projective
ideal (r, ) generated by r and X in A.
PROPOSITION 3. t o § =(—1)""1SW,.

Proof. Since (Z/|G|)* is generated by the primes not dividing |G|, it is
enough to show these two maps are the same for all primes g4 |G|. Since
0—>M—P,— - -— Py—Z— 0isexact and A, is a maximal order,

~

0— Mq—->(Pm)q—> s (Po),— Zq—> 0

splits completely and so M, ® (P,,_,),® - ~(P,),® - - . Dividing out the
ideal generated by g, we have

M/gM®P,_,/qP,,_, ® "+ ~P,/qP, ® " .
This gives
(MM = (= 1" 'CZ/qZ) + (Pp/qPp> — {Pp—1/qPp-1> + -
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in G{(A). Therefore,
tCM/qMy = (= )" CZ/qL) + t<P/qPpy — t{Pp_1/qPp-1> + .
But t{P;/qP;> = 0 since

q
is exact. It is well known that one obtains the class of (r, X) by projectively
resolving Z/rZ; hence the result. ||

Let det,, denote image det: K,(End, M)— (Z/|G|)* and let SW(A) denote
the kernel SW,: (Z/|G|)*— Ky(A). Since 0 o det = 0 we see det, = SW(A)
and we see easily from the last theorem that we have the following exact

0 0 0
| [ J , J
0 —— SW(A)/det,, —— h™*Y(G,)) ker 1 —0
| [ J P l
(* 0 (Z/1G|)*/detyy —— cI""}(G, ) ——— G(M) —0
SWa t 4
0 —— Im SW, — Ky(A) Ry(A)/Im SW, —— 0

where t is the obvious induced map. An easy chase of the definitions shows ¢ is
given as follows. Let [M] — [N] € g(M). Then by Roiters lemma, since M V N,
there exists an embedding ¢: N — M with anng (coker ¢) relatively prime to
|G|. If

0— Q— P—coker ¢—0

is exact and P is projective then #([M] — [N]) = =n([P] — [Q]).
Let F,, be the subgroup of (M) given by

{IM]—-[N1IMVN, M®F ~N@F, F free}.

This is easily seen to be a subgroup. We record for use in the next section the
following proposition.

PRrOPOSITION 4. ker T < F),.
Proof. Suppose t([M] — [N]) = 0. Then, if
0O->N->M—->X—-0 and 0-Q—>P—>X—0
are exact, where (anng X, u) = 1 and P is projective we must have

[P] — [Q] € Im SW,.
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It follows that for some r e (Z/|G|)* there exists an exact sequence
0-Q ->P ->M/rM—->0 with P projective such that [P]-[Q]=
[P'] — [Q]. Hence there exists a projective module S such that

PRODS~PDQDS.

On the other hand, since M — M — M/rM is also exact and M is a lattice we
have MPQ ~M@®P and M® Q ~ N ® P, (Roggenkamp [14, Chapter
VII]). Hence

NOPOAPOASMPOQOP ®S~MPPRQPDS~~MPPORP®S.
Choosing a complement to P @ P’ @ S gives the result. ||

V. We will use the exact sequences of the last section to make some
calculations of the groups A™*}(G,l) and cI™*!(G, . We will assume
throughout this section that there exists a stably free resolution of Z of length
m and Euler characteristic .

THEOREM 1. Suppose there exists a periodic (stably free) resolution of Z of
length m and (necessarily) Euler characteristic O, then

™G, 0)~ (Z/|G)*/(£1) and h™*Y(G, 0) % SW(A)/(L ).

Proof. Since M = Z it is obvious that (M) = 0 and End, (M) ~ Z which
gives the results. [J

We can say somewhat more in the case of a cyclic group. Swan has shown
that the ideal (r, ) is free if and only if there exists a unit u € A/(Z) such that
eu = [r]. Hence the following well-known result is useful [17].

LEMMA 1. If G = Z/n, then e: (A/(Z)*—(Z/| G|)* is onto.
COROLLARY. If G = Z/n, then h*"**(G, 0) ~ (Z/| G |)*/(x1).

Note. This agrees with the classification of m dimensional lens spaces.
COROLLARY. Let G = Qg. Then h***1(G, 0) = (0).

Proof. It is known in this case (Martinet [10]) that (3, ¥) is the non-zero
element of Ky(Qg) = Z/2.

THEOREM 2. Suppose there exists a periodic (stably free) resolution of length
m, and (A/(X))* — (Z/| G| )* is onto, then

™G, 1) ~ JA/Z) and h™G, 1) = (0).
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Proof. We may assume (by dualizing) that F,, = A. Hence there exists a
complex of length m —1 of Euler characteristic 1 and M =~ A/(Z). By
hypothesis, det: K,(End, M)— (Z/| G|)* is onto, and hence

"G, )~ g ~ (M), WG, 1)~ ker .
By Proposition 4 of Section IV, ker T = F,,. Butif [M] — [M,] € F), then
M®A~XM, @A
and, since M = A/(Z)and MV M, Z - M, = (0), we have
M@ A/Z)~ M, ® A/(D);
and therefore, [M] — [M;] = [M] — [M] = 0 in g(M).
COROLLARY (Dyer-Sieradski [7]). If G = Z/n, then h**%G, ) = (0).

Proof. This is immediate from Lemma 1 and the above result.

As our last example we consider the case where there exists a truncated
projective resolution of Z of length m and Euler characteristic | — 1, (™(G,
I—1)#0).

PROPOSITION 1. f™(G, | — 1) # ¢ if and only if there exists P, € f™(G, I) with
M =H,(P,)~ M ® A for some M.

Note. The proposition is also true if we use F™(G, I) instead of ™(G, I).

Proof. If P, e p™(G,1—1),let P;j=P; j<m, P, =P, ®A and d,, = (0,
0), then P, € f™(G, l) and H,(P,) = H,(P,) @ A. Conversely if P, exists, then

k Om

0 —— M®A . P, B, 0

is exact. Consider

j
(%) 0—-A->P,—P,/A—0 wherej=koi.

Since 0~ M — P,/A— B,,— 0 is exact, P,/A is Z torsion free and therefore
(*) splits, since A is weakly injective. Hence P,,/A is projective (stably free if P,,
is) and

P.M—-P /A>P, — >Z->0
has P, € (G, 1 — 1).
LeEMMA 2. Suppose H,(P,) = M @ A. Then

det

K,(End (H,P,))

Z/1G61)*

is onto.
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Proof. 1If

(: g) e Aut, M D A)

then, since
Ext™*! (Z, M) @ Ext™** (Z, A) ~ Ext"** (Z, M ® A)

o ﬂ‘ o B
() ()
Ext"*! (Z, M) ® Ext"*Y(Z, A)~ Ext"*YZ, M ® A)

commutes and Ext?*! (Z, A) = (0), we have

det ( p = det a,.
Y 0/

Let [r] € (Z/|G|)*, (r, |G|) = 1. Choose a, b € Z such that ar + s|G| =1,
then

r

<I;l _Z)eAutA(MEBA) and det(lGl _Z)=detr=[r]. ]

THEOREM 3. (i) If B™(G, | — 1) # &, then cI"* (G, I) ~ §(M).
Gi) IfF™G,1— 1)+ ¢, then h"* (G, I) = (0).
Proof. (i) By Proposition 1, there exists
P, € B"(G, ) with H,(P,) =M ®A.
From Lemma 2, det is onto and hence cI™* (G, ) ~ (M @ A).

(i) We may assume M = M @ A. If [M] — [M,] € F, then
M@A~M, @A

Since A|M we may conclude [M] — [M,] =[A] —[A] =0. Hence Fy, =0
and so ker 7 = (0). This gives (ii).

In all the examples computed so far, it turns out that ker 7 = (0). So we end
this paper with the following question: Is h™* (G, ) always a subquotient of
(Z/| G |)* or more precisely is ker 7 always equal to zero?
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