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THE PRODUCT OF TWO OR MORE NEIGHBORING
INTEGERS IS NEVER A POWER

BY
JAN TURrk

1. Introduction

In 1975 Erd6s and Selfridge [1] proved the elegant result: the product of
two or more consecutive positive integers is never a power. Earlier, Rigge
[6] and, independently, Erdos [7] had shown that such a product is never
a square.

In this paper we prove a generalisation, namely: the product of two or
more neighboring integers is never a power.

Here we say that distinct integers are neighboring if they belong to a
short interval (N, N + clog log logN) for some absolute constant ¢ (and,
of course, if N < 16 we interpret log log logN as 1). Our principal result
is false for infinitely many N if the interval is lengthened to

exp(12(log N log logN)"?),

and is false for all N if the interval is as long as ¢N">~° for certain positive
constants c,e€.

Actually, we consider a more general situation. Our products of neighboring
integers allow for repetition, so our statement becomes that the product
of two or more neighboring integers, allowing repetition, is never, other
than trivially, a power. Moreover, we deal with ‘‘almost powers’’ rather
than ‘‘perfect powers.”’ This is to say: we consider quantities of the shape
ab™ with the integer a ‘‘small’’ relative to »™ and we actually show that
the quantities we consider are never (other than trivially) ‘‘almost powers.”’

Finally we remark on what constitutes ‘‘triviality.”” We consider finite
products

mi
nni ‘9

with the n; in the given ‘‘short interval,”’ and consider such products ‘‘not
trivially a possible almost m-th power’’ if gcd(m,m;) = 1 for each i. It
would seem more natural to ask of the m; that not all the m; be multiples
of m. But this raises considerable difficulties: though Tijdeman [8] has
shown that two sufficiently large consecutive integers cannot both be powers,
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PRODUCTS OF NEIGHBORING INTEGERS 393

it has not been established that large neighboring integers cannot both be
powers; this, and more, is required to effect the desired relaxation of the
condition on the m,;.

2. Lemmas

Notation. For a,m € IN with m = 2 we denote the set of integers of
the form ax™, x € IN, by aIN™. As usual, w(n) is the number of distinct
primes dividing n € IN, P(n) is the greatest prime dividing n > 1, while
P(1) = 1. The greatest common divisor of # and m is denoted by gcd(n,m)
and the least common multiple of n,, ..., n; by lcm[n, ..., n;]. We write
|S| for the number of elements of a set S.

Lemma 1. Let a,m,f € IN with m = 2 and f = 2. Let n,, *** , ny be
distinct positive integers in an interval of length K with the property that
IIY_, n™ € aIN™ for certain m,, - , my € IN with gcd(m;,m) = 1 for

1 <is=<f{ Write n, = a;x{", a = aogxg with a;,x; € IN and a; m-free for
0 <i=<f Then:

(1) ay, -, as are composed of the primes dividing a, and the primes
not exceeding K.

Q) a; < exp(m(CK + 2 log p)) fori =1, -, f, where C is some

plao

absolute constant.

3) a < exp(m((f— Dlog K + D, log p)) fori=1,-,f

Plag
(4) There exist two (three if f = 3) a;’s with

a; < exp(Cf"(mK + KlogK + m Y, log p)),
Plao

where C is some absolute constant.
(5) There exist two (three if f = 3) a;/s with

a; < exp(Cm(K”z(log K)'" + > log p)),

plag

where C is some absolute constant.

Proof. Let, for n € IN, II, p”™ = n be the prime factorization of n.
Then we have, for every prime p,

f
> mv,(a;) = v,(a;) (modm).
i=1
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Hence if p | a, and p | a; for some 1 < i < f then p | g; for some 1 <

j <f,j+# i It follows from p | gcd(a;,q;) that p | ged(n;,n;) which divides
n; — n;(#0). Hence p < |n; — nj| < K. This proves (1). Since g, is m-free
it follows from (1) that, for 1 < i < f,

l—[p”"(“" < (H p-11 p)

p=<K pla,

m-—1 m=—1
< (Cé‘ I1 p) ,
plaq

which implies (2), with C = log C,, and C, = 3 for example. To prove
(3) we note that, in view of the foregoing, a; divides

l—[ pvP(a:) fl H pr(ax)

plao J=1 plaj
J#i pla,
which divides
m—1
f
(l_l p) (H gcd(ai,aj)'"“>.
pla, Jj=1
J#i

As observed already, ged(a;,a;) < K for i # j which gives (3). To prove
(4) we consider
!

l_I a;, = l_[p"“’ = H p* H p"” where o, = 2 v,(a;)
i=1 p=<K p|>K i=1
pla,

where 0 < v, < m — 1. Note that

2 v,(a;) = 2 {1 <i=<f|p’divides a;}|

i=1

&
—

m—1

< {1 < i< f|p’ divides n,}|
1

<.
I

3
|

< 2 (L +[Kp™)
1

<.
[

<m-1+ Y [Kp~]

j=1
=m—1+ v,(K!).

Hence

f
[Ta<TIp'&)[Ip" ' <exp(Cokm + Klog K + m Y, log p).
i=1

p<K pla, plag
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If f = 3 there exist at least three a;,’s with a; < (II/_,4,)"Y~?, hence with

a; < exp(3f (CoKm + Klog K + m 2 log p)).

pla,

If f = 2 then we have, by (3), a; < exp(m(log K + Zpia, log p)) for i =
1,2. This proves (4) (with C = 3C,, e.g., with C = 3 log 3).
To prove (5) we distinguish two cases. If

f=2+ [K"(log K)™) =i\

then we have 3 < A < fand

A
[[ a<lemla;, -, a] [] egcda;,a)

i=1 I=si<j=A
m-1, m—-1, pAA-1)/2
<[lpm'-Tlp 'k
pla, p<K
p>K

<exp((m — 1)(CoK + 2, log p) + N — 1)/2 - log K).

pla,

Since there exist at least three a;’s among a,, *** , a, with

A 1/(A-2)
a=< (]I a,.)
i=1

it follows that there exist at least three a,’s with
a;<exp(3/2-(\ — Dlog K + 3(m — DA"(CoK + D, log p))

plao

< exp(3C, mK *(log K)'* + m D, log p).

plao

If f< 1 + [K"%(log K)~"/?] then we have, by (3),
a; < exp(m(K*(log K)'> + X log p)) forl<i<f

plao

so that (5) holds in both cases with C = 3C, (e.g., C = 3 log 3).1

LeEMMA 2. Suppose the interval [N, N + K], where 1 < K < N*?,
contains two distinct integers n; of the form n; = a;x!" where a;,x; € IN
fori = 1,2 with m = 3. Let p,, -+ , p, be the distinct primes dividing a,a,
and put

a=p;p, A=max{p,, -, p,3}
Then
o {m <a®  f@m) 0D
log N < a“ if (x1,x;) = (1,1),
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Q?) A" log 3K log log 3K > log N,

where C, and C, are absolute constants.
Proof. See [2, Proposition 1].

LemMA 3. Suppose the interval [N, N + K], where N = 1, K = 1,
contains three distinct integers n; of the form n; = a;x?, where a;,x; € IN.
Put A = max {a,,a,,as,3}. Then

CA**®log 3K log log 3K > log N,
where € > 0 is arbitrary and C = C(g) > 0.
Proof. See [2, Proposition 2].

The proofs of Lemmas 2 and 3 are based on a lower bound for linear
forms in logarithms of rational numbers.

3. Products of neighboring integers and almost powers: The general case

THEOREM 1. There exist positive numbers c,, ¢, and c; with the following
property. For N = 16 write K(N) = c, log log log(N). For f = 2, let n,,
.-+, ns be f distinct integers in an interval of the form Iy = [N,N + K(N)].
Let m € IN with m = 2 and let my, .-+ , m; € IN with ged(m,m;) = 1 for
i=1, -, f Write II{_, n™ = ab, where a € IN, b € IN". Then

a > (loglog N)*(>1) and P(a) > c;logloglog N

except if f = 2, m = 2, a & IN% In fact, if a & IN? then n,n, € aIN? with
n, # n, in Iy occurs for infinitely many intervals Iy, N € IN.

Proof of Theorem 1. For f= 2, suppose n,, **- , nyare f distinct integers
in an interval [N,N + K], where N = 16 and K = 1. Let m € IN with
m = 2 and let m,, -~ , m; € IN with gcd (m,m;) = 1. Suppose

!

[1 " € aIN™  where a € IN.

i=1
Write n; = a;x7", a = aygxg with a;,x; € IN and a; m-free for 0 < i < f.
First we consider the cases where f = m = 2. If a € IN? then it follows
from n7"'n? € aIN?, m;,m, odd, that a, = a,; hence [N,N + K] contains
two distinct integers of the form a,x?,a,x3, which implies that K > N'/2,
Hence if K < N"?and f = m = 2 then a & IN°. It is well known that for
every a & IN? there exist infinitely many x,,x, € IN with x} — ax} = 1;
hence n, = x3, n, = ax3 satisfy n,n, € aIN’* and n, — n, = 1. We have
proved our assertions about the cases f = m = 2 in Theorem 1 and we
may assume f = 3 if m = 2 now. We distinguish two cases.
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Case 1. m = 2 (f = 3). By Lemma 1, (5), the interval [N,N + K]
contains three distinct integers a;x? with

a; < exp{C(K *(log K)"* + D log p)} =: A.
plao

By Lemma 3 we have A‘(log 3 K)* >> log N. It follows that
K'(log K)"* + Y, log p > 8, loglog N

plao
for some absolute positive constant 8,. In particular, if
1
K'*(log K)'* < 58, log log N,

then =,,, log p > 8,/2 log log N. Since

2 log p <loga, and 2 log p < 2 log p < 8, P(a,)

plao plao p=<P(ao)
for some absolute constant 8, we conclude that if

K < 8,(log log N)*(log log log N) !

for some small absolute constant 8, then

a,> (log N)*/? and P(ay) > 8,/(28,) log log N.

Case 2. m = 3. Now [N,N + K] contains, by Lemma 1, (5), two
distinct integers a;x" with

a; < exp(Cm(K'/z(log K)'? + > log p)) = A.

plao

By Lemma 2, (2), assuming that K < N**, we have

*) m“(K'/Z(log K)'* + > log p) >> log log N.
plao
We have to bound the exponent m now. By Lemma 2, (1) and Lemma 1,
(1), assuming K < N** again, we have
Ci

m < (Z p 1l p) if the x; are not both 1,

plac  p<K
Ci

log N < (H p 1l p) if the x; are both 1.

plac  p<K

In the latter case (x; = 1 for both i) we get log log N << K + Z,,, log
p. In the other case we obtain log m << K + X,,, log p. Inserting this
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bound for m in (*) we get

K + D log p > 8;log log log N

plao
for some absolute positive constant §; ( < 1). In particular, if
K < ¢, loglog log N (<N*?)

for some small positive constant ¢, then =,,, log p > % 8, log log log N,
which implies

a, > (loglog N)*? and P(ay) > 8,/(28,) - log log log N. ]

Note that it is essential that the bound for m in Lemma 2, (1) depends
only on the prime divisors of a;a,, not just on a, and a,.

CorOLLARY 1. The product of two or more distinct integers from an
interval of the form Iy = [N,N + c, log log log N], N = 16, is never a
power.

Remark. By Theorem 1, II{_, n/ & IN"if n,, - ,n,€ Iy, N = 16, f =
2 for any m € IN with m = 2 and any m,, -+ , m; € IN with gcd(m,m;) =
1fori =1, .-, f. It would be interesting to relax the conditions on the
multiplicities m,, :*- , my, possibly to ‘“‘not all m,, -+, m, are multiples of
m.”’ This seems to be a difficult matter, however: observe that two distinct
powers n, = x{", n, = x7° satisfy ni”ny"' € IN™ with m = m;m,. It has
not been established that two distinct powers cannot be neighboring integers;
the only known general result in this respect is that two sufficiently large
distinct powers cannot be consecutive integers (Tijdeman, 1976).

CoRrOLLARY 2. Let a € IN. The product of three or more distinct integers
ny, ==+, nyfrom an interval Iy, N = 16, is not of the form ab for any power
b, except for finitely many sets {n,, -, ns}. (If a € IN* then one may
replace ‘“‘three’’ by ‘‘two’’ in the above assertion).

In [2], [3] we introduced the notion of an almost power: let ¢: IN — IN
be a non-decreasing function. An integer n is called an ¢-almost power if
it can be written as n = ab, where b is a power and a € IN with (1 <)
a < ¢(n). A different, perhaps more natural, notion of an almost power
results if one replaces the condition (1 <) a < ¢(n) by (1 <) P(a) < ¢(n):
n is a power iff there exists an m € IN with m = 2 such that v,(n) € mZ
for all primes p, while in the latter definition of almost power we require
v,(n) € mZ for all p > ¢(n).

CoroLLARY 3. The product of three or more distinct integers from an
interval Iy, N = 16, is never a ¢-almost power (in both senses, with
éd(n) = (loglog n)** and $(n) = cs log log log n, respectively, where c,
and cs are positive absolute constants).
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Proof. For f = 3, suppose ny, *** , nyare f distinct integers in Iy; write
n = I, n;, = ab, where b is some power and a € IN. Then
a> (loglog N)> and P(a) > c;logloglog N.
Note that since N < n; < 2N we have n = II{_, n; < 2N); hence
loglog N < loglogn < Cloglog N,

where C is some absolute constant. Since a = 2, P(a) = 2, it follows easily
that

a > (loglogn)* and P(a) > cslogloglogn

if ¢, and cs are sufficiently small positive absolute constants. ll

4. Products of neighboring integers and almost powers: Special cases

The intervals I in Section 3 are rather short. This is due to the fact that
the exponent m is unspecified. When m is fixed (e.g., when one asks for
neighboring integers whose product is a square) then one can allow for
longer intervals.

THEOREM 2. Let m € IN with m = 2. For N = 16 write

K™(N) = cem™%log log N)*(log log log N)~".
For f =2, let n,, -+, ny be f distinct integers in an interval of the form
I = [N,N + K™(N)], N=16

and let my, -+, my € IN with ged(m,m;) = 1 fori = 1, -+, f. Write

f
H n™ = ab where a € IN, b € IN",
i=1
Then
a> (log N¥™" and P(a)> cgm *loglog N,
except if m = 2, f = 2 and a & IN°. Here cg, c; and cg are fixed positive

numbers.

CoroLLARY 4. The product of two or more distinct integers from an
interval [N,N + co(log log N)*(log log log N)~'], N = 16, is never a square
or a cube.

Proof of Theorem 2. See the proof of Theorem 1; we do not have to
bound m now and in Case 2 we conclude from (*) that if
K'"*(log K)"/* < cm™*loglog N for some small ¢ > 0
then =,,, log p >> m *log log N. &
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In Theorems 1 and 2 the sets {n;, *** , ns} are arbitrary sets contained in
short intervals. One can enlarge the lengths of the intervals if the sets {n,,
==+, ns} are restricted in one of the following ways: the number of elements
fis ““small”’ or the average distance

ne—n
i}—:T' (ny <+ <ny)

is ‘‘small.”’

THEOREM 3. Letm € INwithm =2, let F=2,A=1and 0 < e < 1.
For N = 3, let

Ki(N) = 3 explcloglog N)'™), i = 1.2,
where ¢, = c,om *F~'and ¢, = c;om ‘A" For f= 2, let n, < - < n;

be f distinct integers in an interval of the form [N,N + K;(N)], N = 3,
with

f=F(loglogN)® ifi=1,
ﬁjg:—’l"s Aloglog N)* if i = 2.
Let my, -+, my € IN with ged(m,m;) = 1 fori = 1, -+, f, and write

f
H n™ = ab wherea € IN, b € IN".
i=1

Then

a>(log N and P(a)> c;m *loglog N,

except if m = 2, f = 2 and a & IN°. Here c,y,cy;,Cy are positive absolute
constants.

CorOLLARY 5. Let m,fE INwithm =2,f=2. Let ny, **- , n; be distinct
integers in an interval of the form

[N,N + %(log N)C”] where ci3 = cign

Then I1_, n; &€ IN™. Let m € IN with m = 2 and let A = 1. Let n,, -+
n; be distinct integers in an interval of the form

9

[N,N + %(log N)”M] where ¢,y = ciom ‘A~ with gf:—;’—'-s A.

Then TI{_, n; & IN™,
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Proof of Theorem 3. This is similar to the proof of Theorem 2; instead
of Lemma 1, (5) use Lemma 1, 3)ifi = 1 and Lemma 1, (4) if i = 2.

5. Intervals containing integers having a power as their product

It seems reasonable to guess that the assertions in Corollaries 1 and 4
are true for longer ‘‘short intervals.”’ In this final section we prove that
these assertions certainly do not hold for sufficiently long (but still ‘‘short’’)
intervals.

THEOREM 4. For N = 3 let K;(N) = exp(12(log N log log N)'/?). For
every m € IN with m = 2 there exists an infinite set N,, C IN such that
for every N € N,, the interval [IN,N + K;(N)] contains a subset {n,, -
ng} consisting of f integers, f = f(N) = 2, with the property that

.o
b

f
[1 21N for certainmy, -+ ,mE{l, - ,m — 1}.

i=1

COROLLARY 5. There exist infinitely many N € IN such that [N,N +
K5(N)] contains two or more distinct integers having a power (in fact, a
square) as their product.

Proof of Theorem 4. 1t is known (e.g., see [4, Theorem 5.4]) that there
exist infinitely many N € IN such that the interval [N, N + K;(N)] contains
a subset S* of integers with w(S*) < V/|$*| and |S*| > K3(N)"?, where |S|
denotes the number of elements of a set § and «(S) the number of elements
|P| of the set P of prime divisors of II,css. Let m € IN with m = 2. For
sufficiently large N the interval [N,N + K;(N)] contains at most one
element from IN?, for every d > 1. Delete from S* those s with the property
that s € IN“ for some d > 1 with d | m. For N sufficiently large (in terms
of m), and denoting the number of divisors of m by d(m), we have, for the
resulting set S,

|S| = |S*| — d(m)

> g 0B M | e

log 2

log m
log 2

=

(@($*) + 1)

log m
log 2
For every subset T C § we define ¢(T) = (g,),ep, Where

g, €{0,1, - ,m—1}, &,= 2, v,(s) (mod m).

SES

=

(w(S) + 1).
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We have 2/ distinct sets T and at most m' = m“® distinct tuples ¢(7T).
By the box principle there exists a tuple (g,),ep such that there exist at
least 2's'/m“"s’ ( =m) distinct T with ¢(T) = (e,)pep, say ¢(T;) = (sp)pep
fori =1, , m. Puta = Il,ep p*, then Il,es, t € alN" for i = 1, -
m. Hence

’

[ = nl_[tGIN'”

t€TIU - UTn i=1tE€T;

where m(¢) denotes the number of T;, 1 < i < m, witht € T,. Let n,, *-*
nebe those t € T, U -+ U T, with

m@e{l, - ,m— 1}.

b

Since T,, :-+, T,, are not all equal we have f = 1 and since ¢ & IN? for
any d > 1 with d | m we have f = 2. Hence

!
[]nmeIN" wheref=2andm; = mmn,)E{l, - ,m—1;. R

i=1

THEOREM 5. Let K,(N) = ¢;s N2~ where c,s and &, are certain positive
constants. For every N = 1 the interval [N, N + K,(N)] contains two or
more distinct integers having a power as their product.

Proof. It follows from the argument in the proof of Theorem 4 that if
S is a set of positive integers with w(S) + 1 < |S| which does not contain
a square then there exists a subset T of S with |T| = 2 and II,c; t € IN?.
It is known (e.g., see [4, page 16], or [5])) that if n, k € IN with k =
cisn'/?7%, with €, a small positive constant and c,s a large constant, then

om+ D m+k)<k-2.

Now the set $* = {n + 1, -*-, n + k} contains a subset T with |T| = 2
and I, ¢ € IN?: if S* contains two squares then this is obvious; if $*
contains one or zero squares then we apply the above argument to § =
S* minus the square in S*, or to § = S§*, respectively. B
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