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LOCATION OF ZEROS
PART II: ORDERED FIELDS
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THOMAS CRAVEN AND GEORGE CSORDAS

I. Introduction

In this sequel to [6], we continue the investigation into the behavior of
multiplier sequences and n-sequences (of the first kind) begun in Part I.
The definitions and notation used in Part I for studying the real numbers
will be carried over to arbitrary fields in this part. In particular, a multiplier
sequence for a field F is an infinite sequence F (y0, Yl, y2, ...) of elements
of F with the property that if f(x) Eakxk is a polynomial which splits in
F, then F[f] Eykax also splits in F. An n-sequence is a finite sequence

r (v0, v, v
with the above property for polynomials of degree at most n. A multiplier
sequence F will be called an exponential sequence if Yk Cr, k O, 1,
2, for some elements c and r in the field. These sequences, together
with those such that y 0 for k 4: n, n + 1 (some fixed n), will be called
trivial multiplier sequences; they are precisely the multiplier sequences
which work for all fields [4]. If F {’0, yl, Y2, ...} and s is a positive
integer, the sequence {y, y+, Ys+2, ""} will be called a shift of F; it is
again a multiplier sequence [4, Proposition 2.2]. For further definitions and
notation see Part I [6]. We shall refer to results in Part I by using the form
Theorem 1.2.3 to mean Theorem 2.3 of Part I.

Recall that a field is said to be formally real if it can be ordered [2], [11].
In the next section, we explore the extent to which multiplier sequences
and n-sequences can be characterized over arbitrary formally real fields in
ways similar to that for the real numbers as first proved by P61ya and Schur
[4, Theorem 3.1]. This leads us to study certain special classes of formally
real fields.

In the third section, we take one of the main results of Part I for the
real numbers and try to extend it to arbitrary real closed fields. In Part I
we showed that a multiplier sequence F for the real numbers can be applied
to an arbitrary polynomial with real coefficients, giving a new polynomial
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with no more nonreal roots than the original polynomial. Thus, if the degree
is unchanged, multiplier sequences never decrease the number of real roots.
We also showed in Part I that this fails for n-sequences in general; therefore
Tarski’s principle is not applicable, since the hypothesis that F be a multiplier
sequence requires that it be applied to polynomials of all degrees and is
thus not an elementary statement. Section 3 establishes this result for all
multiplier sequences in certain real closed fields and for certain multiplier
sequences in arbitrary real closed fields.

In Section 4 we look at the converse problem of determining what can
be said about the field when its multiplier sequences satisfy this inequality
on the change in the number of roots. We are particularly interested in the
special case of this inequality for the sequence F {0, 1, 2, 3, ...} since
this is roughly equivalent to saying that the field satisfies Rolle’s theorem
for polynomials. The question of whether any field which satisfies Rolle’s
theorem is necessarily real closed was raised by Michael Slater in 1972 [14]
and a counterexample has just been given by M. J. Pelling [12]. Earlier, I.
Kaplansky posed the problem of characterizing the fields for which the
above sequence F is a multiplier sequence [8, p. 30, Exercise 4]. This
problem remains open.

In the final section, we consider the structure of the set of all multiplier
sequences for an arbitrary field F (not necessarily formally real). This is a
semigroup of linear operators on the space of polynomials over F which
leaves invariant the set of polynomials that split in F. We look at a few
properties of these semigroups, about which very little is known in general.

2. Multiplier sequences and n-sequences in formally real fields

In [4, Section 3] the problem of determining the multiplier sequences of
a formally real field is studied. Only two major results are given there. The
first states that if the field has any nontrivial multiplier sequence, then it
must be a pythagorean field (every sum of squares from the field is a square
in the field). The second result characterizes the multiplier sequences of a
real closed field and we state it here for future reference. This result has
also been obtained by Zervos [16] using entirely different methods.

THEOREM 2.1 [14, Theorem 3.7]. Let F be a real closed field and let
F {Vk---0 be a sequence of elements in F. The polynomial F[(x + 1)n]
splits in F and all of its roots have the same sign if and only if F is an n-
sequence for F. In particular, F is a multiplier sequence for F if and only
iffor every positive integer n, the polynomial F[(x + 1)n] splits in F and
all its roots have the same sign.

We shall generalize this theorem to a wider class of fields. We also give
a characterization of pythagorean fields and give a partial solution to an
open problem stated in [4].
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The condition that all of the roots of F[(x + 1)n] have the same sign
tends to unnecessarily complicate the proofs of the results to be presented
below. Further complications ensue when the field under consideration has
more than one ordering, in which case we must require that the roots all
have the same sign with respect to each fixed ordering. To overcome these
difficulties, we generalize Remark 1.2.3 and note that essentially nothing is
lost if we assume that all entries of the sequence F are either zero or totally
positive (positive in all orderings); in fact, we shall see that we may assume
that all the entries of F are squares. Then, by virtue of this assumption,
the coefficients of the polynomial F[(x + 1)n] are all nonnegative and thus
all its roots must be less than or equal to zero in each ordering.

PROPOSITION 2.2. Let F be any formally real field. Then F is a multiplier
sequence for F if and only if there exists a multiplier sequence A1, all of
whose entries are squares, and an exponential sequence A2 such that F
A1 A2, where the product is defined componentwise.

Proof. Theorem 3.4(b) of [4] states that the nonzero entries in F involve
at most two square classes of F. If F is a trivial multiplier sequence, the
proposition is clear. Otherwise, let y be the first nonzero entry in F. Then
[4, Theorem 3.4] implies that Yk+ 0 and that for any y : 0, either y y
or yj Yk+l is a square in F depending on whether j k or k / 1 modulo 2.
Now define A2 to be the exponential sequence {crn}=o, where r
)t-1 Yk+l-1 and c y-i if k is even and y-+l if k is odd. Then set A1
FA-1, where A-1 is the exponential sequence {c-lr-n}=0. A straightforward
computation now shows that F A1 A2 as desired. The converse is trivial,
so the proof is complete.

For any formally real field F, we shall let F* denote the intersection of
all real closures of F inside a fixed algebraic closure F of F. Let F be a
fixed real closure of F and consider the following three conditions that the
field F may satisfy, where F denotes a sequence of zeros and totally positive
elements of F:

(An) If I’[(X / 1)n] splits in F, then F is an n-sequence for F.
(Bn) If F[(x / 1)n] splits in F*, then F is an n-sequence for F.
(C,) If F[(x / 1)n] splits in F, then F is an n-sequence for F.

Theorem 2.1 shows that any real closed field satisfies (An), (Bn) and (Cn)
for all n. Since F C_ F* C_ F, we see that (Cn) implies (Bn) which in turn
implies (An). The main results of this section concern the conditions (Bn)
and (Cn). We know very little about (An). Indeed, for n > 2, it is not even
known whether (An) and (Bn) are equivalent, though this seems unlikely.
For n 2 we have the following:
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THEOREM 2.3.
are equivalent:

Let F be a formally real field. The following conditions

(a) F satisfies (A2).
(b) F satisfies (B2).
(c) F is pythagorean.
(d) There exists a 2-sequence {3/0, 3/, )’2} with 3/0 3/2 0 and 3/2

3’0 3’2 O.
(e) If a polynomial f of degree 3 over F splits, then its derivative f’

also splits (see [8, p. 30, Exercise 4]).

Proof. We have already noted that (b) implies (a). Assume F satisfies
(A2). Then F {1, 2, 3} is a 2-sequence for F since

F[(x + 1)2 (3x + 1)(x + 1),

and thus (a) implies (d). The implication (d) (c) is contained in [4,
Theorem 2.8]. Now assume that F is pythagorean and

F[(x + 1)2 3’2x2 + 2yx + y0

splits in F*. Since F is pythagorean, Proposition 7 of [7] implies that F is
the intersection of F* with the quadratic closure of F, and thus F[(x + 1)2]
splits in F. In particular, we see by computing the discriminant that /2
3/0 Y2 is a square in F. We must show that

F[(x + a)(x + b)] 3/2 X2 "- 3/1(a + b)x + 3/0 ab

splits in F for any choice of a, b F; that is,

3/2(a + b)2 43/0 3/2 ab

is a square in F. If any two of Yo, y, 3/2 are zero or if ab 0, this is
clear, so assume otherwise. Since F is formally real, the element y can
not be zero [4, Theorem 3.4(a)]. Now,

yzl(a + b)2 43,o y2 ab
(a3/1 + b3/i-1(3/12 23/0 3/2))2 -- 4b 3/0 3/2 3/-2(3/12 3/0 3/2)

is a sum of squares since 3/2 3/o 3/2 is a square and 3/o 3/2 is a square [4,
Theorem 3.4(b)], hence the discriminant is a square in the pythagorean field
F. Thus (c) implies (b). To obtain the equivalence of (e) with the others,
note that (e) is equivalent to the statement that F {0, 1, 2, 3} is a 3-
sequence, since F[f(x)] x f’(x) for any polynomial f of degree 3. Thus,
(e) implies that {1, 2, 3} satisfies (d). Finally, we assume that F is pythagorean.
Then (e) holds since

d
-7-[(x a)(x #)(x
ax
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is a quadratic polynomial with discriminant

4(a + /3 + 5,)2 12(a/3 + /35, + a),) 2[(a /3)2

+ ( /)2 + ( ,)2]
which is a sum of squares.

PROPOSITION 2.4. Let F be a formally real field satisfying (A). Then
every arithmetic sequence F of totally positive elements is an n-sequence
for F.

Proof. Let yk a + kb, where a, b F are totally positive. Then

F[(x + 1)n] (x + 1)n-l((a + bn)x + a)

splits in F, so by (An), {0, 3’n} is an n-sequence for F.

The following proposition generalizes [3, Theorem 2.2].

PROPOSITION 2.5. Let F, F* and F be as before.
(a) The field F satisfies (Bn) /f and only if every polynomial over F of

degree n which splits in F* splits in F.
(b) The field F satisfies (Cn) if and only if every polynomial over F of

degree n which splits in F splits in F.

Proof. We shall state the proof for (a). Part (b) follows mutatis mutandis.
Assume first that F satisfies (Bn) and let

f(x)= a/x’, a,= 1,
i=0

be a polynomial over F which splits in F*. Note that for any ordering of
F and any root a of f(x), we have

n-I n-1 n-1 n-1
2

Ol aiol
i-n lalla’-nl < 1 + lal < 1 + E(1 + a,).

i=0 i=0 i=0 i=0

Without loss of generality, we may replace f(x) by

f x+l + (l+a)

so that all of the coefficients off(x) may be assumed to be totally positive.
Now write
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and let F {y0, ’)tn}. Then F[(x + 1)"] f(x) which splits in F*. Then
(Bn) implies that F is an n-sequence for F, hence f(x) splits in F.

Conversely, assume that every polynomial over F of degree n which
splits in F* splits in F. Let F be a sequence of zeros and totally positive
elements such that F[(x + 1)n] splits in F*, and let f be a polynomial of
degree rn < n splitting in F. By Theorem 2.1, the sequence F is an n-
sequence for each real closure of F. Therefore F[f] splits in all real closures
of F; hence (x + 1)n-mI’[f] splits in F* and thus, by hypothesis, also in
F. By definition, F is an n-sequence and the proof is complete.

Recall that a field is called euclidean if every element is either a square
or its negative is a square. Equivalently, the field is pythagorean and has
a unique ordering, the set of positive elements being the squares.

COROLLARY 2.6. A field F satisfies (C2) if and only if F is euclidean.

THEOREM 2.7. Let F be a formally real field. The following are equivalent.

(a)
(b)
(c)

F satisfies (Bn)for all n 1, 2, 3,
If a polynomial over F splits in F*, then it splits in F.
F F*.

Proof. The equivalence of (a) and (b) follows from Propsosition 2.5(a).
The implication (c) :=), (b) is trivial. Finally, assume that F satisfies (b). The
field F* is a normal extension of F [7, Lemma 1]. Thus any polynomial
over F with one root in F* splits in F*, and hence splits in F by hypothesis.
Therefore F F*.

COROLLARY 2.8. Let F be a formally real field such that F F*. If
F is an infinite sequence of zeros and totally positive elements and
F[(x + 1)n] splits in F for all n, then F is a multiplier sequence for F.

THEOREM 2.9.
are equivalent:

Let F be an orderedfield with real closure F. The following

(a)
(b)
(c)

F satisfies (Cn)for all n 1, 2, 3,
If a polynomial over F splits in F, then it splits in F.
F has no normal extension to which its ordering extends.

Proof. The equivalence of (a) and (b) follows from Proposition 2.5(b).
The equivalence of (b) and (c) follows immediately from the definition of
a normal extension.

Fields which are intersections of real closed fields arise naturally in many
contexts [1], [3], [7], [15], particularly in quadratic form theory. There is
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a minimal such field, namely Q*, consisting of all algebraic numbers whose
minimal polynomial over Q has only real roots [3]. A large class of examples
are the hereditarily pythagorean fields studied in [1, Chapter 3]. In particular,
this includes the field of iterated Laurent series over a real closed field F,
denoted F((tl))((t2)) ((tn)). Thus we see that any multiplier sequence for
the real numbers R is also a multiplier sequence for R((t)) by Corollary
2.8. Our results also extend easily to rings of formal power series (or indeed,
to any unique factorization domain whose field of fractions is an intersection
of real closed fields).

COROLLARY 2.10. Let R F[[t]] be the ring offormal power series over
a field F F*, and let F be any sequence of squares in R. If r’[(x + 1)n]
is a product of linear factors in R[x], then for any f(x) R[x] of degree
at most n which is a product of linear factors, the polynomial F[f(x)] is
again a product of linear factors in R[x].

Proof. By hypothesis, the polynomial F[(x + 1)"] splits in F((t)), which
by [1, Chapter 3, 2] is an intersection of real closed fields. By Theorem
2.7, the polynomial F[f(x)] splits over F((t)). Since R is a unique factorization
domain, Gauss’ lemma implies that F[f(x)] factors into linear factors in
R[x]

COROLLARY 2.11. Let F be an n-sequence for R with all entries in Q.
Then F is an n-sequence for any intersection of real closed fields.

Proof. The polynomial F[(x + 1)n] splits in R and the roots are algebraic
over Q, so it splits in every real closure of Q, hence in Q*. Thus it splits
in any intersection of real closed fields, so F is an n-sequence.

Next we consider Open Question 5 from [4]" let {Yk}=0 be a multiplier
sequence for F. Under what conditions on F is the sequence {Cyk +
kyk-}=o, C F, y_ 0, again a multiplier sequence for F. We restrict
our consideration to formally real fields and totally positive sequences. For
the real numbers, any c > 0 works; for if we set

(x) , / x/k!,
k=0

an entire function of type I in the Laguerre-P61ya class, then

(x + c)(x) ,(c/ + I/_)x/l!
k=0

is again such an entire function, so that the sequence

{cv + k/_ }=0.
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is also a multiplier sequence [4, Theorem 3.2]. Using 3 of Part I to get a
theorem in terms of n-sequences, we can apply Tarski’s principle to obtain
this result for any real closed field.

THEOREM 2.12. Let F be a real closed field and let F {yk}=0 be a
multiplier sequence of nonnegative elements. Then for any c > 0, the
sequence {C3,k + k3,k-1}=0, 3,-1 0, is also a multiplier sequence for F.

Proof. Fix n > 1 and consider the n-sequence {3’0, 3’,}. By Corollary
1.3.10 and Tarski’s principle, the first n + 1 of the Taylor coefficients of

(X / C)Z 3"kXk/k! (C3"k + k3"k_l)Xk/k! + 3"nxn+l/n!
k=0 k=0

form an n-sequence. Since n was arbitrary, the sequence

{C3"k + k3"_ 1}=0

is a multiplier sequence.

COROLLARY 2.13. Let F be any formally realfield satisfying F F* and
let F {3’k}=0 be a multiplier sequence of totally positive elements. Then
for any totally positive element c F, the sequence A {c3’k /

k3’k_l}=o is also a multiplier sequence for F.

Proof. The polynomial F[(x + 1)"] splits in F, hence F is a multiplier
sequence for every real closure of F. Thus A[(x + 1)n] splits in every real
closure of F, hence in F*, so A is a multiplier sequence by Corollary 2.8.

While we do not know whether the converse of the above corollary holds,
the existence of such multiplier sequences is a rather strong condition and
some consequences are given in the following proposition.

PROPOSITION 2.14. Let F be an orderedfieldfor which, given any multiplier
sequence {3"k} of totally positive elements, the sequence {c3" + k3"k-l},
c > 0 is again a multiplier sequence. Then every arithmetic sequence of
totally positive elements is a multiplier sequence for F and F is a pythagorean
field.

Proof. Let 3’k 1 for all k. Then given a, b totally positive in F, set
c ab- to obtain {a + kb}=0 as a multiplier sequence for F. The field
F is pythagorean by Theorem 2.3.

3. The fundamental inequality

In Theorem 1.2.4 we have seen that for any multiplier sequence F of the
real numbers R and any polynomial fwith real coefficients, the polynomial
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F[f] has no more nonreal roots than f; in the notation of Part I, this is the
inequality

(3.1) zc(r[f]) < Zc(f).

We now extend the meaning of Z(f). Given any polynomialfwith coefficients
in a field F, by Z(f) we mean the number of roots off which do not lie
in F. It is necessary to count in this manner because the operator F can
change the degree of f.

In this section we shall investigate the validity of inequality (3.1) for
multiplier sequences in real closed fields. First note that it holds for any
real closed subfield of R. For if R is a real closed subfield of R with a
multiplier sequence F, then F is also a multiplier sequence for R by Theorem
2.1. Thus ineluality (3.1) holds with respect to R. But the roots off R[x]
and F[f] are all algebraic over R, hence the meaning of Z is the same with
respect to both R and the real closed field R.
On the other hand, if one looks carefully at the proof of Theorem 1.2.4,

one sees that besides needing a real closed field, the main requirement for
that proof is the use of a limit as integers n approach infinity, so that the
proof works only for a real closed field which is archimedean (every element
of the field is less than some integer). But this again gives us precisely the
real closed subfields of R. For nonarchimedean real closed fields the question
is open, though we shall give several partial results. Note that the statement
is not elementary, so Tarski’s principle cannot be used. Furthermore, we
saw in Theorem 1.4.8 that the inequality fails in general for n-sequences.
One remaining hope is to use the constants c(n) defined in Section 1.4 in
order to keep the problem within the real numbers where analytic methods
can be used.

PROPOSITION 3.2. Let c(n) inf {m > n[ for all m-sequences F ofR and
all polynomials f R[x] of degree n, Z(F[f]) < Z(f)}. If c(n) < o for
all n, then the inequality (3.1) holds for all multiplier sequences over any
real closed field.

Proof. Let F {yk}=0 be a multiplier sequence for a real closed field
F and let f F[x] be a polynomial of degree n. Let rn c(n) and consider
the m-sequence A {Y0, 3’m}. The statement that (3.1) holds in R for
all m-sequences and all polynomials of degree n is elementary, hence it
holds for F by Tarski’s principle. Therefore Z(F[f]) Z(A[f]) < Z(f).

The remainder of this section will be spent looking at cases in which we
can show that inequality (3.1) is valid. Our next few results use Tarski’s
principle. We then apply valuation theory to obtain a class of multiplier
sequences which work. Finally we examine some sequences of infinitesimals
which have no counterpart over the real numbers. A very simple application
of Tarski’s principle is to note that if F is a multiplier sequence for a real
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closed field R and all of the elements of F lie in R, then the inequality holds
for F since the statement that it holds up to degree n (for any fixed n) in
R is elementary.

THEOREM 3.3. Let R be any real closedfield, let a be a positive element
of R, and let g be a polynomial over R with only real negative roots. Let
l-" {Yk}=o be defined by the formal power series

Ol
k

kO ")lk xk e k= O

xk.g(x) g(x)

Then Z(F[) Z(f) for all f R[x].

Proof. Let g(x) X=0 a x/k. Then

Pdlya has shown that sequences defined in this way (i.e., g(x) has only real
negative roots and each is defined in terms of its coefficients by (3.4))
over the real numbers are multiplier sequences [4, Theorem 3.2], and hence
satisfy the inequality by Theorem 1.2.4. For a polynomial f of fixed degree
m, the elements 0, need only satisfy finitely many elementary
conditions, so that Tarski’s principle can be applied to obtain the inequality
for such sequences F over an arbitrary real closed field.

THEOREM 3.5. Let 1 {’)t0, )in} be an n-sequence for a real closed
field R. Let f(x) Em= o akx

k be a polynomial over R with degree m < n.
Then

Z (m k)Vk=O

Proof. Since F is an n-sequence, the polynomial

kO Yk
X
k

k!(m k)!

splits in R by Theorem 2.1. The theorem then follows via Tarski’s principle
from Corollary 3.5 of [5].

PROPOSITION 3.6. Let R be a real closedfield and let g(x) be a polynomial
over R which splits in R and has all of its roots outside the open interval
(0, n). Then

F {g(0), g(1), g(n)}

is an n-sequence such that Zc(F[f]) < Zc(f) for all polynomials f of degree
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at most n. In particular, if the roots of g(x) are all negative in R, then

F (g(0), g(1), g(2), ...)

is a multiplier sequence satisfying inequality (3.1).

Proof. This is an old theorem of Laguerre for the real numbers and the
statement is clearly elementary, so Tarski’s principle applies. (In fact, the
first of the two proofs given by Obreschkoff in [10, Satz 3.2] for Laguerre’s
theorem is valid for any real closed field, so Tarski’s principle is not really
necessary here.)

We next look at results which can be obtained using valuation theory
and refer the reader to [11, 7] for elementary results on real valuations
and real places. Let F be any ordered field. Then F has a unique place
into the real numbers compatible with the ordering: if o denotes the cor-
responding (additive) valuation and Ao the valuation ring, then the positive
elements of F which are units in Ao reduce to an ordering of the residue
field, a subfield of R, modulo the valuation ideal mo. We shall generally
denote the image of an element a Ao in the residue field by .
LEMMA 3.7. Let F be an ordered field with real valuation v as above.

Let F {/k}=0 be a multiplier sequence of totally positive elements of F
such that Yk Ao for each k. Then F {k}=0 is a multiplier sequence
for R.

Proof. We need to show that for each n, the polynomial F[(x / 1)n]
has only real roots. By hypothesis, the polynomial F[(x / l)n] splits in F,
so its roots map to elements of R or infinity under the real place. Thus
F[(x / l)n] can have no complex roots and therefore F is a multiplier
sequence for R.

THEOREM 3.8. Let R be a real closedfield. Let v be the unique valuation
with residue field F C_ R. Let F (’)/k=0 be a multiplier sequence for R
with v(Tk) 0 for each k. Let f be a monic polynomial in Ao[x] such that
f F[x] has no multiple roots in F. Then Zc(F[f]) < Zc(f).

Proof. By the previous lemma, F is a multiplier sequence for R. Fur-
thermore, since the elements of F are all units in the valuation ring, the
elements of F are nonzero. Now F is a real closed subfield ofR 11, Theorem
8.6], hence f has no multiple roots in R, and we can apply Proposition
1.2.8 to conclude that F[f] has at least as many distinct real roots with
odd multiplicity as f has real roots. Since R is real closed, the valued field
(R, v) is henselian [11, Theorem 8.6]. But then Hensel’s Lemma guarantees
that F[f] (respectively, f) has roots in R corresponding to those of F[f]
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(respectively, f) in R which have odd multiplicity, and therefore Zc(F[f])
< Zc(f) since z(I’[f]) < z(f) for R.

We conclude this section by looking at sequences {k}=0 such that each
Yk > 0 but the sequence decreases sufficiently rapidly to guarantee that the
inequality holds. We shall make use of infinitesimal elements (with respect
to Q); that is, elements of the field which are less than every positive
rational number and greater than every negative rational number [2].

THEOREM 3.9. Let R be a nonarchimedean real closed field and let
F {yk}=0 be a sequence ofpositive elements ofR such that Yo is infinitesimal
and ykyf_kl is infinitesimal for each k 1, 2, 3, Then F is a multiplier
sequence for R which satisfies Z(F[f]) < Zc(f) for all polynomials f
R[x]. In fact, Z(F[f]) 0 for any polynomial f, all of whose coefficients
are positive, not infinitesimal and not infinite over Q (i.e., are positive units
in the valuation ring for the unique place into R).

Proof. Let h(x) E"k=0 akYkxk be an arbitrary polynomial with each a
positive, not infinitesimal and not infinite over Qo The hypothesis that
yky-__kl is infinitesimal implies that the (k + 1)-st term dominates in the
expression for h(-y;l), that is,

h(0) a0v0 > 0,

h(-y-) a0Y0- al + az]/2"y-2 (0,

h(-y-) a0Y0 al/13/f + a23/-1 a3Y3Y-3 + > 0,

h(-y-) a0Y0- ayly- + + (-1)"a,y"+.
Thus the polynomial h has n sign changes and hence n roots in R by the
mean value theorem [2, {}2, Exercise 13]. Therefore the last statement of
the theorem holds. In particular, if a (k!) -, we obtain

Zc yk Xk/k! 0

for each positive integer n. The inequality now follows immediately from
[5, Corollary 3.5] and an application of Tarski’s principle. In particular, it
works for f(x) (x + 1)n, so F is a multiplier sequence by Theorem 2.1.

4. Rolle’s theorem and generalizations

In this section we consider ordered fields other than real closed fields
and ask when the inequality (3.1) of the previous section holds. We first
note that this is closely related to the question of which fields satisfy Rolle’s
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theorem for polynomials. (Rolle’s theorem is known to hold for all real
closed fields [2, 2, Exercise 12].) If one ignores the conclusion that the
root of the derivative lie between the roots of the polynomial, this is equivalent
to a special case of our inequality.

LEMMA 4.1. Let F be an ordered field for which Rolle’s theorem holds
for polynomials. Let F be the arithmetic sequence F {0, 1, 2, 3, ...}.
Then Z(F[f]) < Zc(f) for all polynomials f F[x].

Proof. This follows immediately from the fact that F[f(x)] xf’(x).

In particular, F {0, 1, 2, ...} is a multiplier sequence for any field
satisfying Rolle’s theorem, so that such a field is necessarily pythagorean
by Theorem 2.3. In fact, much more can be said.

THEOREM 4.2. Let F be an orderedfield which satisfies Rolle’s theorem.
Then Z(F[f]) < Zc(f) for every arithmetic sequence F ofpositive rational
numbers.

Proof. Let F {a + bk}=0, a, b > 0. The result follows from Lemma
4.1 if a 0 and is clear if b 0, so assume a > 0 and b > 0. We may
replace F by b-iF {ab -1 + k}=0; set a ab -1. Then Fir] af(x) +
xf’(x). Assume a mn- with m, n positive integers. Now consider
nF[f] mf(x) + nxf’(x) and

x(Xrnf(x)n) X lf(x)n- (mf(x) + nxf’(x)).

By Rolle’s theorem, applied to xmf", together with the fact that the multiple
roots of f are also roots of f’ of multiplicity one less, we see that mf +
nxf’ has at least as many roots in F as f does. Therefore Zc(F[f]) < Z(f)
and the theorem is proved.

COROLLARY 4.3. If an orderedfield F satisfies Rolle’s theorem, then for
all integers n > 2, the field F contains an n-th root ofeach positive rational
number.

Proof. Let n > 2 be fixed and let rn be any positive integer. It will
suffice to show that F contains an n-th root of m. Let r m- and consider
the arithmetic sequence

[’ {rn, r + (r- rn)n -1, r + 2(r- rn)n -1, r, ...}

of positive rational numbers. Let f(x) x 1. Since f has a root in F,
the polynomial F[f(x)] rx r r(x rn-l) has a root a F by
Theorem 4.2. Therefore ar-1, an n-th root of m, also lies in F, and the
proof is complete.
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With somewhat stronger hypotheses, we can prove the field is real closed.
A formally real field F is called hereditarily pythagorean if F and every
formally real algebraic extension of F is pythagorean. These fields have
been studied in depth by Becket [1].

THEOREM 4.4. Let F be a hereditarily pythagorean field and assume
Z(F[f]) < Zc(f) holds for all polynomials and every arithmetic sequence
F of totally positive elements of F. Then F is real closed.

Proof. Let a F be arbitrary with a2 < 1 in all orderings. Let

F {a2, (3a2 + 1)/4, (a2 + 1)/2, (a2 + 3)/4, 1, ...}

and set f(x) x4 1. Since a2 < 1, the arithmetic sequence F has elements
which are totally positive. Since fhas two roots in F, the inequality implies

r[f] x (2 (x2 + ()(x2

also has two roots in F; that is, either a is a square or its negative is a
square in F. Given any nonzero element fl F, let a fl(1 + 2)-2 SO

that a2 1 in all orderings. Then/3 also is either a square or its negative
is a square. Therefore F is euclidean and hence has a unique ordering.
Now assume 0 < a < 1 and let F equal

{an, a + (a an)/n, a, ...},

an arithmetic sequence of totally positive elements of F. Let f(x) x
1. Since f has a root in F, so does F[f] ax a and therefore a has
an n-th root in F. Since any positive element can be replaced by its mul-
tiplicative inverse, this holds for all a > 0. By [1, Chapter 3, Theorem 13],
the field F is hereditarily pythagorean if and only if the real closure of F
is a radical extension. But F has no proper formally real radical extension,
hence F is real closed. This completes the proof.

For future reference, we record the following proposition which was
established in the proof of the previous theorem.

PROPOSITION 4.5. Let F be a formally real field such that

Zc(r[f]) <- Zc(f)

for all polynomials f F[x] and all arithmetic sequences of totally positive
elements. Then F is euclidean and is closed under taking nth roots for all
odd integers n.

Remark 4.6. (i) If we require that the inequality hold only for the multiplier
sequences that the field happens to have, then we obtain a large class of
fields. If F is ordered and not pythagorean, then the only multiplier sequences
F has are the trivial ones and for these Z(F[f]) equals either Z(f) or zero
so that the inequality always holds.
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(ii) We know from Section 2 that intersections of real closed fields have
many multiplier sequences. In particular, all arithmetic sequences of totally
positive elements are multiplier sequences. Thus we obtain many examples
where the inequality fails. In Q*, even Rolle’s theorem fails: use f(x)
2x4 2x. By Theorem 4.4, the inequality fails for any hereditarily pythagorean
field which is not real closed. By Proposition 4.5, it fails for any field which
is an intersection of real closed fields and has a solvable formally real
extension.

We now take a different approach and see what information we can
obtain using valuation theory.

THEOREM 4.7. Let F be an ordered field satisfying Rolle’s theorem and
let v be a real valuation on F with valuation ring Ao,, valuation ideal
value group Go and residue field Fo endowed with the induced ordering.

(a)
(b)

The field Fo satisfies Rolle’s theorem.
For any odd natural number n, the value group Go is n-divisible.

Proof. Let f Fo[x] have roots < b in Fo, so we can write

f(x) (x- )(x- b )-g(x).

Lift this to f(x) (x a)(x b)g(x) Fix]. Since F satisfies Rolle’s
theorem, there exists an element c F with a < c < b and f’(c) O.
But then f’ Fo[x] has ? as a root and < ? < b, so Fo also satisfies
Rolle’ s theorem.

For part (b), assume Go is not n-divisible. Then there exists an element
3/ Go with 3/ nGo. We may assume 7 > 0 and 3/ mGo for any m
dividing n. Let F with v(t) 5’ and consider

[f(n )/2

f(x)- ! E x’/(x + tl2- 1)(x+t/2+l)
\ 0"

(n- 1)/2 t2 (n- 1)/2

X
n+ "-

i=0

X21+l -[- 7 i=0

which has exactly two roots in F since the roots of ("-)/2 xZiEi=0 are nontrivial
roots of 1, hence not in the formally real field F. We have

(n- 1)/2 t2 (n _)/2f’(x) (n + 1)x +
i=0

(2i+ 1)x2i+
i=z-’

ixZi-.

Let a be a root off’ and let w, Aw, mw, and Gw be the extensions to F(a)
of v, Ao, mo and Go. Since mo, we have a mw, hence w(a) > O.
Since f’(c0 0, at least two of the terms in

(n + 1)ct q- t(2i + 1)o2i -t - E iotZi-I
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have the same value in Gw. But w(t) + 2i w(t) > w(t) if > 0 and 2w(t) +
(2i 1) w(a) > w(t). Therefore w(t), the value of the constant term, must
equal nw(t), the value of the leading term; that is, w(t) nw(t) nGw.
Thus the ramification index is n, and the degree of F(ct) over F is n. It
follows that f’(x) is irreducible over F; in particular, it has no root in F
and Rolle’s theorem fails.

Example 4.8. The field R((t))(t /2, /4, 1/8, ...) does not satisfy Rolle’s
theorem. Its natural valuation with residue field R has a value group which
is divisible only by 2. On the other hand, the field R((t))(t 1/3, 1/5, /7, ...)
does satisfy Rolle’s theorem, since the proof for the example given by
M. J. Pelling in [12] can be easily adapted to this field. This field has two
orderings; the value group for the unique place into R is n-divisible for
every odd n, but not 2-divisible.

5. Multiplier sequences in arbitrary fields

Let F be any field. We may consider the n-sequences for F as linear
operators on the polynomial ring F[x]. In fact, they are precisely those
linear operators L: Fix] F[x] which preserve the natural grading on Fix]
(that is, L(xk) hk xk for some eigenvalue h in F) and leave invariant the
multiplicative subset of F[x] consisting of all polynomials which split over
F. Thus the n-sequences are closely related to the multiplicative structure
of the ring F[x] as well as its structure as an F-vector space. By [4,
Proposition 2.2], the set n(F) of all n-sequences for F is a commutative
semigroup containing 0 and 1. If n > m, there is a natural mapping from
Sen(F) to m(F) defined by truncating the n-sequence to an m-sequence.
Note that these mappings are generally not surjective. In real closed fields,
for example, our characterization of n-sequences shows that there always
exist n-sequences which cannot be extended to (n + 1)-sequences. For
this inverse system of semigroups we can also consider the inverse limit
5e(F) lim.__ 6e(F) which consists of all multiplier sequences for F. In
general, a major problem is to characterize the image of 5e(F) in Sen(F);
that is, to determine which n-sequences can be extended to multiplier
sequences. Our next theorem takes Proposition 1.4.5, rephrases it in this
general terminology instead of entire functions, and provides a strictly
algebraic proof.

THEOREM 5.1. Let F be a formally real field such that F F*. Let
r F be any totally positive element of F such that r < 1 in all order-
ings of F. Then there exist multiplier sequences F and F2 of F such that

FI is an arithmetic sequence, ’2 is an exponential sequence and FF2
{1, 1, r, ...}. In particular, the natural map S(F) -- S2(F) is surjective.
Furthermore, an element of bE(F) has a unique element of S(F) mapping
onto it if and only if it has the form {a, b, 0} or {a, ab, abE}.
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Proof. Set s (1 + r + /1 r)r-1, again a totally positive element
ofF. Let F {1 + ks}=0, which is a multiplier sequence for Fby Corollary
2.13 and let 1-’ {(1 + S)-k}=0, which is an exponential sequence. Then
a straightforward calculation shows that the product FF2 has the proper
form. Given any element {a, b, c} 52(F), Proposition 2.2 shows that we
may assume a, b and c are squares in F since 5(F) contains all exponential
sequences. Similarly, we can multiply by

{a -1, b -1, ab -2} {a-I a, -l(ab- 1), a-l(ab-1)2}

to replace {a, b, c} by a sequence of the form {1, 1, r} where r is a square,
hence totally positive. Since this is a 2-sequence, the polynomial 1 +
2x + rx miast split in F, so its discriminant 4 4r must be a square;
hence r < in all orderings of F. Thus 5(F) 52(F) is surjective.

Finally, if {a, b, c} 52(F), then [4, Theorem 3.4(a)] shows that the
only element of 5(F) mapping to it is {a, b, 0, 0, 0 }. If {a, ab, ab2}
52(F), we may assume a b by normalizing as before. Let F {1,
1, 1, r } (F). Then r - 0 by [4, Lemma 2.9]. Applying F to (x +
1)3 gives

rx + 3x + 3x + 1,

which splits if and only if X "[- 3X + 3x + r does. But if r - 1, this latter
polynomial has at most one root in any formally real field, as can be seen
by replacing x by x 1. Thus r must equal since F is a multiplier sequence.
Considering a sequence of n ones followed by an element r, we obtain r

in the same manner by applying the sequence to x 3(x + 1)3. Therefore
the only sequence in 5(F) mapping to {1, 1, 1} is the sequence of all ones.
On the other hand, given any element of 52(F) not in one of these two
forms, we may assume it has the form {1, l, r} where r 0, 1. Given any
sequence F {1, l, )’2, )’3 } in 5(F), we can apply the first part of the
theorem to obtain sequences FI and 1-" for {1, l, r)’;}, so that FFIF2 maps
onto {1, l, r}. Thus every element of 5(F) maps onto {1, l, r} modulo
arithmetic and exponential sequences. This completes the proof of the
theorem.

The abundance of sequences F as used in the previous proof is shown
by Corollary 2.11 and Remark 1.4.4. Furthermore, this latter remark gives
abundant examples of n-sequences which extend in infinitely many ways
to multiplier sequences.

Besides extendability questions, another general problem is to determine
the extent to which 5e(F) characterizes F. There are many partial results
along this line in [4] and the present paper. For example, formally real
fields which are not pythagorean have only trivial multiplier sequences [4,
Theorem 3.5], so 5e(F) is rather uninteresting. We also have the following
interesting characterization of algebraically closed fields.



296 THOMAS CRAVEN AND GEORGE CSORDAS

THEOREM 5.2. Let F be any field with more than two elements. The
following conditions are equivalent:

(1)
(2)
(3)

F is algebraically closed.
{1, 1, h, h2, h3, ...} (F) forallh OinF.
{X, 1, 1, 1 } is a multiplier sequence for all X 0 in F.

Proof. Clearly (1) implies (2) and (3). The equivalence of (2) and (3) is
evident since the sequences differ only by a factor of an exponential sequence.
Now assume (3) holds and let Fx {h, 1, 1, 1, ...}. Assume F is not
algebraically closed. Choose an element not in F such that its minimal
polynomialf(x) ,nk=0 akx has minimum degree n > 2. Thus all polynomials
in F[x].of degree less than n split over F. Now, for each h in F, consider
the polynomial

fx(x) aoh + alx + + anXn.
Clearly there is some/x g= 0 in F such that f,(x) is not irreducible; indeed,
by [4, 4], (3) cannot hold for a finite field, and thus there exists y F
such that

tx -aff(ay + + anyn) 0

and f,(y) 0. Therefore f,(x) factors into polynomials of degree less than
n and hence f,(x) splits. Since Fh is a multiplier sequence for all h, in
particular h /z

, the polynomial f(x) F,-,[f,(x)] splits, giving us the
desired contradiction.

We were led to studying intersections of real closed fields by requiring
that certain sequences be multiplier sequences for the field. In fact, given
any field F and sequence F, one can look at the smallest field containing
F for which F is a multiplier sequence. The following simple result gives
some cases in which the smallest such field is the algebraic closure F of
F. Note that the condition that F be generated by a countable number of
elements over F is not only satisfied by all countable fields, but also by
such interesting fields as R((t)) whose algebraic closure is C((t))(tl/2, t 1/3,
1/4, ...) [14, Chapter IV, 2, Proposition 8].

PROPOSITION 5.3. Let F be a field such that F is a countably generated
extension of F. Then there exists a sequence F of elements ofF such that
the smallest field K containing F, with F a multiplier sequence for K, is
F.

Proof. Let O1, O2, O be elements of F such that

F F(al, a2, a3, ...).

Let the minimal polynomial of a over F be f(x) E"L0 ax’ and set F
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equal to the sequence

a01% all ,...,anll

(0) -1
n2 (2) -1 ( )-1 }n2

a2 a12 an22
/’/2

Any field for which F is a multiplier sequence must contain Ct which is a
root of F[(x / 1)"1] f(x), and a2 which is a root of

r[xn/ (x + 1)n2] Xnl+ lf2(x),

and so forth. Thus the smallest field containing F for which this sequence
is a multiplier sequence is F.

Remark 5.4. In view of the previous two sections, we note that the
collection of multiplier sequences which satisfy the Fundamental Inequality
(3.1) form a subsemigroup of 5e(F). It is not difficult to show that this
subsemigroup contains the trivial multiplier sequences and whenever
it contains {Y0, ’)/1, ’)/2, ""}, it also contains {yp, yp+, /p+2, "’’} for any
p>0.

In the remainder of this section we shall consider the existence of inverses
for elements in 5e(F). The main results concern fields of characteristic
p - 0 which are algebraic over their prime subfield Fp, the field with p
elements. These are mainly of interest for infinite algebraic extensions since
all multiplier sequences over finite fields have been characterized in [4,
Section 4].

Let F be an element of 5(F). If F has an inverse in 5e(F), it will be
denoted by F-1. More generally, we shall write Fg for the sequence whose
k-th entry is y- if yk - 0 and 0 if Yk 0. If 1-’g is in 5e(F), it will be called
the generalized inverse of F. Note that if all entries of F are nonzero, then
F- F.
THEOREM 5.5. Let F be any algebraic extension of Fp, and assume F

is a multiplier sequence for F. Then Fg is also a multiplier sequence for
F.

Proof. Let f(x) F[x] be any polynomial which splits over F and let
n be the degree off(x). Since F is algebraic over Fp, every nonzero element
of F has multiplicative order pm for some m. For each k, let mk be
the order ofy ifyk 0 and let mk 1 ify 0. Set requal to the
product mm2 mn. Then the product of multiplier sequences F is again
a multiplier sequence. Since F-1 agrees with Fg in its first n entries, we
know that Fg[f(x)] F-[f(x)] splits in F. Since f(x) was arbitrary, the
sequence Fg is a multiplier sequence.
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COROLLARY 5.6. Let F be any algebraic extension of Fp and let F
S(F). Then the sequence A {hk}=0, hk 1 if ),k 0 and 0 if

O, is an idempotent element of (F).

Proof. The sequence A is in 5e(F) since it equals the product FFg.

Remark 5.7. (1) The previous theorem implies that if F is an algebraic
extension of Fp, then 5(F) is a completely regular inverse semigroup [9].

(2) Of course, trivial multiplier sequences always have generalized in-
verses. It is quite rare for every element of 5e(F) to have one. In fact, it
can be easily shown that if the characteristic of F is not 2 and F, Fg

5e(F), where F has three consecutive nonzero terms ’Yk, )tk+l, Yk+2 with
y2k+ Yk’)tk+2 0, then F is quadratically closed. (Use [4, Theorem 2.8]
and the fact that a pythagorean field which is not formally real is quadratically
closed.)

From Theorem 5.5 we also obtain the following interesting result.

PROPOSITION 5.8. Let F be any algebraic extension of Fp. Then F is a
multiplier sequence for F if and only if F and F are multiplier sequences
for two relatively prime positive integers r and s.

Proof. Since r and s are relatively prime, there exist integers a and b
such that ar / bs 1. Theorem 5.5 implies that F and [,bs are both
multiplier sequences, where a negative power of F should be interpreted
as a positive power of Fg. Therefore the product F I"bs l" is a multiplier
sequence.

Remark 5.9. The condition on b(F) given by the previous proposition
is much weaker than the existence of generalized inverses. Nevertheless,
it still fails to hold for R (or any real closed field). Using Theorem 2.1 it
can be shown that the sequence F {1, 2, 2/, 1, 0, 0, 0, ...} is not a
multiplier sequence for R, although 1-’2 and F are both in 0(R).
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