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LOCATION OF ZEROS
PART I: REAL POLYNOMIALS AND ENTIRE

FUNCTIONS

THOMAS CRAVEN
BY

AND GEORGE CSORDAS

I. Introduction

In the study of the distribution of zeros of polynomials and entire functions
the techniques used, roughly speaking, fall into three categories" analytic,
geometric and algebraic. In this paper, which represents the first portion
of a two-part investigation, we will attempt to exploit the advantages of all
three techniques. In Section 2 we will introduce a novel geometric tool
(see also [3]) to prove results which, for the most part, are intractable by
algebraic or analytic methods. In addition, the geometric theorems are
generally stronger than their algebraic counterparts which are derived as
corollaries.

In the extensive literature dealing with the location of zeros of real
polynomials (and real entire functions) a significant role is played by linear
transformations T which possess the following property:

(1.1) Zc(T[fl) < Zc(f),

where f is a polynomial and Zc(f) denotes the number of nonreal zeros of
f, counting multiplicities. If T D d/dx, then (1.1) follows from Rolle’s
theorem; and if T (D), where is a polynomial with only real zeros,
then (1.1) is a consequence of the classical Hermite-Poulain Theorem [15,
p. 4]. There are many other linear transformations T which satisfy (1.1).
Indeed, let F {y}=0 be a real sequence and for an arbitrary real polynomial
f(x) 2;7,=o ax’ define F[f] by

(1.2) F[f(x)] a,y,x’.
k=0

kNow let F {Q( )}=0, where Q(x) is a polynomial with only real negative
zeros. Then Laguerre’s theorem [15, p. 6] asserts that
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The real sequences F {Yk} for which F[f] has only real zeros whenever
f is a real polynomial with only real zeros (so that in this case (1.1) reads
Z(F[f]) Z(f) 0) have been completely characterized by P61ya and
Schur [19]. In this celebrated paper P61ya and Schur introduced the following
definition.

DEFINITION 1.4. A sequence F {Yk}=0 of real numbers is called a
multiplier sequence of the first kind if F takes every polynomial f(x) with
only real zeros into a polynomial F[f(x)] (defined by (1.2)) of the same
class. A sequence F {)’k }=0 of real numbers is called a multiplier sequence
of the second kind if F takes every polynomial f(x), all of whose zeros are
real and of the same sign, into a polynomial all of whose zeros are real.
With the aid of the Schur Composition Theorem [15, p. 26] P61ya and

Schur [19]. In this celebrated paper P61ya and Schur introduced the following
definition.

THEOREM 1.5. Let F {Yk}=0 be a sequence of real numbers. Then F
is a multiplier sequence of the first kind if and only if the zeros of the
polynomials

(1.6) F[(1 +x)n] (nt.)ykxk, n= 1,2,3
k=0

are all real and of the same sign. The sequence F is a multiplier sequence
of the second kind if and only if the zeros of the polynomials (1.6) are all
real.

In [19] P61ya and Schur also established the following transcendental
characterization of these sequences.

THEOREM 1.7. Let F {Yk}=0, Y0 0, be a sequence of real numbers.
Then in order that F be a multiplier sequence of the first kind it is necessary
and sufficient that the series

O

/k
X
k

converge in the whole plane, and that the entire function (x) or (-x)
can be represented in the form

(1.8) I,(x) ce YI (1 + X/Xn)
n=l

where tr > O, Xn > O, C R and E= x21 < oo. In order that the sequence
F be a multiplier sequence of the second kind it is necessary and sufficient
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that the series

")/k xk

converge in the whole plane, and that the entire function (x) can be
represented in the form

OtX2 +X(1.9t (x) ce I-I (1 X/Xn)ex/xn,
n=l

where o > 0, fl, c and x are real and E

__
x2 < .

The following additional terminology will facilitate the description of the
problems to be considered in the sequel. A real entire function (x) which
can be represented in the form (1.9) is said to be of type II in the Laguerre-
P61ya class. Functions of the form (1.8) are termed type I in the Laguerre-
P61ya class. The significance of the Laguerre-P61ya class in the theory of
entire functions (see, for example, [12, Chapter 8]) is natural since the
functions of type II, and only those, are the uniform limits of polynomials
with only real zeros.
The disparate nature of these two kinds of multiplier sequences becomes

clear in light of the Fundamental Inequality. This inequality [4] states that
a real sequence F {y} is a multiplier sequence of the first kind if and
only if

(1.1 O) Zc(F[f]) < Zc(f)

for all real polynomials f(x). In [4] we have shown by means of an example
that (1.10) need not hold if F is assumed to be a multiplier sequence of the
second kind.

In Section 2 we give a new proof of inequality (1.10) (see Theorem 2.4).
In addition, the geometric methods we use in Section 2 enable us to extend
an important theorem of P61ya [16] on the reality of roots of polynomials
(Theorem 2.5 and Corollary 2.6).

In abstract field theory, n-sequences were first introduced by Craven in
[1]. These sequences are defined as follows.

DEFINITION 1.11. Let F {’)/0, ’)/n} be a sequence of real numbers.
Then F is called an n-sequence of the first kind if for every polynomial f(x)
of degree less than or equal to n and with only real zeros the polynomial
F[f(x)] also has only real zeros.

If in the above definition we add the stipulation that all the zeros off(x)
are of the same sign, then F will be called an n-sequence of the second
kind. Since for the most part we will be dealing with n-sequences of the
first kind, we will use, for the sake of brevity, the term n-sequence to mean
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n-sequence of the first kind. The theory of n-sequences presented in Section
3 will provide the algebraic apparatus necessary for analyzing the location
of zeros of certain classes of polynomials and entire functions. Working
with n-sequences instead of multiplier sequences permits one to attempt
the investigation of the location of zeros of more general classes of polynomials
and entire functions. Besides providing stronger theorems for the real numbers,
giving generalizations of several classical theorems, the introduction of n-
sequences allows the use of Tarski’s Principle to extend many of our results
to all real closed fields and sometimes more general fields. This will be the
aim of the sequel to this paper [6], which we shall refer to as Part II. In
Part Ii, we shall be investigating the extent to which the results of this
paper can be extended from the real numbers to arbitrary fields, especially
ordered fields. As we have seen, this includes the question of which ordered
fields satisfy Rolle’s theorem and generalizations of it, a topic central to
Part II.
One of the most intriguing facts concerning n-sequences emerges in Section

4, where, among other things, we show (Theorem 4.8 and Example 4.9)
that there is an. n-sequence F and a polynomial f(x) of degree n such that

(1.12) Zc(F[f]) > Zc(f).

In light of (1.10) this result implies, in particular, that this sequence F is
not extendible (see definition below) to a multiplier sequence.

DEFINITION 1.13. A sequence of real numbers F {V0, Y,} is said to
be extendible to an (n + m)-sequence if there are real numbers Yn+ ,
Y,+m such that the sequence

{’)tO ’/n, ’)In+m}

is an (n + m)-sequence. F is said to be extendible to a multiplier sequence
of the first kind if there is a multiplier sequence of the first kind {y,} such
that / y;, for k 0, n.

In Section 4 we (1) establish several results concerning extendibility of
n-sequences, (2) provide some concrete examples of n-sequences, (3) raise
some open questions and (4) use n-sequences to provide an equivalent
formulation of an open problem involving zero-diminishing transformations.

2. Geometric Results Concerning Polynomials

In this section we will (1) extend several results of [3], [4] and generalize
a theorem of P61ya 16], (2) give a new proof of the Fundamental Inequality
for multiplier sequences of the first kind (see [4]) and (3) provide two
sufficient conditions for a given sequence {y0, y,} to be an n-sequence.
We will conclude this section with some results involving multiplier sequences
of the first kind and the simplicity of zeros of certain polynomials.
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We will follow, as much as possible the nomenclature used in Walker’s
book Algebraic curves [21]. In particular, we use the term component to
refer to an irreducible factor of the curve

F(x, y)=- b,xf(’)(y),
k=O

where f(x) is a real polynomial and bk R. Since we deal only with the
real points of a not necessarily irreducible algebraic variety, we require a
term to refer to the individual parts of the curve F(x, y) 0, even though
these parts need not be components, or even connected components since
two parts may intersect. For this we shall use the word branch. Classically,
the branches are only defined in a neighborhood of a point on the curve
[7, p. 39] where they have the usual analytic meaning. We shall use the
word branch in the following global sense: the branch of the curve F
containing a given point on the curve is obtained by travelling along the
curve in both directions until reaching a singularity or returning to the
starting point; at a singularity travel out along the other arc of the same
local branch on which you arrived. Thus the branches are the "pieces"
into which a circuit in the projective plane [7, p. 50] is broken by removing
the line at infinity. We shall see below that the branches in which we are
most interested will always go to infinity in both directions. Finally, in
compliance with the usual custom in algebraic geometry we will count all
roots, branches and components with their multiplicities.
The following theorem is proved in [3, Theorem 3.1].

THEOREM 2.1. Let h(x) Znk=O blcx1 be a polynomial of degree n with
only real negative zeros and let f(y) be an arbitrary real polynomial with
r real zeros and degree at most n. Then the real algebraic curve

(2.2) F(x, y) =- bkxkfk)(y) 0
k=0

has at least r intersection points with each line sx ty + u 0, where
s > O, > O, s / t > Oanduis real.

As an application of this theorem we shall include here a new proof of
the Fundamental Inequality for multiplier sequences of the first kind [4,
Theorem 3]. Our previous proof was based on a consequence of Theorem
2.1 and on the construction of a complicated family of multiplier sequences
[4, Theorem 2]. In contrast, our new proof is shorter and simpler since it
directly exploits the geometric content of the conclusion of Theorem 2.1.
In order to simplify our arguments we begin with the following remark.

REMARK 2.3. If F {y} is a multiplier sequence of the first kind, then
the terms yk either all have the same sign or they have alternating signs.
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Moreover, the relations /i/j 0 and Yk 0 for any k, < k < j, cannot
hold at the same time (see, for example, Craven and Csordas [2, Theorem
3.4 (b), p. 807]). For reasons of convenience we shall often assume in the
sequel that Yk > 0 for all k. Indeed, if (x) F[e] is a function of type
I in the Laguerre-P61ya class, then so is the function (-x).

THEOREM 2.4 (THE FUNDAMENTAL INEQUALITY). Let F {Yk} be a
multiplier sequence of the first kind and let f(x) ’--0 akxk be an arbitrary
real polynomial of degree m. Then

(*) Zc(F[f]) < Zc(f).

Proof. In light of the preceding remarks it suffices to prove the theorem
when Yk > 0. We shall first establish inequality (,) under the additional
hypothesis that y0 - 0. If y0 0, then the following two cases arise:
(a) yk Ofork 1, rn and (b) yk 0forsomek, 0< k< m.
Case (a). Suppose/0 # 0andTk # 0fork 1, ...,m. Then, bythe

algebraic characterization of multiplier sequences of .the first kind (see
Theorem 1.5), for each positive integer n the polynomial

gn k Tk
has only real, negative zeros. We next fix a positive integer n, n > m.
Then by Theorem 2.1 the real algebraic curve

x y) 0

has at least r intersection points with the line y 0, where r denotes the
number of real zeros off. Since f((0) akk!, it follows that

Now we take the limit as n . Under this limiting process the above
inquality prevails by Hurwitz’s theorem and thus we obtain inequality (,).
Case (b). Suppose /0 0 and /k 0 for some k, 0 < k < m. Let p

denote the largest integer k, 0 < k < m, such that Yk 0. Thus, 0
for k 0, p, but /p/ /p/2 0 by Remark 2.3. This observation
together with the transcendental characterization of multiplier sequences
of the first kind shows that the polynomial

p

kO /k
X
k

has only real negative zeros. For each fixed e > 0 we next consider the
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m-th degree polynomial

(1 4- xe)m-p(x) ko /k(e)

and note that

lim yk(e) ’’k for k 0, p and lim yk(e) 0 for k > p.
e--0 e-0

As in the previous case we invoke Theorem 2.1 to conclude that for each
fixed e > 0,

ZC (k=OYk(e)tlkxk) Zc(f).

On the other hand, by Hurwitz’s theorem,

Zc (/=0 "ktlkXl’) zc (l=O /k(e)tlkXk)
for all sufficiently small e. These inequalities show that, in this case also,
Zc(F[f]) Z(f).

Finally, we must prove that inequality (,) remains valid when F
has some leading zero terms. Accordingly, we now assume that Y0
’Y1 /p-1 0, y 4 0, where p 1 < m. (The stipulation that
p 1 < m is introduced here merely to avoid trivialities.) Let

(x) xp /p +
(p + 1)!x + /p 4 0,

and note that for each fixed i > 0 the function

(x) (x + )P yP +
(p + 1)!x +

is of type I in the Laguerre-P61ya class. Consequently, the sequence

r (w()), Vo()= 4 op
is a multiplier sequence of the first kind. Thus, by the above argument
(Case (a) or Case (b)),

Zc(F[f]) < Z(f).

If we let 0, then, as before, the inequality on the number of nonreal
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zeros is preserved. Hence, in all cases Z(F[f]) < Z(f) and thus the proof
of the theorem is complete.

THEOREM 2.5. Let h(x) X=o bkxk be a real polynomial such that the
polynomial

b_ xk
k=0 (n k)!

has only real negative zeros. Let f(y) E’=0 ay be a real polynomial of
degree m, rn < n, with only real zeros. Then the real algebraic curve

F(x, y) bxgf(k)(y) 0
k=0

has m intersection points with each line sx ty + u 0, where s > 0,
> 0, s / t > 0, anduisreal.

Proof. First note that we may assume without loss of generality that
the roots off are simple. Consider an arbitrary but fixed line y c. Since
F has degree rn there can be no more than rn points in which this line
intersects F. Now suppose that the number of intersection points with this
line is less than m. Let Yk bkk! and note that the sequence F
{0, Ym} is an m-sequence (see Section 3 for the various properties of
m-sequences). But then the polynomial

F(x, c) bkxkfk)(c
k=0

f(k)(c
X
k

k=O

F[f(x + c)]

has less than rn real zeros. This contradicts the definition of an m-sequence
and thus we conclude that each horizontal line has exactly rn intersection
points with the real curve F.

If there exists a point (x0, Y0) where two branches intersect or where
dy/dx 0 along the curve, then F(x, Yo) F[f(x + Y0)] is a polynomial
with a multiple root at x0. The polynomial f(x + Yo) has simple roots,
hence a sufficiently small change in the coefficients of f will cause
F[f(x + Y0)] to have some nonreal roots while the slightly changed
f(x + Yo) still has only real roots, contradicting the fact that F is an
m-sequence.
From this we conclude that the curve consists of rn disjoint branches.

In fact, each of the m branches extends indefinitely with negative slope;
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that is, as x varies from -o to +, y varies monotonically from + to
-. To see this, we show that the real algebraic curve F has m real
asymptotes with negative slopes. Set y tx in the equation F(x, y) 0
and compute

a lira x-mF(x, tx)= b,
m! m-k= g(t).

Ixl-. =0 (m k)!

Since, by assumption, the zeros of

k0 bk
tk(t)

(n- k)!

are all real and negative if follows from Rolle’s theorem that the zeros of
the polynomial

d
m dtn_;A p*(t) g(t),

where ,*(t) tn(t-1), are also all real and negative. This implies that the
"ends" of each branch of F(x, y) 0 are asymptotic to lines which have
negative slopes. The possible slopes of these lines are given by the zeros
of g(t). From the characteristics of the branches, it is now clear that lines
of nonnegative or infinite slope will each intersect the curve in exactly m
points (counting multiplicity). Hence the proof of the theorem is complete.
The previous theorem generalizes a similar theorem of P61ya [16] in which

he uses the more restrictive hypothesis that h(x) has only real zeros. It
also gives a partial generalization of the Hermite-Poulain theorem [15, Satz
3.1] by intersecting with the line x 1.
As immediate consequences of Theorem 2.5 we obtain two conditions,

each of which is a necessary condition for a given sequence {y0, yn}
to be an n-sequence.

COROLLARY 2.6. Let {Y0, ’)/n}, ’)/k > 0, be an n-sequence and letf be
a polynomial ofdegree at most n with only real zeros. Then the polynomials

(a) "Yk f(lO(X) -.=o ’J and (b) =0)’ xkf(k)(x)

also have only real zeros.

Proof. Apply Theorem 2.5 to the lines (a) x 1 and (b) y x.

In [3, Theorem 2.3; also Statement 2.4] we have proved that if h(x)
nk=0 bkXk, n > 1, bo O, bn 1, has only real roots and f(y) is an arbitrary
real polynomial, then the branches of

F(x, y)=- bkXkf(k)(y)= 0
k=0
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which intersect the y-axis cannot meet each other at any point off the y-
axis. We shall now conclude this section with two propositions which show
how this result on the simplicity of roots of polynomials can be extended
to multiplier sequences of the first kind. While the first of these propositions
is motivated in part by the aforementioned result, its proof, as we shall
see below, does not require the geometric machinery introduced in this
section.

PROPOSITION 2.7.
first kind. Then

Let 1-’ {Yk}, Y, > O, be a multiplier sequence of the

)’k
X
k(X) ., (poly)e

k=O

if and only iffor any polynomial f(x) with only real roots the polynomial
F[f(x)] has only simple real roots except possibly at x O.

Proof. Since F is a multiplier sequence of the first kind, q(x) is a function
of type I in the Laguerre-P61ya class (see Theorem 1.5). We shall first
suppose that q(x) - (poly)ex. Then (x) has an infinite number of
roots and in this case it is known [8] that for each n the polynomial gn(X)
F[(1 + x)n] has only simple negative real roots. Now letf(x) be a polynomial
of degree n with only real roots and assume that F[f(x)] has a multiple
root other than x 0. Then there is a sufficiently small change in the first
n / 1 terms of F such that (1) a nonzero double root of F[f(x)] becomes
a pair of nonreal roots (that is, if F’ denotes the resulting new sequence,
then F’[f(x)] has a pair of nonreal roots); and (2) F’[(1 + x)n] has only real
roots. The second claim follows from the above cited fact that F[(1 / x)n]
has only simple negative real roots. But then by Theorem 3.1 below (see
also [2, Theorem 3.7]), F’ is still an n-sequence. Therefore, F’[f(x)] has
only real roots. This is the desired contradiction.
We will prove the converse implication also by an argument by contra-

diction. Thus suppose that

)’k
X
ktYP(X) bmXm ex, bp O,

k=O m=O

m=O k=O k!
xk+m

Ol
k

(k + m)!

Since Yk > 0 for all k, a 0 and hence we may assume without loss of
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generality that a 1. Then, for n > p + 2, the polynomial

F[(1 + x)n] k ’x. b,..x k k(k 1)’"(k m + 1)x-m
m---O, bmxmm(x + , /X,

p., bmxmn(n 1)"" (n m + 1)(x + 1)-
m’-O

has x -1 as a multiple root. This contradicts our assumption that for
any polynomial f(x) with only real roots the polynomial F[f(x)] has only
simple real roots (except possibly at x 0). Thus, (x) 7 (poly)e and
the proof of the proposition is complete.

PROPOSITION 2.8. Let

(x)= x, o0,>0,

be a function of type I in the Laguerre-P61ya class and let F {)’k}=o.
Let f(x) be a real polynomial and suppose that its real roots are simple.
Then two branches of

xf(F(x,y)=- y) 0

which intersect the y-axis cannot meet each other at any point off the y-
axis. In particular, the polynomial F[f(x)] has at least as many distinct
real roots of odd multiplicity as f(x) has real roots.

Proof. If /n 0 but y+ 0 for some n, then it follows from Remark
2.3 that (x) is a polynomial

"k
X
k

k’-O

all of whose roots are real and negative. In this case the proposition is a
consequence of a previously established result (see [3, Theorem 2.31). Thus
we may assume thin ,/ > 0 for all k. Now suppose that two branches
which cross the y-axis do meet at a point (xo, y) off the y-axis. Thus the
polynomial

h(x) . ,Yo)
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has a multiple root at x x0. But then there exists an arbitrarily small
change in the coefficients of h(x) such that (1) the multiple root at x0 can
be assumed to be a double root, and (2) the double root will become a pair
of nonreal roots. Since yk > 0, this can be accomplished by varying the
factors fk)(Yo). Moreover, a sufficiently small change will keep the nonreal
roots of f nonreal and keep the real roots both real and simple. Thus we
may assume that F(x, y) has a branch which crosses the y-axis at two
distinct points. Now if we approximate (x) by

g. ,
then, for sufficiently large n, the qualitative behavior of this branch will be
the same; that is, there will be a branch which crosses the y-axis at two
distinct points. Since g,,(x) has only real roots, this contradicts [3, Theorem
2.3]. Therefore h(x) cannot have a multiple root x x0. Finally, we consider
the intersection of the branches of F(x, y) 0 with the line y 0, obtaining
the polynomial F[f(x)] = F(x, 0). ff we compute the slopes of the asymptotes
to the curve as in the proof of Theorem 2.5, we see that they are all either
negative or infinite. Thus, each branch of the curve which crosses the y-
axis (at a real root off) also crosses the x-axis in at least one point, giving
rise to at least one root of F[f] of odd multiplicity.

3. The Theory of n-Sequences

In the course of our investigation of n-sequences, we will provide here
several characterizations of these sequences (Theorem 3.1, Theorem 3.4,
Theorem 3.16 and Corollary 3.21). While multiplier sequences and n-sequences
have many properties in common (Lemma 3.2), there are some major dif-
ferences (see also Section 4) which account for the intricate character of
many n-sequences. Indeed, it appears that for n-sequences there is no direct
analogue of the transcendental characterization of the multiplier sequences
of the first kind (see Theorem 1.5). Nevertheless, our strategy will be to
focus our attention on the class of polynomials of the form

yk
xk-.

where {Y0, Y,} is an n-sequence. In Corollary 3.8 we will note the
curious fact that the distribution of the zeros of a polynomial o(x) in this
class can be arbitrary as long as the zeros of o lie in a double sector,
symmetric with respect to the real line, with vertex at the origin and whose
angle opening is sufficiently small. But by exploiting the similarities that
exist between the linear operators D d/dx and F, where F is an n-
sequence, we are able to solve several problems surrounding this class of
polynomials.
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In addition we also establish some results (see, for example, Corollary
3.10 and Theorem 3.15) concerning certain real entire functions

where { ,} is an n-sequence. Finally, we discuss the connection
between n-sequences of the second kind and a longstanding conjecture of
Pdlya in the theory of differentiation.
For a fixed positive integer n, let N denote the set of all polynomials

f(x), deg f(x) < n, which have only real zeros. Then the following natural
question arises. What condition must a sequence F {yo, y,} of real
numbers satisfy in order that F[f(x)] for every f(x) in n? The
remarkable fact is that we need only to examine the action of F on a single
polynomial. This is the content of our first result and its proof is an immediate
consequence of [2, Theorem 3.71.

THEOREM 3.1 (ALGEBRAIC CHARACTERIZATION OF N-SEQUENCES). Let

r {Vo, w}

be a sequence of real numbers. Then F is an n-sequence if and only if the
zeros of the polynomial F[(1 + x)] are all real and of the same sign.

Theorem 3.1 as well as the geometric results of Section 2 suggest that
n-sequences have several properties in common with multiplier sequences
of the first kind. In the next lemma we provide a partial list of such properties.

LEMMA 3.2. Let F {Y0, 3/n} be an n-sequence.

(a) y 3/k-13/k+ 0 for k 1, n 1.
(b) The nonzero terms Yk either all have the same sign or they have

alternating signs. Moreover, the relations 3/3/n 0 and 3/j O, for any
j, k < j < m, cannot hold at the same time.

(c) The sequence F* {3/n, 3/0} is an n-sequence and the sequence
ll {3/1 3/,,} is an (n 1)-sequence.

(d) The sequence

{Z_o , 3’ 0, 0, }n!’ (n 1)!’ 0!’

is a multiplier sequence of the first kind.
(e) The sequence

{k03/0 kn3/n}
is an n-sequence, where A {h0, hn} is any n-sequence.
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Since Lemma 3.2 follows from Theorem 3.1 and the arguments presented
in [2], we will omit the proof here. In light of part (b) of the lemma, in the
sequel we will frequently assume that the terms Yk of an n-sequence are
nonnegative.
Our next immediate goal is to show that the conditions (a) or (b) of

Corollary 2.6 are both necessary and sufficient for a sequence F
{y0, Yn} to be an n-sequence. To this end our investigation will be
focused on the class of polynomials

)’k
xk

whose Taylor coefficients {3/0, Yn} form an n-sequence. The most obvious
examples in this class of polynomials are (1) the polynomials which have
only real negative zeros and (2) the n-th Taylor polynomials associated
with functions of type I in the Laguerre-P61ya class. We hasten to add,
however, that the examples just cited by no means exhaust the class of
polynomials whose Taylor coefficients form an n-sequence (see Corollary
3.8 and Section 4). As we shall see below, a complete description of the
distribution of zeros of the polynomials in this class is, in general, very
difficult. Indeed, it is for this reason that for n-sequences there seems to
be no direct analogue of the well-known transcendental characterization of
multiplier sequences of the first kind. On the other hand, we will show
below that some of the problems surrounding the above class of polynomials
will become tractable if we take into account the similarities that exist
between the linear operators D d/dx and F, where F is a multiplier
sequence of the first kind or more generally F is an n-sequence. (These
similarities were studied in [4] for multiplier sequences of the first kind.)

Preliminaries aside, we shall first recall the following classical result due
to Walsh [22] (see also Marden [13, p. 81]).

THEOREM 3.3. Let

f(x) ajx an H(X ctj),
j=0 j=l

g(x) bjx bn H(x j),
j----O j=l

and

h(x) (n j)!bn_j f(J)(x) (n j)!an_jg(J)(x).
j=o j=o

If all the zeros off(x) lie in a circular region C, then all the zeros of h(x)
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lie in the point set S consisting of the n circular regions obtained by
translating C in the amount and direction of the vectors

Remarks. (1) By a circular region we mean the closure of the interior
or the exterior of a circle, or a closed half-plane.

(2) Theorem 3.3 is a direct consequence of the Grace Apolarity Theorem
(see, for example, Marden [13, p. 61]).

(3) If both f(x) and g(x) have only real zeros, then it follows from
Theorem 3.3 that h(x) also has only real zeros. To see this we note that
every zero x0 of h(x) has the form x0 c + /3j for some j and some c
C, where C is a circular region which contains all the zeros off(x). Now
apply the theorem to the circular regions {zllm z < 0} and {zllm z > 0}.

THEOREM 3.4. Let

o(x) . x, , > 0.
k=0

Then {Yo, Yn} is an n-sequence if and only if
(3.5) Z(o(D)f(x)) 0

for all polynomials f(x) in n.

Proof. Suppose F is an n-sequence. We shall first prove (3.5) under the
additional hypothesis that all the coefficients y are positive. By Theorem
3.1 the polynomial gn(X) F[(1 + x)"] has only real zeros and afortiori
the zeros of the polynomial

g*n(X) xngn(X) ,)in_ k
k=0

are also all real. Now if we apply Theorem 3.3 to g*n(X) and f(x) we obtain
that the polynomial, (n ! ,,,f((x n!,(f(x

k--0

also has only real zeros.
We next consider the case when some but not all of the terms , are

zero. By Lemma 3.2 part (b) we may suppose that yo ,_ 0,
yp O, yp+j : 0 for j 0, 1, n q p, and Yn-q+ Yn
0. Then once again by Theorem 3.1 the polynomial
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has only real zeros. For e > 0 let

a*(x) (x + e)p[(np) yP + + ( n
q ")/n-qXn-p-q] (l + x’)q

wherey() 0fork 0, p 1 andk n q + 1, n and
() for k p, n q, as 0. Since () > 0, we can apply
the previous argument to the polynomials A(x) xA(1/x) and f(x).
Hence, for each > 0 the polynomial

(n k)l
k=O

has only real zeros. Finally, if we let e O, then by Hurwitz’s theorem
we conclude that the polynomial 9(D)f(x) also has only real zeros.

Conversely, suppose that Zc(9(D)f(x)) 0 for all polynomials f(x) in. Thus in particular the polynomial

(D)x k x"-
has only reN zeros and consequently by Theorem 3.1 the sequence
{0, } is an n-sequence.
The next corollary illustrates how n-sequences can be used to generate

new multiplier sequences of the first kind.

COROLLARY 3.6. Let F {Yo, /n}, ’)/k > 0, be an n-sequence and
let f(x) Ek=0 akXk, ak > 0 be a polynomial in Let

A {ho, hn, 0, 0, ...} where hg F[f(q(1);

that is, hk is the value of the polynomial F[f(k)] at x 1. Then A is a
multiplier sequence of the first kind.

Proof. It suffices to show that the polynomial

i iX . F[f()](1).
k=0 k=0

yjaj+k

has only reN, negative zeros. If we set

x
k0
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then by Theorem 3.4 the polynomial o(D)f(x) has only real zeros. On the
other hand a calculation shows that

y=o\ /

Z ak ")/k-jxj
j=O k=j

ak+y k!j=O\k=O

This completes the proof of the corollary.
We pause for a moment to compare the foregoing results with the following

classical theorem due to Hermite, Poulain and Fujiwara (see for example,
Obreschkoff [15, p. 275]).

THEOREM 3.7. Let

Yk Xk.(x)
k=O

Then dO(x) has only real zeros if and only if for every polynomial f,
deg f m > n, with only real zeros, the polynomial

kO yk
O(D)f(x) .,,

also has only real zeros.

Thus we see that Theorem 3.4 supplements the above theorem since our
theorem applies to the case when the degree of the polynomial f(x) is less
than or equal to n.
We shall next show that if a real polynomial f(x) of degree n has all its

zeros in a double sector S, whose vertex is at the origin and whose angle
opening is sufficiently small, then the Taylor coefficients of f form an n-
sequence. The precise formulation of this observation is as follows.

COROLLARY 3.8. Let

yk x,(x) .. "),k > O, n > 2,

and suppose that the zeros of lie in the double sector

S {z x + iy lYl < Ixll /n 1).
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Then {Yo, Yn} is an n-sequence.

Proof. Let f(x) be an arbitrary polynomial in n. Since all the zeros of
4(x) lie in the double sector S, it follows from a theorem of Obreschkoff
[15, p. 273] that the polynomial (D)f(x) has only real zeros. Thus by
Theorem 3.4 the sequence {y0, y is an n-sequence.
The import of Corollary 3.8 is two-fold. First it provides us with a large

number of examples of n-sequences. Second, it shows that the distribution
of the zeros of

(x . x,
where {y0, Yn} is an n-sequence, is arbitrary as long as the zeros of
o(x) lie in the double sector S. In particular, this corollary asserts that if
f(x) is an arbitrary real polynomial of degree n, then the sequence

{f(X), f’(X), f(n)(x)}
is an n-sequence for all h, provided Ihl is sufficiently large.

Remark 3.9. It is easy to see that the product (x) (x) (2(x) of
two functions, where l(X) and 2(x) are functions of type I in the Laguerre-
P61ya class, is also a function in this class. Thus, in particular, the Taylor
coefficients of (x) form a multiplier sequence of the first kind. We will
demonstrate below that if the Taylor coefficients of the polynomials j(x),
j 1, 2, form an n-sequence, and if

Ok,(x). (x) ] . x,
then the sequence {a0, an} is an n-sequence. This result will be of great
importance in Part II for extending theorems for R to arbitrary real closed
fields.

COROLLARY 3.10. Let

(x)= .x, ,>0,

where {y0, yn} is an n-sequence. Let

x) . x, t > o,

where {/30, tim} is an m-sequence, rn > n. If
Olk

X
kF(x) o(x)(x) ".

then the sequence {c0, Cn} is an n-sequence.
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Proof. Let

Olkxk
k=O

and let f(x) be an arbitrary polynomial in ,. Then by Corollary 3.5 it
suffices to show that q(D)f(x) is also in ,. Consider

F(D)f(x) p(D)(D)f(x) q(D)f(x).

Since h(x) (D)f(x) is a polynomial in n, it follows that o(D)h(x)
q,(D)f(x) also has only real zeros. Hence by Theorem 3.4 the sequence
{ao, an} is an n-sequence.

COROLLARY 3.11. Let

x 0,

where {3’o, 3’,} is an n-sequence. Let

gk(t) ---_yjt and g(t)= yjt-j=oJl j=o

Then for each fixed > O, the sequences

{go(t), g,(t), gn(t)} and {g(t), g(t), g(t)}

are n-sequences.

Proof. For each fixed t > 0, consider the products

e,(x g(t.) x and eXo(xt) gk(t)xk
k! k!

and alply Corollary 3.10.

In a certain sense Corollary 3.10 is best possible. In other words, if

kF(x) o(x)(x) .. xk,

where o(x) and (x) are the functions defined in Corollary 3.10, then, in
general, {a, an+l} is not an n-sequence. This is illustrated below and
is motivated, in part, by the following lemma.

LEMMA 3.12. /f F {3’o 3’,}, 3’k > 0, is an n-sequence and h > 0,
then hF + FI {h3’0 + 3’, h3’,_ + 3’n} is an (n 1)-sequence.

Proof. Let

3"kxk
k=0
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and consider the product

X
k

eXXcp(x) g’(X)..,
k=O

h>O.

By Corollary 3.11, {gS(h), g,*(h)} is an n-sequence, and, by Lemma 3.2
(c), {g(h), g*0)} is an (n 1)-sequence. Let

n-I xk
q,(x)

k=0

and
X
k

F(x) e- ’tO(x) ak "...
Then ak ak(h) > 0, k 0, n 1, Since a computation shows that

j=oJ ]

for k 0, n 1. Thus, it suffices to verify that {a0, a,_} is an
(n 1)-sequence. Iff(x) is an arbitrary polynomial in ,_, then by Theorem
3.4 the polynomial

n-I

f(D)f(x) -. f(k(x) e-qffD)f(x) q(D)f(x tt)

has only real zeros. Thus, another application of Theorem 3.4 shows that
{a0 a,_} is an (n 1)-sequence.

Example 3.13. Let F {1, 7/2, 61/6, 21, 36}. Then a computation
shows that F is a 4-sequence (see also Section 4). By Lemma 3.12 (use
h 1) the sequence {9/2, 82/6, 187/6, 57} is a 3-sequence. However, we
shall show now that A {9/2, 82/6, 187/6, 57, 36} is not a 4-sequence.
By Theorem 3.1 it suffices to check that the polynomial

9 164
h(x) A[(1 + x)4] -- Tx -3t-- 187x + 228x + 36x4

does not have only real zeros. In fact, tedious but elementary computations
show that the derivative h’(x) has two nonreal zeros. Thus it follows that
h(x) cannot have only real zeros.
Now set

(x) F +x+..++
61 x x x4

+ x + --+ 21+ 364
where F is the 4-sequence introduced above, and consider the product

Ol"k
X
kF(x) eXcp(x)=
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By Corollary 3.10 {a0, a, O2, O3, O4} is a 4-sequence. We shall now show
that {a, a2, a3, a4, as} is not a 4-sequence. In order to simplify the ensuing
computations we call attention to the following slight extension of Theorem
3.4. If

G(x) x , > 0,

is an arbitrary real entire function, then {/30, fin} is an n-sequence if
and only if the polynomial

G(O)f(x) f(k)(x)

has only real zeros for every f(x) in . Now if we let f(x) (x l)
and compute F’(D)(x l)4, we obtain

F’(D)(x- l)4= eD[p(D) + 0’(D)](x- l)4

[p(D) + qv’(D)]x4

x4 164+--x + 187x + 228x + 36

h*(x).

But we have seen above that the polynomial h(x) does not have only real
zeros. Consequently, {a, a2, a3, a4, as} is not a 4-sequence.

Remark 3.14. The above example also establishes the following surprising
fact. The class of functions of the form

Olk
X
k(,) F(x) (x)P(x) .

where

x

{0 Y,}, > 0, is an n-sequence and (P(x) is a function with nonnegative
coefficients of type I in the Laguerre-P61ya class, is not closed under dif-
ferentiation. Thus, in general, F’(x) does not admit a factorization of the
above form. But Zc(F’(x)) < Zc(), so that if we factor F’(x) in the form

kF’(x) (x)gP(x) -. x

where (P is a function of type I in the Laguerre-P61ya class, then deg <
n and {a, a,} is an (n 1)-sequence.
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It is also instructive to examine these ideas in light of the classical theory
of differentiation. By the celebrated 4/3-Theorem of P61ya [18], if F(x) is
an entire function of the form (.), then there is a positive integer p such
that FP)(x) has only real zeros all of which have the same sign. Thus, FP)(x)
is a function of type I in the Laguerre-P61ya class and, afortiori, {am,
am/l, am/n is an n-sequence for all integers m > p.

In our next result we impose a condition on (x) which will guarantee
that the sequence (Ctm, am/ 1, Ctm/n is an n-sequence for every nonnegative
integer m, while the sequence {a0, al, cn, ... is not, in general, a
multiplier sequence.

THEOREM 3.15.

lie in the sector

Suppose all the zeros of the polynomial

q(x) ., Y, >O,n> 1,
k=O

Let

where

S {z x + iy lyl < Ixl/N/n- 1, x < 0}.

F(x) p(x)(x) -. xk,

(x)= x, [3>0,

is an entire function of type I in the Laguerre-P61ya class. Then for every
nonnegative integer rn the sequence

is an n-sequence. Moreover, there exists a positive integer p such that the
sequence {ap, tp+ 1, ...} is a multiplier sequence of the first kind.

Proof. By Corollary 3.8, {y0, ’)/n} is an n-sequence and hence by
Corollary 3.10, {a0, Cn} is also an n-sequence. Since the zeros of F(x)
lie in the sector S the zeros of Fm)(x) also lie in S. This assertion may be
deduced from Levin [12, Theorem 2, p. 331] and the Gauss-Lucas Theorem
(see, for example, Marden [13]). It is also clear that F(m)(x) possesses at
most n nonreal zeros. Since flk > 0 for all k, F(m)(x) has at least n zeros.
(Just consider the two cases (a) has an infinite number of zeros and (b)

(x) p(x)ex, where a > 0 and p(x) is a polynomial with only real negative
zeros.) Thus for each fixed positive integer m, we have the factorization

F(m)(x) qm(X)dim(X),
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where qm(X) is a polynomial of degree at most n and the zeros of qm(X) lie
in S and m(X) is an entire function of type I in the Laguerre-P61ya class.
Now a short argument together with Corollary 3.8 and Corollary 3.10 imply
that {am, am+, am+n} is an n-sequence. The second assertion of the
theorem follows directly from P61ya’s 4/3-Theorem [18].

We shall next provide a new proof of Corollary 2.6 part (b). Moreover,
we shall show that condition (b) of Corollary 2.6 is both necessary and
sufficient for a sequence {y0, /,}, 7k > 0, to be an n-sequence.

THEOREM 3.16. Let

(x) x, / > 0.
k=0

Then F {Y0, Y,} is an n-sequence if and only if the polynomial

/ xf(x)F(x) .
has only real zeros for all f in ,.

Proof. Suppose

Yk xgf<k)(x)F(x)
k=0

has only real zeros for all f in ,. If we set f(x) (1 + x)", then by
assumption the polynomial

kO
y xD(1 + x)" ,x(1 + x)"-Fx)

has only real zeros. Hence

k (1 + x)-
also has only real zeros and thus it follows from Theorem 3.1 that
{, } is an n-sequence.

Conversely, suppose that F {0, ,}, > 0, is an n-sequence.
Let

f(x) ax, degf= mn,
k=O

be an arbitrary polynomial in . Then by Corollary 3.11,

{(tl,
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is also an n-sequence for each fixed > 0 and consequently the polynomial
k--0 akg(t)xk has only real zeros. But now an elementary computation

shows that, for each fixed t > 0,

(k.1Z akg(t)xk E akX
k

k=O k=o j=o\J/yjtk-J

.o k !- xktk_(3 17) Y-J..’j! a=. (k j)!

o’= yj xf2)(xt)"

Hence for 1 we obtain the desired conclusion.
In the theory of multiplier sequences the canonical examples are furnished

by Laguerre’s theorem (see, for example, Obreschkoff [15, p. 6]). This
theorem asserts that if Q(x) is a polynomial all whose zeros are real and
lie outside the open interval (0, n) and if f(x) ,nk=0 akX

k is any real
polynomial of degree n, then

(3.18) Z (=o a,Q(k)xk) < Z(f).

We note also that this inequality can also be expressed in terms of the
differential operator 0 x d/dx, since

(3.19) Q(O)f(x) akQ(k)x.
k=0

Thus, in particular, the sequence {Q(0), Q(n)} is an n-sequence. If the
kzeros of Q(x) are all real and negative then the sequence {Q( )}k=0 is a

multiplier sequence of the first kind. This leads to the following open problem.
If

k=0

where {y0, ..’., 7n}, Y > 0, is an n-sequence, is {(0), (n)} also an n-
sequence? It is curious, however, that a related problem can be readily
resolved (see Corollary 3.21 below) with the aid of the polynomial (x),
where

(x) x(x 1) (x k + 1).
k=0

If we let s(m, k) denote the Stifling numbers of the first kind (see, for
example, Riordan [20]), then an elementary computation shows that

(’m )Xk,(3.20) (x) s(m, k)
k=Okm=k
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Let

E’)lm
m=k

s(m, k).

Then, in general, the sequence {a0, an} is not an n-sequence (consider,
for example, 9(x) (1 + x)2). Consequently, in light of Theorem 3.4 the
differential operator (D) will not take, in general, the polynomials in
into ,. This situation is remedied, as the following corollary shows, if we
replace D by 0 xD and apply Theorem 3.16.

COROLLARY 3.21. Let F {3’0 3’,}, Yk > 0, and set

(x) -. x(x 1) (x k+ 1).
k--O

Then the following statements are equivalent.

(a)
(b)
(c)

F is an n-sequence.
Zc((O)f(x)) 0 for all f in n.
The sequence {(0), (n)} is an n-sequence.

Proof. We shall show that (a) :ff (b) => (c) ::), (a). If F is an n-sequence,
then by Corollary 3.11, {g0(1), gn(1)} is also an n-sequence. Hence if
f(x) X=0 akX

k is any polynomial in n, then by (3.17), (3.19) and the
standard methods of the difference calculus (see, for example, Riordan
[20]), we have

’ xf((x)E X
k=0 k=0

(O)f(x)

ak(k)xk.
k=0

Thus the implications (a) (b) =), (c) (a) follow from Theorem 3.16.

We conclude this section with a few remarks concerning n-sequences of
the second kind. (A sequence

F {’)t0 ’]In}

is an n-sequence of the second kind if for any real polynomial f(x),
deg f(x) < n, all whose zeros are real and of the same sign, the polynomial
F[f(x)] has only real zeros.) Several of our results in this section extend,
mutatis mutandis, to n-sequences of the second kind. There are, however,
major differences between these two types of sequences. Indeed, in [4] it
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was shown that there is a multiplier sequence F of the second kind and a
real polynomial f(x) such that

z(r[f(x)]) > Z(f(x)).

In contrast to this phenomenon, if F is an n-sequence of the first kind which
extends to a multiplier sequence of the first kind, then by Theorem 2.4

Z(F[f(x)]) < Z(f(x))

for any real polynomial f(x) of degree less than or equal to n.
Finally, we shall also mention here the connection between n-sequences

of the second kind and a 50-year old conjecture of P61ya [17] in the theory
of the distribution of zeros of real entire functions. Let

[k
X
k(x)

be a function of type II in the Laguerre-P61ya class and let

3’ x
k=O

where {3/0, 3’n} is an n-sequence of the second kind. Let

kO
OZk

X
kF(x) o(x)(x) -.

Then an argument analogous to the proof of Corollary 3.10 shows that the
sequence {a0, a} is an n-sequence of the second kind. In this situation
P61ya’s conjecture states that the derivatives F("(x) from a certain one
onward have no nonreal zeros; that is, for all sufficiently large m the
sequence {am, am+, ...} is a multiplier sequence of the second kind.

4. Extendibility and Examples

We begin this section by presenting some necessary conditions for a
given n-sequence to be extendible to an (n + 1)-sequence (Theorem 4.1).
We have seen in Section 2 (Proposition 2.7) that if

3’k xk

T., > 0,

is a function of type I in the Laguerre-P61ya class with an infinite number
of zeros and ifF {3’}, then for anyf(x) n,f(O) O, n 1, 2,
3, the zeros of the polynomial F[f] are all simple. This result sug-
gests a certain connection between the extendibility of an n-sequence F
{3’0, 3’n} and the multiplicity of the zeros of the polynomial F[(1 +
In Theorem 4.1 we capitalize on this idea and provide a necessary condition
for a given n-sequence to be extendible to an (n + 1)-sequence.
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THEOREM 4.1. Let

h(x) k /kXk

be a polynomial with only real negative zeros and suppose t, , a < fl,
are two consecutive zeros of h(x) such that the multiplicities of a and fl
are each greater than 1. Then F {3’0, ’n} is an n-sequence which
does not extend to an (n + 1)-sequence.

Proof. By the algebraic characterization of n-sequences (Theorem 3.1),
it is clear that F is an n-sequence. Now suppose that F extends to the
(n + 1)-sequence {3’0, Yn, Y,+ }. Then another application of Theorem
3.1 shows that the polynomial

k--0 k
ykxk

has only real zeros. If we set O(x) f*(x) xn+ f(1/x), then it follows
from the hypotheses that a- and fl- are two consecutive multiple zeros
of the polynomial

’(x) (n + 1) k _x (n + 1)h*(x)

But then, by Rolle’s theorem, f(x) cannot have only real zeros. This is the
desired contradiction and hence the proof of the theorem is complete.
We shM1 next use the idea of Theorem 4.1 to establish a necessary

condition for a real entire function to belong to the Laguerre-P61ya class.

THEOREM 4.2. Let (x) be a real entire function and suppose ’(x) has
only real zeros. If ’(x) has two consecutive zeros a < such that the
multiplicities ofa and fl are greater than 1, then (x) cannot be a function
in the Laguerre-P61ya class.

Proof(Reductio ad absurdum). Suppose that (x) belongs to the Laguerre-
P61ya class. Then we claim that every multiple zero a of ’(x) (say,
t’(Ol) t"(Ol) t(m)(ol) O, I)’m+l(a) 0) is a multiple zero of

(x). Since the function (x + a) is also in the Laguerre-P61ya class it
follows that all the polynomials

have only real zeros. If () 0, then the polynomial

gm/ (x)
m (k()Xk ()(m/() 7 0,

k--0
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has only real zeros and has two consecutive coefficients equal to zero.
Since this is clearly impossible (see, for example, Levin [12, p. 337]) we
conclude that (a) 0. The same argument shows that (/3) 0. But
then by Rolle’s theorem q’(c) 0 for some c, a < c </3. This conclusion
contradicts the assumption that a and fl are consecutive zeros of (x).

The Fundamental Inequality (Theorem 2.4) shows that a necessary condition
for a given n-sequence F (y0, Yn to be extendible to a multiplier
sequence is that

Zc(F[f]) < Zc(f)

for every real polynomialf(x) of degree less than or equal to n. The complicated
character of certain classes of n-sequences is further demonstrated by the
surprising fact that the aforementioned condition is not a sufficient condition
for the extendibility of n-sequences. We shall establish this assertion in the
following theorem.

THEOREM 4.3. For each positive integer n, n > 3, there is an n-sequence
F {Y0 yn} such that (a) Zc(F[f]) < Zc(f), for all real polynomials
of degree < n and (b) F does not extend to an (n + 1)-sequence.

Proof. Fix a positive integer n, n > 3. Let

Q(x) (n x)(x + o) 1, O > 0,

and set F {Q(0), Q(n)}. Then by Laguerre’s theorem (see, for example,
Obreschkoff [15, p. 6]) for every real polynomial f(x) of degree less than
or equal to n, we have Zc(F[f]) < Zc(f). Thus, in particular, F is an n-
sequence.
Next suppose that F extends to an (n + 1)-sequence for every choice

of a, a > 0. Since Q(k) > 0, for k 0 n 1, and Q(n) 0, it
follows from Lemma 3.2 part (b) that if F extends to an (n + 1)-sequence,
then Y,+ 0. Consequently by Theorem 3.1 the polynomial

g(x)= F[(I + x)n+’] ’(n+ 1) Q(k)x
k=0\ k

y, y,+ 0, has only real (negative) zeros. On the other hand a calculation
shows that the polynomial g"-3)(x) has two nonreal zeros for all sufficiently
large values of a. This is the desired contradiction and whence the assertion
of the theorem follows.

Remark 4.4. Heretofore we have only cited necessary conditions for a
given n-sequence to be extendible to an (n + 1)-sequence or to a multiplier
sequence. We shall now invoke the classical results of Hardy [HI and
Hutchinson [10] to provide a sufficient condition for extendibility. Let
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{Y0, Yn} be a sequence of positive real numbers with Y0 1. If

3_ > 4(1 1/k)3,),_2, k 2, n,

then {0, } is an n-sequence which is extendible to a multiplier sequence
of the first kind. Moreover, we can use these Turfin-type inequalities to
generate successively the subsequent terms ,+, +2, The resulting
entire function

x

is of order zero and has only real, simple and negative zeros. Furthermore,
for each positive integer m the associated Taylor polynomial

k x

has only real, simple and negative zeros (see, for example, Hutchinson
[10]). Thus, it is easy to see from these considerations that if a given n-
sequence is extendible to a multiplier sequence, then such an extension,
in general, is not unique. The restrictions imposed on the Yk’S by these
Turfin-type inequalities are, however, too severe and consequently the problem
of extendibility of an arbitrary n-sequence remains open.
The question of extendibility of an n-sequence {y0, y} to an

(n + m)-sequence {y0 y, y+l, Y+m} is closely related to the
classical problem involving R-continuable polynomials (see, Meiman [14]).
This problem may be formulated as follows. Let f(x) 1 + ax + +
ax be a real polynomial of deee n. Find necessary and sufficient conditions
on the (n + l) numbers l, a l, an, such that there is a polynomial

(x) f(x) + blX
+ + +bmx+

all whose zeros are real.
Theorem 4.3 shows that for each positive integer n, n 3, there is an

n-sequence F which does not extend to an (n + 1)-sequence. We shall now
briefly consider the case when n 2. This case is extremal in the sense
that every 2-sequence is extendible to a multiplier sequence of the first
kind (see Proposition 4.5 below). This observation is interesting, for it leads
to the following novel characterization of e. If

x

is a function of type I in the Laguerre-P61ya class, and if o 1 2
1, then (x) ex.

PROPOSITION 4.5. Every 2-sequence {Y0, Yl, Y2} is extendible to a multiplier
sequence of the first kind. If /0 Yl 1, then to each real number r,
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0 < r < 1, there corresponds a function (x) of type I in the Laguerre-
P61ya class such that (0) ’(0) 1 and "(0) r. Moreover, if r
0 or r 1, then (x) is uniquely determined. If r O, then (x) 1 +
x; while if r 1, then (x) ex.

Proof. Let I {Y0, Yl, ’)/2}, ’)/k 0, be a 2-sequence. In order to avoid
trivialities we shall assume that y0 > 0 and y > 0. Furthermore, we may
also assume the normalization condition Y0 1. Then it is easy to see that
{1, ’y, Y2} is a 2-sequence if and only if {1, 1, ’yE’y-2} is a 2-sequence. Note
that by Lemma 3.2 (a), 0 < /2’y-2 1. Thus, it suffices to show that the
2-sequence {1, l, r}, 0 < r < l, is extendible to a multiplier sequence of
the first kind. First suppose that 0 < r < 1. For each fixed positive real
numbers, let ak 1 + ks andflk (1 + s) -, k 0, 1, 2, Then
{ k}k=0 and {ilk }=0 are both multiplier sequences of the first kind since they
are generated by the functions (1 / sx)e and exp(x/(1 + s)) respectively.
Thus, the composite sequence

{a0/0, 1/1, a22, ...} {1, 1, (1 + 2s)(1 + s) -2,

is also a multiplier sequence of the first kind. Now a simple computation
shows that for s [(1 r) + /1 r]r- the above sequence becomes
{1, l, r, ...}. The corresponding entire function

X
(x) 1 + x + r. +

is of type I in the Laguerre-P61ya class and satisfies the required conditions
(0) ’(0) 1 and "(0) r.
If r 0, then by Remark 2.3 (x) / x. Finally, suppose

(x) x,
where y0 y y2 1, is a function of type I in the Laguerre-P61ya
class. Then for each fixed real number the function

X
k

e. (xt) gk(t)..
k=0

is also a function in the Laguerre-P61ya class. Consequently, for every
the Turtin inequality

A(t) =-- gZ(t) gk-l(t)gk+ (t) > 0

holds for k l, 2, If y0 Y Y2 l, then

AE(t) (1 / t)t3(1 Y3)

and thus the inequality AE(t 0, for all t, implies that Y3 1. Now the
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function

X
2

’(x) 3’ + y:x + 3’3 +

is again in the Laguerre-P61ya class. Therefore, a repetition of the above
steps in conjunction with a simple induction argument shows that / 1
for all n. That is, if 3’0 Y Y2 1, then (x) e.
As an application of Proposition 4.5 we shall prove the following result

(see also [4, Theorem 6]).

THEOREM 4.6. Let
Yk

X
k

k=O

where F {Yk}, )’k > 0, is a multiplier sequence of the first kind. Then

(4.7) Zc(F[f(x + X)])= Z(F[f]),

for all real polynomials f(x) and for all real numbers X, if and only if
dO(X) flxme or (x) flxm(1 + OtX), where , fl > 0 and m is a
nonnegative integer.

Proof. If alP(X) xme (or (x) xm(1 + OtX)) then it is easy to
verify that the corresponding multiplier sequence F satisfies condition (4.7).

Conversely, suppose that (4.7) holds. We shall consider two cases: (a)
yo :/: 0 and (b)y0 3’1 Ym- 0, but ’)t 0.

(a) Suppose that 3’0 : 0. If 3’1 0, then by Remark 2.3, 0 3’2
y3 and thus (x) =- 3’0. Another appeal to Remark 2.3 yields (x)
yo + yx, if 3/2 0. Consequently, we may assume that y > 0 for k
0, 1, 2. If we now apply F to f(x) 1 + x2, then by virtue of condition
(4.7), we obtain y2 yoy2. This equality implies that the multiplier sequence
corresponding to the function

X
2

dpl(x) =-yldP(yoy?Ix) + x + . +

begins with three consecutive ones. Thus, by Proposition 4.5, l(x) ex,
that is, (x) has the desired form.

(b) Suppose that y0 y )/m-1 0, but Ym :/: O. If Ym+ 0
or ’)/m+2 0, then, as we have seen above, the argument is easy and so
we shall also assume that Ym+ 13/m+2 0. Let

X 2"ym + 2() X ")/ "-
")/ +l

__
rn + lX +

(m + 2)(m + 1) 2!

X= :(x).m!
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In this case we apply F to f(x) xm(1 4- X2) and conclude by virtue of
(4.7) that

)’2m + 2Tm + 2’)/m

(m + 1)2- (m + 2)(m + 1)"

Thus, the argument used in (a) shows that 2(x) /meXp{/m%Tn+ IX} and a

fortiori (x) has once again the required form. Thus the proof of the theorem
is complete.
We shall next cite a few examples which not only elucidate the differences

that exist between multiplier sequences of the first kind and n-sequences,
but also reveal some of the more surprising features of n-sequences. To
begin with we shall consider the following natural question. Does every n-
sequence satisfy the Fundamental Inequality? That is, if F is an n-sequence
and if f(x) is any real polynomial of degree n, then is it always true that

Z(F[f]) < Zc(f)?

Although the results presented thus far tend to suggest an affirmative answer
to this question, one of the most perplexing facts about n-sequences is that,
in general, they do not satisfy this inequality. We shall state our answer
to the above question in the form of an existence theorem.

THEOREM 4.8. There is a 4-sequence F and a polynomial f(x) of degree
4 such that Z(F[f]) > Z(f).

Since the existence of the example called for by Theorem 4.8 does not
appear to be transparent we will include here the following specific illustration.

Example 4.9. Let

612 73 34

and observe that

4,[ 7 61 X
2 7X X

4] :.
Thus, by Theorem 3.1 and Lemma 3.2 (c), F {1, 7/2, 61/6, 21, 36} is a
4-sequence. Next, let f(x) x4 + 9X2 6 and note that f(x) and afortiori
the polynomial

f(x 4- 4) X
4 4- 16X 4- 105X2 4- 327x + 394

have exactly two real zeros. Now a computation shows that

2135 2F[f(x + 4)] 36x4 + 336x + 2 x + 1148x + 394

/111
(6x2 + 28x + 19) 4- --x + 84x 4- 33
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From this expression we can readily deduce that Zc(F[f(x + 4)]) 4,
while Z(f(x + 4)) 2.

Example 4. lO.
4.9. Then

so that

Let (x) and f(x) be the polynomials defined in Example

(D)f(x) x + 7x /

4 Z((D)f(x)) > Z(f) 2.

Example 4.11. In this example we will show that in a certain sense the
Fundamental Inequality is best possible (see also Craven and Csordas [4,
Corollary 12] and the Schur Composition Theorem, Obreschkoff [15]). Let
(x) and f(x) be the polynomials defined in Example 4.9 and let

A(x)=
k=0()akxk=f(x/4) and B(x)=

--0()bkx/= X4tp()"
Then elementary considerations imply that

On the other hand, since the sequence

(b b, b2 b3
4]’3 2! l

0 0,

is a multiplier sequence of the first kind, it follows from the Fundamental
Inequality that

Zc a x Z(A(x)) 2
=o (4- k)

While Theorem 4.8 is surprising, it also leads to several open questions
which we shall presently discuss here. For each positive integer n, n > 4,
is there an n-sequence and a polynomial f(x) of degree n such that

z(r[f]) > Zc(f)?

Examples are also known for n 6 and 8. The 4-sequence defined in
Example 4.9 is curious not only because it satisfies the inequality of Theorem
4.8 but also because for any polynomial f(x) of degree < 3

Zc(F[f]) Zc(f).

This raises the following general question. If F is an m-sequence and iff(x)
is a polynomial of degree n, n < m, then is it true that

Z(F[f]) Z(f)?
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An affirmative answer to the last question posed suggests the following
problem. For each positive integer n, n > 2, let

c(n) inf {m > n for all m-sequences F and for all real polynomials
f(x) of degree n, Z[F[f]) Z(f)}.

Is c(n) < o? It is easy to see that c(2) 2 and c(3) 3, while Example
4.9 shows that c(4) > 4.

Finally, we shall conclude this paper with an application of the theory
of n-sequences. Let F be a linear transformation defined on polynomials
by

with the eigenvalues X real, k 0, 1, 2, In [11, p. 382], Karlin raised
the following question" When is a sequence ho, h, )t, a zero-diminishing
sequence; that is for which transformations T is Z(T[f]) Z(f) for all
real polynomials f, where Z(f) denotes the number real zeros offcounting
multiplicities. In [5] the authors provided a complete answer to this question
and they raised the problem regarding finite sequences {)to, X} which
are zero-diminishing for all polynomials of degree at most n. An equivalent
formulation of this problem is given by the following proposition, which
takes on added significance in view of Example 4.9.

PROPOSITION 4.12. Let

T= {0, kn}, Xk>0
and let

Then T is zero-diminishing for all real polynomials of degree at most n if
and only if F is an n-sequence such that Zc(F[f]) < Z(f) for all real
polynomials of degree at most n.

Proof. Setting g F[f], we see that the condition Z(F[f]) < Zc(f)
for all polynomials f of degree at most n, is equivalent to Z(g) < Zc(T[g])
for all polynomials g of degree at most n. But then this is equivalent to
ZR(T[g]) < ZR(g), since hk > 0 for all k implies T[g] and g have the same
degree.
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