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THE PRODUCT OF TWO OR MORE NEIGHBORING
INTEGERS IS NEVER A POWER

BY

JAN TURK

I. Introduction

In 1975 Erd6s and Selfridge [I] proved the elegant result: the product of
two or more consecutive positive integers is never a power. Earlier, Rigge
[6] and, independently, Erd6s [7] had shown that such a product is never
a squ,are.

In this paper we prove a generalisation, namely: the product of two or
more neighboring integers is never a power.
Here we say that distinct integers are neighboring if they belong to a

short interval (N, N + clog log logN) for some absolute constant c (and,
of course, if N < 16 we interpret log log logN as 1). Our principal result
is false for infinitely many N if the interval is lengthened to

exp(12(log N log logN)1/2),

and is false for all N if the interval is as long as cNt/2- for certain positive
constants c, e.

Actually, we consider a more general situation. Our products ofneighboring
integers allow for repetition, so our statement becomes that the product
of two or more neighboring integers, allowing repetition, is never, other
than trivially, a power. Moreover, we deal with "almost powers" rather
than "perfect powers." This is to say" we consider quantities of the shape
ab with the integer a "small" relative to b and we actually show that
the quantities we consider are never (other than trivially) "almost powers."

Finally we remark on what constitutes "triviality." We consider finite
products

I-In?’,

with the n in the given "short interval," and consider such products "not
trivially a possible almost m-th power" if gcd(m,m) for each i. It
would seem more natural to ask of the mi that not all the m be multiples
of m. But this raises considerable difficulties: though Tijdeman [8] has
shown that two sufficiently large consecutive integers cannot both be powers,
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it has not been established that large neighboring integers cannot both be
powers; this, and more, is required to effect the desired relaxation of the
condition on the m.

2. Lemmas

Notation. For a,m IN with m > 2 we denote the set of integers of
the form axm, x IN, by alNm. As usual, o(n) is the number of distinct
primes dividing n IN, P(n) is the greatest prime dividing n > 1, while
P(1) 1. The greatest common divisor of n and m is denoted by gcd(n,m)
and the least common multiple of n, nz by lcm[n, nr]. We write
IsI for the number of elements of a set S.

LEMMA 1. Let a,m,f IN with m > 2 and f > 2. Let n l, "", nf be
distinct positive integers in an interval of length K with the property that

miII,f.=l ni aIN for certain m, ..., my IN with gcd(mi,m) 1 for
1 < < f. Write ni ax’, a aox with a,xg IN and a m-free for
0 < < f. Then:

(1) al,
not exceeding K.

(2) ai< exp(m(
absolute constant.

af are composed of the primes dividing ao and the primes

CK + log p) )pla
fori 1,

Pla

(4) There exist two (three iff > 3) ai’s with

f, where C is some

fori 1, ,f.

ai<exp(Cf-(mK+KlogK+ m log p)),
Pla

where C is some absolute constant.

(5) There exist two (three iff > 3) ai’s with

a<exp(Cm(Kl/2(logK)’/2+ log p)),
Pla

where C is some absolute constant.

Proof. Let, for n IN, IIp pVp(n) n be the prime factorization of n.
Then we have, for every prime p,

rnvo (a) vp (a) (rnod m).
il
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Hence ifp aoand p afor some 1 < <fthenp ajfor some 1 <
j < f, j - i. It follows from p gcd(a,aj) that p gcd(n,nj) which divides
n nj(4: 0). Hence p < In nl < K. This proves (1). Since ai is m-free
it follows from (1) that, for < < f,

m-I m-I

ai HPv’(a) (p<K p" H P) (C H P)
P Pla P]a

which implies (2), with C log Co, and Co 3 for example. To prove
(3) we note that, in view of the foregoing, ai divides

which divides

f

1-I pVp(ai) H H pV,(a)
plao j= plaj

j pa

As observed already, gcd(ai,aj) < K for j which gives (3). To prove
(4) we consider
f f

H ai H pa’= H pa, H pro where % vp(ai)
i= p p<K p>K i=

Plao

where0 < vp < m 1. Note that

f m--I

Z vp(ai) Z I{1 < <fl PJ divides
i=l j=l

m-I

< I{1 < < flp divides ni}l
j=l

m--I

< (1 + [Kp-J])
j=l

<rn- + [Kp-Jl
j=l

rn- + v,(K!).

Hence
f

H ai<
i=l

Hpm- (K!) l--Ipm- < exp(CoKm + K log K + rn log p).
p<K pla pla
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If f > 3 there exist at least three ai’s with a. < (1-Ifi=ai)1/f-2), hence with

ai < exp(3f- l(CoKm + K log K + m log p)).
Pla

If f 2 then we have, by (3), ai < exp(m(log K + Epl,o log p)) for
1,2. This proves (4) (with C 3C0, e.g., with C 3 log 3).
To prove (5) we distinguish two cases. If

f> 2 + [K 1/2(log K)-1/2] __.: h

then we have 3 < h < fand

H ai lcm[al, "", ax] 1-[ gcd(ai,aj)
<i<j<h

< Pao pm- H pm- Kx(x- 1)/2

p<K
p>K

< exp((m 1)(CoK + log p) + h(h 1)/2. log K).
P]a

Since there exist at least three a’s among a,

ai <. ai

it follows that there exist at least three ai’s with

ax with

ai < exp(3/2 (X 1)log K + 3(m 1)x-l(c0K + log p))
p[ao

< exp(3C0 mKl/2(log K)1/2 + m log p).
plao

If f < 1 + [Kl/E(log K) -1/2] then we have, by (3),

ai < exp(m(K1/E(log K)1/2 / log p)) for < < f
plao

so that (5) holds in both cases with C 3C0 (e.g., C 3 log 3).

LEMMA 2. Suppose the interval [N, N + K], where 1 < K < N2/3,
contains two distinct integers ni of the form ni aix where ai,xi IN
for 1,2 with m > 3. Let Pl, Pt be the distinct primes dividing ala2
and put

a =pl...pt, A max{pl,"’,pt, 3}.

Then

(1)
m < aC’ if (xl,x2) (1,1)

log N < ac’ if (xl,X2) (1,1),
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(2) Ac2m3 log 3K log log 3K > log N,

where C and C2 are absolute constants.

Proof. See [2, Proposition 1].

LEMMA 3. Suppose the interval [N,N + K], where N > 1, K > 1,
contains three distinct integers ni of the form ni aix2, where ai,xi IN.
Put A max {a,a2,a3,3}. Then

CA3+ log 3K log log 3K > log N,

where > 0 is arbitrary and C C(e) > O.

Proof. See [2, Proposition 2].
The proofs of Lemmas 2 and 3 are based on a lower bound for linear

forms in logarithms of rational numbers.

3. Products of neighboring integers and almost powers: The general case

TIEOREM 1. There exist positive numbers c, c2 and c3 with the following
property. For N > 16 write K(N) c log log log(N). For f > 2, let n,

ny be f distinct integers in an interval of the form IN [N,N + K(N)].
Let m IN with m > 2 and let m, my C IN with gcd(m,mi) l for

mi ab where a IN b INm. Then1, f. Write I]i= ni

a > (log log N)C2(> 1) and P(a) > c3 log log log N

except iff 2, m 2, a IN2. In fact, if a IN2 then nn2 aIN2 with
n n2 in IN occurs for infinitely many intervals IN, N IN.

Proofof Theorem 1. Forf> 2, suppose n, ny are fdistinct integers
in an interval [N,N + K], where N > 16 and K > 1. Let rn IN with
m > 2 and let m, my IN with gcd (m,mi) 1. Suppose

f
miI-[ ni alN whereaIN.

i=1

Write ni aixr, a aoX’ with ae,xg IN and ag m-free for 0 < < f.
First we consider the cases where f rn 2. If a IN2 then it follows
from ml. m2

rt! tt2 aIN2, m,mz odd, that a a2, hence [N,N + K] contains
two distinct integers of the form ax,ax, which implies that K > N/z.
Hence if K < N/z and f rn 2 then a INz. It is well known that for
every a IN there exist infinitely many x,x2 IN with x ax2 1;
hence n x2, nz axZ2 satisfy /’/1/’/2 alN and n n2 1. We have
proved our assertions about the cases f m 2 in Theorem and we
may assume f > 3 if rn 2 now. We distinguish two cases.
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Case 1. m 2 (f > 3). By Lemma 1, (5), the interval [N,N + K]
contains three distinct integers ax2i with

ai < exp{C(K/2(log K) 1/2 + log p)} =" A.
plao

By Lemma 3 we have A(log 3 K) >> log N. It follows that

K /2(log K)/2 + ? log p > i log log N
plao

for some absolute positive constant 81. In particular, if

K /2(log K)1/2 < log log N,

then E,l0 log p > 5/2 log log N. Since

logp<loga0 and logp< logp<0P(a0)
plao pld0 p<P(ao)

for some absolute constant 80 we conclude that if

K < 82(10g log N)2(log log log N)-

for some small absolute constant 82 then

a0 > (log N)’/2 and P(ao) > 5/(260) log log N.

Case 2. m > 3. Now [N,N + K] contains, by Lemma 1, (5), two
distinct integers axT’ with

ai<exp(Cm(KI/2(logK)l/2+ log p))=:a.
plao

By Lemma 2, (2), assuming that K < N2/3, we have

(*) m4(K’/2(logK)’/2+ log p)>> log log N.
plao

We have to bound the exponent m now. By Lemma 2, (1) and Lemma 1,
(1), assuming K < N2/3 again, we have

Cl

m(oPl-[P)pr ifthexiarenotbothl,

CI

logN< (loP I-[p ifthexarebothl.

In the latter case (xi for both i) we get log logN<< K + E,laolog
p. In the other case we obtain log m << K + ;ola0 log p. Inserting this
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bound for rn in (*) we get

K + log p > 53 log log log N
plao

for some absolute positive constant 53 < 1). In particular, if

K < c log log log N <N2/3)

for some small positive constant ct, then Xol,o log p > 1/2 53 log log log N,
which implies

a0 > (log log N)/2 and P(ao) > 3/(20) log log log N.

Note that it is essential that the bound for rn in Lemma 2, (1) depends
only on the prime divisors of aa2, not just on a and a2.

COROLLARY 1. The product of two or more distinct integers from an
interval of the form I [N,N + c log log log N], N > 16, is never a
power.

miRemark. By Theorem 1, II,f.= n q IN if nt, nf IN, N > 16, f >
2 for any rn IN with rn > 2 and any mr, my IN with gcd(m,mi)

for 1, f. It would be interesting to relax the conditions on the
multiplicities m, m, possibly to "not all m, mr are multiples of
m." This seems to be a difficult matter, however: observe that two distinct
powers n x’l, n2 x’: satisfy n’n IN with rn mm2. It has
not been established that two distinct powers cannot be neighboring integers;
the only known general result in this respect is that two sufficiently large
distinct powers cannot be consecutive integers (Tijdeman, 1976).

COROLLARY 2. Let a IN. The product of three or more distinct integers
n, nffrom an interval Ilv, N > 16, is not of the form ab for any power
b, except for finitely many sets {n, ".’, nf}. (If a IN then one may
replace "three" by "two" in the above assertion).

In [2], [3] we introduced the notion of an almost power: let b: IN -- IN
be a non-decreasing function. An integer n is called an th-almost power if
it can be written as n ab, where b is a power and a IN with (1 <
a < qb(n). A different, perhaps more natural, notion of an almost power
results if one replaces the condition (1 < ) a < qb(n) by (1 < ) P(a) < b(n):
n is a power iff there exists an m IN with rn > 2 such that v,(n) mZ
for all primes p, while in the latter definition of almost power we require
v,(n) mZ for all p > b(n).

COROLLARY 3. The product of three or more distinct integers from an
interval IN, N > 16, is never a ok-almost power (in both senses, with
b(n) (log log n)’ and c(n) c5 log log log n, respectively, where c4
and c5 are positive absolute constants).
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Proof. For f > 3, suppose n l, r/f are f distinct integers in IN; write
n II=l n ab, where b is some power and a IN. Then

a > (log log N) and P(a) > c3 log log log N.

Note that since N < n < 2N we have n II{=t n < (2N); hence

log log N < log log n < C log log N,

where C is some absolute constant. Since a > 2, P(a) > 2, it follows easily
that

a > (log log n)c’ and P(a) > c5 log log log n

if c4 and c5 are sufficiently small positive absolute constants.

4. Products of neighboring integers and almost powers: Special cases

The intervals IN in Section 3 are rather short. This is due to the fact that
the exponent m is unspecified. When m is fixed (e.g., when one asks for
neighboring integers whose product is a square) then one can allow for
longer intervals.

THEOREM 2. Let m IN with m > 2. For N > 16 write

Km)(N) c6m-S(log log N)E(log log log N)-.

For f > 2, let nl, "", nf be f distinct integers in an interval of the form
INm) [N,N + Km)(N)], N> 16

and let m, mf IN with gcd(m,mi) for l, ,f. Write

f
m, ab where a IN, b IN’.I-I n

i=1

Then
a > (log N)c7m-4 and P(a) > C8m-4 log log N,

except if m 2, f 2 and a q IN2. Here c6, c7 and c8 are fixed positive
numbers.

COROLLARY 4. The product of two or more distinct integers from an
interval [N,N / c9(log log N)2(log log log N)-I], N > 16, is never a square
or a cube.

Proof of Theorem 2. See the proof of Theorem l; we do not have to
bound m now and in Case 2 we conclude from (*) that if

K/E(log K)/2 < cm -4 log log N for some small c > 0

then Epla0 log p >> m-4 log log N.
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In Theorems and 2 the sets {n, ..., ny} are arbitrary sets contained in
short intervals. One can enlarge the lengths of the intervals if the sets {n,

ny} are restricted in one of the following ways: the number of elements
f is "small" or the average distance

nf n
(n <...<ns)

is "small."

THEOREM 3. Let m IN with m > 2, let F > 2,A > and 0 < e < 1.
For N > 3, let

Ki(N) exp(ci(log log N)l-), 1,2,

where c com-4F- and c2 c0m-4A-. For f > 2, let n < < ns
be f distinct integers in an interval of the form [N,N + Ki(N)], N > 3,
with

f<F(loglogN) ifi= 1,

ns" n!. < A(log log N) ifi 2.
f-1

Let m, my IN with gcd(m,mi) lfori 1, ,f, and write

f

l-I n’’ ab where a IN, b IN.
i=l

Then

a > (log N)c’Im-" and P(a) > C12m-4 log log N,

except if rn 2, f 2 and a IN2. Here Co,C,,Cl2 are positive absolute
constants.

COROLLARY 5. Let m,f IN with m > 2, f > 2. Let n,
integers in an interval of the form

ny be distinct

N,N + (log N)c’3 where c13 clom-4f-

Then II,Y.= ni INm. Let rn IN with m > 2 and let A > 1. Let n,
ny be distinct ,integers in an interval of the form

N,N + (log N)c’4 where C14 Cl0m-4A-I with nf < A

Then II,f.= ni - INm.
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Proof of Theorem 3. This is similar to the proof of Theorem 2; instead
of Lemma 1, (5)use Lemma 1, (3)if and Lemma 1, (4)if 2.

5. Intervals containing integers having a power as their product

It seems reasonable to guess that the assertions in Corollaries 1 and 4
are true for longer "short intervals." In this final section we prove that
these assertions certainly do not hold for sufficiently long (but still "short")
intervals.

THEOREM 4. For N > 3 let K3(N) exp(12(log N log log N)l/2). For
every m IN with m > 2 there exists an infinite set N,,, C IN such that
for every N

_
N, the interval [N,N + K(N)] contains a subset {n,

n} consisting off integers, f f(N) > 2, with the property that

I-I n IN for certain m,... m_ {1, rn 1}.

COROLLARY 5. There exist infinitely many N IN such that [N,N +
Ka(N)] contains two or more distinct integers having a power (in fact, a
square) as their product.

Proof of Theorem 4. It is known (e.g., see [4, Theorem 5.4]) that there
exist infinitely many N IN such that the interval [N, N + K3(N)] contains
a subset S* of integers with to(S*) <I and IS*I > K3(N)1/3, where Isl
denotes the number of elements of a set S and to(S) the number of elements
IPI of the set P of prime divisors of II,s s. Let rn IN with rn > 2. For
sufficiently large N the interval [N,N + K3(N)] contains at most one
element from INd, for every d > 1. Delete from S* those s with the property
that s INd for some d > 1 with d[ m. For N sufficiently large (in terms
of m), and denoting the number of divisors of rn by d(m), we have, for the
resulting set S,

IsI Is*l d(m)

log rn
log

log rn (to(S*) + 1)
log 2

log rn
log2

(to(S) + 1).

For every subset T C S we define b(T) (ep)pe, where

tp {0,1, rn 1}, ep ’ vp (s) (mod m).
sS
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We have 2Isl distinct sets T and at most mlet mo(s. distinct tuples $(T).
By the box principle there exists a tuple (e)pe such that there exist at
least 21Sl/mo(s) (>m) distinct T with b(T) (ep)pe, say b(Ti) (ep)pe
for 1, m. Put a IIpe pep, then IItr, t alN for 1,
m. Hence

I-I tm(t) 1--I I-I INm,
tTltJ t.JTm i= tTi

where m(t) denotes the number of Ti, < < m, with Ti. Let nl,

ny be those Tl tA tA Tm with

m(t) {1, ..., rn 1}.

Since T, ..., Tm are not all equal we have f > and since t iNd for
any d > 1 with dim we havef > 2. Hence

f

I-[n’’IN wheref>2andmi= m(ni){1,’",rn- 1}.
i=1

N/2-e, where and eo are certain positiveTHEOREM 5. Let K4(N)
constants. For every N > 1 the interval [N, N + K4(N)] contains two or
more distinct integers having a power as their product.

Proof. It follows from the argument in the proof of Theorem 4 that if
S is a set of positive integers with to(S) + < IS[ which does not contain
a square then there exists a subset T of S with IT[ > 2 and liter t IN2.
It is known (e.g., see [4, page 16], or [5]) that if n, k IN with k >
cn/2-o, with e0 a small positive constant and c5 a large constant, then

o((n + 1)... (n + k))< k- 2.

Now the set S* {n + 1, ..., n + k} contains a subset T with [TI 2
and 1-Itr t IN2" if S* contains two squares then this is obvious; if S*
contains one or zero squares then we apply the above argument to S
S* minus the square in S*, or to S S*, respectively.
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