ILLINOIS JOURNAL OF MATHEMATICS
Volume 27, Number 4, Winter 1983

ON GENERAL LATTICE REPLETENESS AND COMPLETENESS

BY
GEORGE BACHMAN AND PANAGIOTIS D. STRATIGOS

Introduction

In this paper we wish to initiate a systematic study of various concepts
pertaining to repleteness or completeness of a lattice. Special cases include
such notions as realcompactness, a-completeness, Borel completeness,
N-compactness, almost-realcompactness, and so on.

Specifically we consider an arbitrary set X and an arbitrary lattice &£ of
subsets of X. We denote the algebra of subsets of X generated by £ by
S(F) and the set of all (finitely additive) two-valued measures on /(%) by
I(¥). We then consider various subsets of I(¥) and, denoting the general
element of I(£) by u, we demand that the support of u, S(u) be non-empty
for u in these subsets. Particular choices of these subsets, in the case where
X is a topological space and £ a particular lattice of subsets of X, give all
the special cases referred to above as well as many others.

We proceed to analyze in the abstract setting of (X, £) interrelations
between these various concepts of repleteness-completeness, and then con-
sider the important situation of two lattices %,, %, with &, C %,, and
investigate when %-(repleteness-completeness) implies %-(repleteness-
completeness), and conversely. Our results subsume all the known rela-
tionships in the special cases referred to above and they also yield new
applications. We give a few of the applications, but it should be clear from
these that many more such applications are available by appropriate choice
of the lattices.

We then investigate particular lattices in subsets of I(#£) which are replete-
complete and show how these can be utilized in constructing repletions-
completions in particular cases.

The important point throughout the paper is that we can systematically
treat all cases of repleteness-completeness, uniformly, by general measure-
theoretic techniques. This was done to a limited extent in [2], just for
repleteness, and in [10] using filter arguments with just one lattice and with
just certain completeness notions. The advantage of the measure approach
is that it is particularly simple with respect to extension-restriction matters
and that much of it can be extended to the case of arbitrary measures—
not necessarily two-valued; in this paper we will just pursue the case of
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the two-valued measures for the sake of the topological applications and
in order to keep the definitions to a minimum.

We take pleasure in acknowledging our indebtedness to the referee for
improving throughout the presentation of this paper and for considerably
strengthening a number of results. In particular, we just cite the improved
presentation of Lemma 5.2 which is due to the referee, as well as Lemma
4.1, which greatly strengthened and shortened the proof of Theorem 4.4.

Section 1

For convenience, we review some terminology which is consistent with
that used in [4], [16], and elsewhere.

(a) Consider any set X and any lattice £ of subsets of X. We shall
always assume, without loss of generality for our purposes, that §, X €
£. Zis said to be § iff, for every subset {L,; a € A} of %, if A is countable
then N {L,; a € A} € £ ZLis said to be complemented iff, for every
element L of £, L' € £. The set whose general element is the complement
of an element of Zis denoted by ¥'. Zis said to be complement generated
iff, for every element L of %, there exists a subset {L,; a« € A} of & such
that L = N{L); a € A} and A is countable. % is said to be separating
iff, for any two elements a, b of X, if a # b then there exists an element
Aof £suchthat a € A and b &€ A. ZLis said to be disjunctive iff, for
every element a of X and every element B of %, if a & B then there exists
an element A of £ suchthat a € Aand A N B = @. Zis said to be
regular iff, for every element a of X and every element B of %, if a & B
then there exist two elements C, D of £ such that a € C’' and B C D' and
C'ND =@. ZLis said to be normal iff, for any two elements A, B of
%, if A N B = @ then there exist two elements C, D of & such that A C
C'and BC D' and C'N D' = @. Zis said to be Lindeldf iff, for every
subset {L,; a« € A} of &, if

NL,;a€EA} =9

then there exists a subset A* of A such that N{L,; « € A*} = @ and A*
is countable. % is said to be compact iff, for every subset {L,; a € A}
of &, if N{L,; o« € A} = @ then there exists a subset A* of A such that
N{L.,; «a € A*} = @ and A* is finite. A subset S of X is said to be %
compact iff the lattice

SN SNE={SNLLE Y

is compact. £ is said to be countably compact iff, for every subset
{L,;a € A} of &, if N{L,; « € A} = @ and A is countable then there exists
a subset A* of A such that N{L,; a € A*} = @ and A* is finite. ZLis said
to be countably paracompact iff, for every sequence (A,) in &, if (A,) is
decreasing and lim, A, = @ then there exists a sequence (B,) in £ such
that for every n, A, C B, and (B,) is decreasing and lim, B, = §.
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Next, consider any two lattices %, %, of subsets of X. % is said to
semiseparate L, iff, for every element L, of %, and every element L, of
%, if Ly N L, = @ then there exists an element L, of %, such that L, C
Liand L, N L, = §. %, is said to separate &, iff for any two elements
L,, L, of %, if L, N L, = @ then there exist two elements L,, L, of %,
suchthat L, CL,,L,CL,and L, NL, = @. % is said to be F-countably
bounded iff, for every sequence (B,) in &, if (B,) is decreasing and lim,
B, = @ then there exists a sequence (4,) in &, such that, for every n,
B, C A,, (A,) is decreasing and lim, A, = §. %, is said to be &-countably
paracompact iff, for every sequence (B,) in %,, if (B,) is decreasing and
lim, B, = @ then there exists a sequence {(4,) in %, such that for every n,
B, C A,, (A}) is decreasing and lim, A, = §.

(b) The set of natural numbers is denoted by N. For an arbitrary function
f, the domain of fis denoted by D,. The set whose general element is the
intersection of an arbitrary subset of £ which is countable is denoted by
8Z. The set whose general element is the intersection of an arbitrary subset
of Zis denoted by t%. The set whose general element is the union of an
arbitrary subset of £ which is countable is denoted by 3.%. The algebra of
subsets of X generated by £ is denoted by s/(%). The o-algebra of subsets
of X generated by £ is denoted by o(L). The family of subsets of X which
is closed under countable unions and intersections and contains %, and is
minimal is denoted by p(¥). The family of subsets of X obtainable from
X by the lattice Souslin operations is denoted by s(¥). Next, consider any
algebra o of subsets of X. A measure on & is defined to be a function u
from & to R such that u is bounded and finitely additive. The set whose
general element is a measure on /(%) is denoted by M(¥). For an element
u of M(Z), the support of u is defined to be

ML € & |ul(L) = |ul(X)}

and is denoted by S(u). An element u of M(Z) is said to be Fregular iff,
for every element E of &/(¥) and every positive number ¢, there exists an
element L of & such that L C E and |w(E) — u(L)| < &. The set whose
general element is an element of M(¥) which is %regular is denoted by
MR(Z). An element u of M(Z) is said to be o-smooth iff, for every sequence
(A,) in L), if (A,) is decreasing and lim, A, = @ then lim, u(A,) = 0.
The set whose general element is an element of M(%) which is o-smooth
is denoted by M(o, &£). The set whose general element is an element of
M(Z) which is o-smooth just for (A4,) in £ is denoted by M(c*, £). Note
that if u € MR(Z), then u € MR(o, &) iff u € M(0*, £). The set whose
general element is an element w of M(Z) such that u(s(%)) = {0, 1} is
denoted by I(¥). Zis said to be replete iff, whenever an element w of
I(Z) belongs to IR(a, ¥) then S(u) # @. Next, consider any topological
space X, and denote its collection of zero sets by %, its collection of closed
sets by %, its collection of clopen sets by 4, and its collection of Borel
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sets by A. If X is 3 1/2, X is said to be realcompact iff Z is replete [11]. X
is said to be a-complete iff ¥ is replete [8]. X is said to be N-compact
iff € is replete [13]. X is said to be Borel-complete iff % is replete [12].

Since every element of M(Z) is equal to the difference of nonnegative
elements of M(X¥), without loss of generality we may work exclusively with
nonnegative elements of M(%).

Note. Occasionally we shall use variants of the notation introduced
above either for simplicity or for clarity.

(c) We note for convenience that there exists a one-to-one correspondence
between I(¥) and the set of all prime Filters and a one-to-one correspondence
between IR(Z) and the set of all L-ultrafilters. (Details can be found in [1]
and [7].) It follows, therefore, that for every element u of I(£), there exists
an element v of IR(¥) such that u < » on £. (The proof involves a filter-
ultrafilter argument.) It is interesting to note that this fact can be extended
to nonnegative measures in M(%); i.e., for every element u of M(Z), if
© = 0 then there exists an element v of MR(Z) such that 4 < v on £ and
w(X) = v(X). (Details can be found in [18].)

In addition, we observe that for any two lattices %, %, of subsets of X,
if £ C %, then for every element u of IR(Y,), there exists an element v
of IR($%) such that v| ¢, = u. (The proof involves a filter-ultrafilter argument.)
Again, this fact can be extended to the more general case: for every element
w of MR(%,), there exists an element v of MR(%,) such that v| ¢, = w;
moreover, such a v is unique if %, separates %,. (Details can be found in
[3] and [4].) Also, if w € MR(o, %) and %, is %-countably paracompact,
or J-countably bounded, then v € MR(o, %,).

Section 2

In this section we define repleteness, fully-repleteness, prime completeness,
Cauchy completeness, and almost-repleteness. Then, we present various
relationships among these concepts (additional such relationships are presented
in Section 3). Finally, we make some relevant observations.

Consider any set X and any lattice & of subsets of X.

DeriniTION 2.1. Denote the general element of M(Z) by u.

(@) Zis replete iff S(w) # @ whenever u € IR(o, X).

(B) Zis fully-replete iff S(u) # @ whenever u € I(o, £).

(y) Zis prime complete iff S(u) # @ whenever u € I(c*, ¥).

®) ZLis Cauchy complete, iff S(u) # @ whenever u € I(c*, &').

(&) Zis almost-replete iff S(u) # @ whenever u € IR(L') N I(o*, £).

Observation. Prime completeness implies fully-repleteness implies
repleteness.
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THEOREM 2.1. Assume & is complement generated. Then:

1. Repleteness is equivalent to Cauchy completeness.
2. Repleteness is equivalent to fully-repleteness.

Proof. 1. Since Zis complement generated, I(c*, £') C IR(¥). Also,
since £ is complement generated, £ is countably paracompact; hence
I(o*, &) C I(o*, ¥). Consequently I(c*, ¥') C IR(o, £). Also, since
IR(o, ¥) C I(o*, &), IR(c, &) = Io*, £'). Hence repleteness is
equivalent to Cauchy completeness.

2. Since fully-repleteness implies repleteness, it suffices to show the
converse. Assume £ is replete. Consider any element u of I(o, £). Note
that u € I(o*, &£'). Since & is replete and repleteness implies Cauchy

completeness, £ is Cauchy complete. Consequently S(u) # ¢. Hence ZLis
fully-replete.

THEOREM 2.2. Assume & is normal and countably paracompact. Then:

1. Repleteness is equivalent to fully-repleteness.
2. Fully-repleteness is equivalent to prime completeness.
3. Prime completeness is equivalent to Cauchy completeness.

Proof. First, establish 1 and 2 by showing that repleteness is equivalent
to prime completeness. Since prime completeness implies repleteness, it
suffices to show the converse. Assume £ is replete. Consider any
element u of I(c*, £). Next, consider any element v of IR(¥) such that
m <vonZ Then S(u) O S(»). Show v € IR(o, £). Consider any sequence
(A,) in Zsuch that (A,) is decreasing and lim, A,, = @. Since £is countably
paracompact, there exists a sequence (B,) in & such that for every n,
A, C B}, and (B,) is decreasing and lim, B, = @. For every n, since A, C
B, and Zis normal, there existtwo elements C,, D, of ¥suchthatA,CC, ,B,C
D, and C, N D, = §;then A, C C, C D, C B,. (Assume, without loss of gener-
ality, that these inclusions hold with (D,) decreasing.) Then v(4,) < v(C,) <
w(C)) < w(D,). Since (B,) is decreasing and lim, B, = @, lim, D, = §. Hence,
since w € I(c*, &), lim, w(D,)) = 0. Consequently lim, »(A,) = 0. Hence v € I(c™*,
£). Consequently v € IR(o, &), and, since £ is replete, S(v) # @. Thus
S(u) # @, and Zis prime complete.

The proof of 3 is similar and will be omitted.

Applications. (1) Consider any topological space X such that S is
T5 /2. Then ““Z is replete’ (or X is realcompact [11]), “Z is fully-replete’’,
“% is prime complete’’ and ‘‘Z is Cauchy complete’ are equivalent.

(2) Consider any topological space X such that X is normal and countably
paracompact. Then ‘% is replete’” (or X is a-complete [8]), ‘% is fully-
replete”’, ““Fis prime complete’’ and ‘% is Cauchy complete’” are equivalent.

(3) Consider any topological space X such that X is 0-dimensional and
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T,. Then ‘€ is replete’’ (or X is N-compact [13]), ‘‘€ is fully-replete’’, etc.
are equivalent.

THeOREM 2.3. Assume X is regular. Then prime completeness is equivalent
to almost-repleteness.

Proof. We omit the proof that prime completeness implies almost-
repleteness.

To show that almost-repleteness implies prime completeness, assume &
is almost-replete. Consider any element u of I(c*, £). Note that u € I(£').
Consider any element p of IR(&’') such that w < p on L'. Then p < u on
&. Hence, since £ is regular, S(u) = S(p). To show that p € I(c*, %),
consider any sequence {(A,) in & such that (A4, is decreasing and lim, A, =
@. Note that for every n, p(4,) < u(A4,). Hence

lim p(A,) < lim u(A,).

Since u € I(c*, &), lim, u(A,) = 0. Consequently lim, p(A,) = 0. Hence
p € I(c*, ¥). Consequently p € IR(ZL") N I(o*, &), and since £ is almost-
replete, S(p) # @. Thus S(u) # @, and £ is prime complete.

Applications. (1) Consider any topological space X such that X is
T; ;. Then ‘% is prime complete’’ is equivalent to ‘% is almost-replete’’.
Moreover, since in this case ‘% is replete’’ is equivalent to ‘% is prime
complete’’, ““% is replete’’ (or X is realcompact) is equivalent to ‘% is
almost-replete’’.

(2) Consider any topological space X such that X is regular. Then ‘%
is prime complete’’ is equivalent to ‘% is almost-replete’’.

The purpose of the following two observations is to present situations
of non-repleteness.

Observation 2.1. (o). Assume X is uncountable. Note that the set whose
general element is a subset E of X such that E or E’ is countable is a o-
algebra. Denote this o-algebra by /. Now, consider the measure u on &
determined by u(E) = 0 if E is countable, and u(E) = 1if E' is countable.
Note that u € I(o, ) = IR(o, &), but S(w) = @. Hence & is non-replete.

(B) Assume Zis disjunctive. Consider any element u of IR(Z'). Assume
Se(u) # @. Consider any element y of Se(u). Then u < u, on &'. Hence

4y, < u on Z. Hence, since £ is disjunctive, u, = u. Consequently u, €
IR(Z').

Special Case. Consider any topological space X such that X is T, and
let & = %. Further, assume for every element x of X, {x} is not open.

Then for every element u of IR(Z"), S»(n) = @. Hence, in case IR(o, £') #
@, & is non-replete.

The purpose of the following observation is to show that prime completeness
does not imply ‘‘normality and countable paracompactness.’
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Observation 2.2. Let X = R. Denote the usual topology on R by 0.

() We will show that 0 is prime complete. Since (R, 0) is metrizable,
% = %. Hence I(oc*, 0) = I(c*, &'). Since Z is complement generated,
I(c*, &) C IR(o, %). (See Theorem 2.1, Part 1.) Since # is Lindelof, &
is replete. Hence IR(o, &) = {m.; x € X}. Consequently I(c*, 0) C {u,;
x € X}. Hence 0 is prime complete.

(B) O is neither normal nor countably paracompact.

(y) Consequently prime completeness does not imply ‘‘normality and
countable paracompactness.”’

The purpose of the following observation is to show that prime completeness
does not imply normality.

Observation 2.3. Assume X is uncountable. Denote the co-countable
topology on X by O.

() % is Lindelof. Hence % is prime complete.
(B) &% is not normal.
(y) Consequently prime completeness does not imply normality.

The purpose of the following observation is to show that normality and
countable paracompactness does not imply repleteness.

Observation 2.4. Assume X is uncountable. Denote the co-countable
topology on X by O.

(a) ©Ois normal (vacuously) and countably paracompact (vacuously).
(B) We will show that @is not replete. Since 0 is normal and countably

paracompact, IR(o, 0) # @. Consider any element u of IR(o, 0). Note
that

S(w) = N{0 € Olu(0) = 1}.

Next, note for every element x of X, {x} € &(0) and u({x}) = 0. Hence
for every element F of %, if F # X, then w(F) = 0. Hence for every
element O of O, if O # @, then w(O) = 1. Further, note for element x of
X, X — {x} € Oand X — {x} # @; thus u(X — {x}) = 1. Consequently

SwCN{Xx -{ihxext=4,

and O is not replete.

(y) Consequently ‘‘normality and countable paracompactness’’ does not
imply repleteness.

The purpose of the following observation is to present a situation, under
which the cardinal of a set is measurable. (See [11] for the definition of
measurable cardinal.)

Observation 2.5. Assume that (X, £) is a topological space and replace
£ by %. Further, assume there exists an element u of I(¥) such that u €
IR(o, 0) and Sgz(u) = @. Next, consider any subset {U,; o € A} of O such
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that for every a, w(U,) = 0.and {U,; a € A} is disjoint, and {U,; a € A}
is maximal. Note that U {U,; « € A} € 0. Denote U {U,; a € A} by U.

(«) We will show that U = X. Consider any element x of X. Note that
either there exists an « such that x € U, (Case 1), or for every a, x & U,
(Case 2). For Case 1, note that x € U. For Case 2, consider any element

O of O such that x € O. Since Sg(n) = @, N {F € FuF) = 1} = @.
Hence

U{F € FIuF") = 0} =

Consequently there exists an element O of O such that u(0) = 0 and x €
O.Then O N O € Oand w(O N O) = 0 and x € O N O. Consequently
for every o, O N O # U,. _Hence, since {U,; a € A} is maximal, there
ex1sts an « such that O N O) N U, # @. Hence O N U # @. Hence x €
U. Consequently U = X. This argument is due to Frolik [10].
(/3) We omit the proof that w(U) =

Next, consider the function p which is such that D, = %(A) and for
every element M of P(A), p(M) = w(U {U,; a € M}). Note that

p € I(P(AN) = IR(P(A)).

Next, note that p € I(o, ?(A)). Consequently p € IR(a, P(A)). Now, show
S(p) = @. Assume S(p) # @. Consider any element «, of S(p). Then p <
M, ON P(A). Hence, since p € IR(P(A), p = o, Consequently

1 = po ({ao}) = p(en}) = w(U {Uy; @ € {ao}}) = (U, ) =0

a contradiction. Hence S(p) = @.
Hence card A is measurable, so card X is measurable.

Section 3

In this section we consider an arbitrary set X and two arbitrary lattices
&, & of subsets of X such that £, C %,. We investigate criteria under
which various repleteness or completeness properties of %, will hold for
%, and conversely.

Consider any set X and any two lattices %, %, of subsets of X such that
& CY%.

THEOREM 3.1. Assume ¥, is replete. Further, assume one of the following
conditions is satisfied:

1. % is complement generated.

2. % is & and o(&) C s(%).

3. %, semiseparates %,.

4. % is normal and countably paracompact.
Finally, assume &, C &, C t¥,. Then %, is replete.
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Proof. Consider any element v of IR(o, %,). Denote |4, by w. Since
L C% Ctb, Sv) = S(u). Moreover, note in cases 1, 2, and 3, u €
IR(o, &,). Hence, since %, is replete, S(u) # @. Consequently S(») # @.
As for case 4, note that u € I(o*, &), and, using the normality and
countable paracompactness of %, consider any element p of IR(o, &£,)
such that u < p on %,. Then S(u) O S(p). Moreover, since %, is replete,
S(p) # 9. Consequently S(v) # @, and %, is replete.

Applications. (1) Consider any topological space X such that X is
T;,,and let & = and &, = % Then % is replete implies & is replete;
i.e., X is realcompact implies X is a-complete.

(2) Consider any topological space X such that X is 0-dimensional and
T,, and let & = € and % = Z. Then € is replete implies Z is replete;
i.e., X is N-compact implies X is realcompact. (Consequently X is N-
compact implies X is a-complete.)

THEOREM 3.2. Assume ¥, is fully-replete (resp. prime complete, Cauchy
complete). Further, assume ¥, C &, C t¥,. Then %, is fully-replete (resp.
prime complete, Cauchy complete).

(Proof omitted.)

THEOREM 3.3. Assume %, is replete. Further, assume &, is normal and
countably paracompact, and ¥, C &, C t¥,. Then %, is almost-replete.

(The proof involves essentially the same argument as the proof of Theorem
3.1, Part 4, and will be omitted.)

Applications. (1) InTheorem 3.3, let &, = %,. Then &, is replete implies
%, is almost-replete.

(2) Consider any topological space X such that X is T5,,, and let &, =
% and &, = &%. Then & is replete implies % is almost-replete; i.e., X is
realcompact implies & is almost-realcompact. The terminology ‘‘almost-
realcompact’’ is due to Frolik [9].

THEOREM 3.4. Assume %, is replete. Further, assume %, is ¥,-countably
paracompact or ¥,-countably bounded. Then %, is replete.

Proof. Consider any element w of IR(o, %,). Using the condition ‘%,
is %-countably paracompact or %;-countably bounded’’, consider any ele-
ment v of IR(o, %) such that v|4e, = w. (This is a special case of a
general measure-extension theorem for lattice-regular measures [3], [4]; in
the present situation it can also be achieved in a more elementary fashion,
using the correspondence between IR(Z) and the set of all F-ultrafilters
[1], [7]. Also, see Section 1(c).) Then S(u) O S(v). Moreover, since %, is
replete, S(v) # @. Consequently S(u) # @. Hence %, is replete.
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Remark. Note the condition ‘%, is &-countably paracompact or ;-
countably bounded’’ is satisfied for example if %, is countably paracompact
and ¥, separates %,.

Applications. (1) Consider any topological space X such that X is
T;,, andlet &, = Zand %, = %. Further, assume X is countably paracompact
and normal. Then % is replete implies & is replete; i.e., X is a-complete
implies X is realcompact.

(2) Consider any topological space X such that X is 0-dimensional and
T, and let &, = € and %, = %. Further, assume X is strongly 0-dimensional
(i.e., € separates ¥). Then % is replete implies € is replete; i.e., X is real-
compact implies X is N-compact.

(3) Consider any topological space X such that X is 0-dimensional, T,
and countably paracompact, and let &, = 6 and &, = %. Further, assume

X is ultranormal (i.e., € separates ). Then X is a-complete implies X is
N-compact.

THEOREM 3.5. Assume %, is replete. Further, assume %, is £,-countably
paracompact. Then &, is fully-replete.

Proof. Consider any element u of I(o, %;). Using Tarski’s Extension
Theorem [6], consider any element v of 1(%,) such that v|4g4, = u. Then
S(u) DO S(¥). Now, consider any element p of IR(&,) such that » < p on
%,. Then S(v) D S(p). To show that p € IR(c, %), consider any sequence
(A,) in % such that (4,) is decreasing and lim, A, = @. Since %, is & -
countably paracompact, there exists a sequence (B,) in %, such that for
every n, A, C B, (B)) is decreasing and lim, B, = @§. Then for every n,

p(A,) < p(B;) < v(B,) = w(B,).

Hence lim, p(A,) < lim, w(B;). Since u € I(o, &), lim, w(B,) = 0. Con-
sequently lim, p(4,) = 0. Hence p € I(c*, %), so p € IR(c, %,). Hence,
since %, is replete, S(p) # @. Consequently S(u) # @, and &, is fully-
replete.

THEOREM 3.6. Assume %, is prime complete. Further, assume %, is &-
countably bounded. Then %, is prime complete.

Proof. Consider any element u of I(c*, %,). Using Tarski’s Extension
Theorem, consider any element v of 1(%,) such that v| 4, = w. Then
S(w) D S(@). Moreover, since %, is &;-countably bounded, » € I(c*, %).

Hence, since %, is prime complete, S(») # @. Consequently S(u) # @, so
%, is prime complete.

THEOREM 3.7. Assume &, is Cauchy complete. Further, assume %, is
&-countably paracompact. Then ¥, is Cauchy complete.
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Proof. Consider any element u of I(o*, £)). Next, consider any element
v of I(%) such that v| 4y, = u. Then S(u) DO S(¥). Now, consider any
element p of IR(%,) such that v < p on %,. Then S(¥) D S(p). To show
that p € I(c*, &}), consider any sequence (A4,) in £; such that (A;) is
decreasing and lim, A, = @. Then for every n, since p € IR(%), there
exists an element B, of %, such that B, C A, and p(A,) = p(B,). Assume
(B,) is decreasing. Then (B,) is in %, and (B,) is decreasing and lim, B, =
@. Hence, since %, is Z,-countably paracompact, there exists a sequence
(C,) in &, such that for every n, B, C C,, {(C,) is decreasing and lim, C, =
@. Then for every n,

p(A;) = p(B,) < p(C,) < v(C;) = w(Cy).

Hence lim, p(A;) < lim, w(C}). Hence, since u € I(c*, &), lim, u(C;) =
0. Consequently lim, p(A;) = 0. Hence p € I(c*, £;). Hence, since %, is
Cauchy complete, S(p) # @. Consequently S(u) # @, and & is Cauchy
complete.

THEOREM 3.8. Assume &, is almost-replete. Further, assume %, is regular

and %, is ¥-countably paracompact or ¥,-countably bounded. Then %, is
replete.

(The result follows from Theorems 3.4 and 2.3.)

Remark. The general extension and restriction theorems we have just
established can be readily applied, in a systematic fashion, to mappings T
described by T: (X, %) — (X, &%), to obtain conditions for #,-repleteness-
completeness to imply %,-repleteness-completeness, and conversely.

Section 4

In this section we consider some special cases of the setting considered
in Section 3.

Consider any set X and any lattice £ of subsets of X.
Part . % = £and &, = o(&).

TueoreM 4.1. 1. If o(X) is replete, then X is fully-replete.
2. If Lis replete, & and o(£) C (&), then o(£) is replete.

Proof. 1. Assume o(¥) is replete. Consider any element u of I(o, £).
Denote the extension of u to I(o, o(&£)) by v. Note S(u) D S(v). Since
o(&) is an algebra, I(0(¥)) = IR(c(¥)). Consequently v € IR(c, o(X)).
Hence, since o(¥) is replete, S(v) # @. Consequently S(u) # @, and Lis
fully-replete.

2. Assume Zis replete, & and o(&£) C s(&£). Consider any element v
of IR(o, o(¥)). Consider v| 44, and denote it by w. Since v € IR(o, o(X)),



546 G. BACHMAN AND P. D. STRATIGOS

p € I(o, £). Since Zis 8§ and o(¥) C s(¥), u € IR(o, &¥), and pu is Z-
regular. Hence, since Zis §, v is also Z-regular. Hence for every element
B of o(¥), if v(B) = 1 then there exists an element L of £ such that L C
B and w(L) = v(L) = 1. Then

N{B € (@B) = }DN{L e Aud) = 1}.

Consequently S(v) D S(u). Moreover, since u € IR(o, £) and ZLis replete,
S(u) # 0. Consequently S(») # @, and o(Z) is replete.

Observation. If ZLis replete and £ is complement generated, then o(%)
is replete.

Applications. (1) Consider any topological space X such that X is
T;,,, and let £ = Z. Then, by the preceding theorem, Z is replete iff o(Z)
is replete; i.e., X is realcompact iff X is Baire-replete. This result is due
to Hewitt [14].

(2) Consider any topological space X such that X is analytic [15] and
let £ = %. Then, by the preceding theorem, % is replete iff o(%) is replete,
i.e., X is a-complete iff X is Borel-complete.

PartII. % = Land &% = 8(%).

THEOREM 4.2. Assume Zis replete. Further, assume any one of the four
conditions of Theorem 3.1 is satisfied. Finally, note that £ C 8(¥) C t&.
Then, by Theorem 3.1, &%) is replete.

Application. Consider any topological space X such that X is 0-dimensional
and T, and let £ = €. Then, by the preceding theorem, € is replete implies
(%) is replete.

THEOREM 4.3. Assume X is fully-replete, or prime complete, or Cauchy
complete. Further, note that ¥ C 8(¥) C t&. Then, by Theorem 3.2, §(¥)
is respectively fully-replete, prime complete, Cauchy complete.

The following lemmas will prove exceedingly useful in the applications.

Lemma 4.1. If £ is countably paracompact, then 8(¥) is £-countably
paracompact.

Proof. Assume % is countably paracompact. Consider any sequence
(A,) in 8(Z) such that (A,) is decreasing and lim, A, = @. Then for every
n, A, = N, L,; where L,; € &. Now, for every n, let M, = N, j<,L;;.
Then (M,,) is in &£ and (M,,) is decreasing and lim, M, = @. Hence, since
& is countably paracompact, there exists a sequence (B,) in £ such that
for every n, M, C B, and (B)) is decreasing and lim, B, = §. Now, note
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for every n, A, C A; C L;; where i, j < n; consequently A, C M, C B,.
Consequently 8(%) is Fcountably paracompact.

CoroLLARY TO THEOREM 3.4. If L is countably paracompact, then 8(X)
is replete implies & is replete.

(The result follows from Theorem 3.4 and the above lemma.)
The last result gives the following special case:

THEOREM 4.4. If £ is complemented, then 8(¥) is replete implies &£ is
replete.

Proof. Assume £ is complemented. Then £ is countably paracompact,
and the result follows from the preceding corollary.

We will also need the following result for applications:

LemMa 4.2, If3(%) N 8(X) C Land &Lis complemented then ¥ separates
8(&).

(The proof is straightforward, though tedious, and will be omitted.)

The following lemma has importance in itself. It will also be used in
some applications of Theorem 4.4.

LemMaA 4.3. Consider any two lattices ¥, &, of subsets of X such that
L C %,. Further, assume %, is 8, &, separates &,, and %, is complement
generated. Then &, = %,.

Proof. Consider any element B of %,. Since %, is complement generated,
there exists a sequence (B,) in %, such that B = N, B,. Note for every
n, B N B, = @; hence, since ¥, separates %, there exist two elements
A,, C,of & suchthat BC A,, B, C C,and A, N C, = @; then

BCA,CC.CB.

Hence BC N,A,C N,B, = B. Hence B = N, A,. Since %, is 8, N, A,
€ 4. Consequently B € %,. Hence %, C %4,. Consequently ¥, = %,.

Application. Consider any topological space X such that X is 0-dimensional
and T,. Then X is strongly 0-dimensional (i.e., € separates %) iff 8(6) =
%.

Proof. (a) Assume X is strongly 0-dimensional. Then € separates Z.
Hence, since € C 8(%) C %, 8(€) separates Z. Hence, by Lemma 4.3,
86 = Z.
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(b) Assume 8§(¥) = Z. Since (%) N 8(6) C € and € is complemented,
by Lemma 4.2, € separates 8(%). Consequently € separates Z. Hence X
is strongly 0-dimensional.

An application of Theorem 4.4. Consider any topological space X such
that X is 0-dimensional and T, and let £ = €. Then, by Theorem 4.4, 8(%6)
is replete implies € is replete.

In particular, if X is strongly 0-dimensional, then 8(€) = & (see the
preceding application), and, consequently, Z is replete implies € is replete;
i.e., X is realcompact implies X is N-compact.

Part III. In this part we construct other lattices Z from &, by adjoining
certain collections of subsets of X to %, such as the collection of finite
subsets, or the collection of countable subsets, or the collection of %-

compact sets, etc. Then we give conditions on £ under which ¥ is replete,
and vice versa.

For any two collections &, % of subsets of X, let
yl U % = {Sl U S2|S1 € 9’1 and S2 (S 5‘32}
and

y] N 1% = {S[ N Szlsl € Sl and 526 Sz}.

THEOREM 4.5.  Denote the collection of all finite subsets of X by %. Then
LU Fis a lattice. (Proof omitted.) Denote £ U ¥ by ¥. Note that £ C

2.
1. If Lis replete then Q is replete.

2. If & is replete and & is ¥-countably paracompact or L-countably
bounded then & is replete.

Proof. To prove 1, assume % is replete. Consider any element » of
IR(o, £). By the definition of support of a measure,
Sw) = N{A € @A) = 1}.

Note that either there exists an element F of & such that »(F) = 1 (Case
1) or for every element F of &%, v(F) = 0 (Case 2).

Case_ 1. Consider any element F,, of  such that »(F,) = 1. Then, since
v € I(¥), there exists an element x, of F,_such that »({x,}) = 1 and x, is
unique. Hence for every element A of %, if v(A) = 1, then x, € A.
Consequently x, € S(v). Hence S(v) # @.

Case 2. Consider v|4s, and denote it by u. Note that
S(w) = {L € Hu(L) = 1}.
Show S(v) D S(w). Denote the general element of k% by A. Then there exist
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an element L of & and an element F of &% such that A = L U F. Then
v(A) = »(L U F) = v(L), since »(F) = 0 by the assumption. Consequently
if (A) = 1, then there exists an element L of £ such that L C A and
w(L) = v(L) = 1. Hence

N{A € @) = }1DN{L e LuL) = 1}.

Consequently S(») D S(u). Next, show u € IR(o, &). Since v € IR(o,
L), n € I(o, £). Also, show u € IR(Z). Consider any element L of &£
such that u(L') = 1. Then »(L') = 1. Hence, since v € IR(XZ), there exists
an element A of & such that A C L’ and »(4) = 1. Then there exists an
element L of #such that L C A and (L) = 1. Then L € Land L C L'
and w(L) = 1. Hence u is Lregular on &', and u € IR(¥). Consequently
u € IR(o,_¥). Hence, since Z is replete, S(u) # @. Consequently S(v)
# @, and £ is replete.
For a proof of 2, use Theorem 3.4.

Remark. Denote the collection of all countable subsets of X by 6. If
in the formulation of Theorem 4.5, & is replaced by €, then the resulting
statement is true.

More generally, consider any subset S of X and denote the collection of
all countable subsets of S by €. If in the formulation of Theorem 4.5, ¥
is replaced by %, then the resulting statement is true.

Application. Let X = R. Denote the usual topology on R by 0; and
Smirnov’s deleted sequence topology on R by 0,. (Smirnov’s deleted sequence
topology is defined as follows: Let

A = {1/n; n € N}.

For any subset V of X, V € 0, iff there exist an element U of 0, and a
subset B of A such that V = U — B.) Since (R, 0,) is metrizable, ¥, =
%,. Since %, is Lindel6f, it is replete. Consequently (R, %,) is a-complete.
Further, %, C %, and %, is obtained from %, by adjoining the collection
of all subsets of A. Hence, by the above remark, %, is replete. Hence (R,
0,) is a-complete.

THEOREM 4.6. Denote the collection of £-compact sets by ¥ and assume

X C t&L Then £ U K is a lattice. (Proof omitted.) Denote £ U ¥ by £.
Note that £ C Z.

1. If Zis replete then g’ is replete.

2. If Lis replete and & is L-countably paracompact or F-countably
bounded then & is replete.

Proof. _For a proof of 1, assume % is replete. Consider any element v
of IR(o, £). Note there exists an element K of ¥ such that »(K) = 1 (Case
1), or for every element K of ¥, v(K) = 0 (Case 2).



550 G. BACHMAN AND P. D. STRATIGOS

Case 1. Consider any element K, of % such that »(K,) = 1. Recall that

Sw) = N{A € @A) = 1}.

Consider any element A of & such that v(A) = 1. Then v(A N Ky) = 1.
Hence A N K; # @. Consequently for every natural number n, for every
n elements A, ..., A, of & if v(A;)) = 1,i =1, ..., n, then N}_; A; N
K, # . Further, note since K, is #-compact, K is t#-compact. Also, since
L = %U Hand ¥ C t¥, £ C t¥. Consequently

N{A € @A) = 1NK, # 0.

Hence N {A € & | ¥(A) = 1} # @, so S(v) # §. Note the condition % C
t¥ is satisfied, if £ is separating, disjunctive, and normal, or if £ is T,.

Case 2. To show S(») # @, use the same argument as for the case of
F.

Consequently % is replete.

For a proof of 2, use Theorem 3.4.

Remark. 1f X is replete and for every element v of IR(c, .52), V| is &-
regular, then % is replete. (Proof omitted.)

Applications. (1) Consider any topological space X such that X is
T; ,/, and realcompact and denote its collection of Z-compact sets by ¥.
(Note that since &F = tZ, ¥ is the collection of compact sets of X.) Then
Z U X is replete.

Proof. Since % is replete and % C t%Z, by Theorem 4.6, part 1, Z U ¥
is replete.

(2) Consider any topological space X such that X is T}, normal and
countably paracompact (and denote its collection of compact sets by J).
Then if Z U ¥ is replete, X is realcompact.

Proof. Assume Z U X is replete. Note that & C tZ. Also, since t% is
countably paracompact and & separates tZ, t% is Z-countably paracompact.
Consequently Z U ¥ is #-countably paracompact. Hence, by Theorem 4.6,
part 2, & is replete. Hence X is realcompact.

DerINITION 4.1. A collection & of subsets of X is an F-ideal in X iff &

is a lattice and for every element D of & and every element L of £, L N
D e 9.

Note that %, €, & are F-ideals in X, where in the case of ) we assume

H C t&£. Also, the collection of all #-countably compact sets is an Z-ideal
in X.

Tueorem 4.7. Consider any -ideal S in X. Then £ U # is a lattice.
(Proof omitted.) Denote £ U $ by &¥. Note that £ C £.
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1. If Zis replete, any one of the four conditions of Theorem 3.1 is
satisfied and £ C t& then £ is replete.

2. If & is replete and £ is $-countably paracompact or F-countably
bounded then & is replete.
Proof. Use Theorem 3.1 to prove part 1, and Theorem 3.4 for part 2.

Remarks. (1) The condition P CtPis equivalent to $ C t&.
(2) If Zis replete and for every element v of IR(a, §£), |y is Pregular
and £ is Lindelof, then Zis replete. (Proof omitted.)

The following lemma is related to Theorem 4.7, part 1, in that it gives
an answer to the question of when £ semiseparates £; it also gives
an answer to the question of when £ separates £.

LemMA 4.4. Consider any F-ideal ¥ in X.

1. If & semiseparates $ then & semiseparates Z.
2. If & semiseparates $ and & separates S then &L separates 2.

Proof. To prove part 1, assume £ semiseparates .. Consider any element
L of £ and any element A of & such that L N A = @. Since A€ ft’ there
exist an element L of £ and an element I of $ such that A = L U I. Then

0=LNA=LNEuhD=CLnNnDuEnli.

Hence LNL =@gand L NI = @. Since L N I = @ and &£ semiseparates
J, there exists an element Lof $suchthat ICLand L N L = @. Then
LuLe$AcLuUland

LNCul)=@Lnu@nL)y=90uUg=9.

Hence % semiseparates £.
We omit the proof of part 2.

Section 5

In this section we consider an arbitrary set X and an arbitrary lattice &
of subsets of X, and we define compactification of X, repletion of X, fully-
repletion of X, prime completion of X, Cauchy completion of X, and almost-

repletion of X. Then, we introduce a model for the representation of the
pairs

A, V(&L), (RE), W), (R(o, ), W, L)),

(o, &), V(e, &), U(o* L), V(c*, L))
and others. (For the definitions of V(¥), W(%), W(o, %), etc., see special
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cases below.) By introducing suitable conditions, we obtain a compactification
of X, a repletion of X, a fully-repletion of X, a prime completion of X, a
Cauchy completion of X, and an almost-repletion of X.

DEerFINITION 5.1. A topological space (Y, %) is a compactification of X,
a repletion of X, a fully-repletion of X, a prime completion of X, a Cauchy
completion of X, or an almost-repletion of X iff # is compact, replete,
fully-replete, prime complete, Cauchy complete, or almost-replete, respec-
tively, and there exists a function ¢ from X to Y such that ¢ is a (t&,
F N ¢(X))-homeomorphism and ¢(X) is dense in Y.

Next, we introduce the model mentioned above.

Preliminaries. Consider any subset I of I(£) and any lattice & contained
in A(Z). Denote the general element of A¥) by A and let H(A) = {u €
Nluw(A) = 1}

1. IfA € ¥, thenl — HA) = HA'").

2. Let A, B € 5.

(@) HA U B) = H(A) U HB);

(B) H(A N B) = H(A) N H(B);

(y) If A D B then H(A) D H(B);

®) If {u,; x € X} C I, then H(A) D H(B) implies A D B;
() If {u,; x € X} C1I,then A = B iff HA) = H(B).

We shall prove only (8). Assume {u,; x € X} C I and consider any two
elements A, B of /(&) such that H(A) D H(B). Consider the case B # @.
Consider any element x of B. Note u, € I and u,(B) = 1. Hence u, €
H(B). Consequently u, € H(A), and x € A. Consequently A DO B. Hence
(d) is true.

We summarize these results as follows.

LemMma 5.1. Consider the function H such that Dy = (%), and for
every element A of W), HA) = {u € I | w(A) = 1}. Then H is a Boolean
homomorphism from (¥) to the algebra of subsets of I. If {u,; x € X}
C I, then H is one-to-one.

Also (H(Y¥)) = H(HP)).
(Proof omitted.)

LemMA 5.2. Given v € I(H(Y)), define v by ¥(A) = v(H(A)) for A €
HMEF). Then v € I(¥F). The map ~: I(H(Y)) — I(¥) is one-to-one and is
also onto when (and only when) H is one-to-one. If H is one-to-one, then

v € IR(H(Y)) iff v € IR(Y).

Proof. For any Boolean algebra B, u € I(%) can be identified with the
ultrafilter {B € B | w(B) = 1}. Thus the interrelationship of the maps H
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and ~ is an instance of the well-known (see Chapter 1V, Section 3 of [5])
contravariant coequivalence of the categories of Boolean algebras and Boolean
spaces. The final assertion is obvious. ~

If H is one-to-one, then for each elemgnt A\ of I(¥), we designate by A
the unique element of I(H(Y¥)) such that A = \.

Observation. If u € I(H(Y)) satisfies @ € I, then S(u) # @.
Proof. Consider any element u of I(H(¥)) such that @ € I. Note that
S(w) = N {H(S)|S € Pand w(H(S)) = 1}.

Further, note that for every element S of &, if w(H(S)) = 1 then w(S) =
1, and, since @ € I, = € H(S). Consequently & € S(u), and S(u) # 0.

The following lemma will be used in the study of the various special
cases represented by the model.

LEMMA 5.3. Assume X is separating and consider any subset I of I(£).
Consider the function ¢ such that Dy, = X and, for every element x of X,
&o(x) = u,, and assume $(X) C I, if necessary. Since & is separating, ¢
is one-to-one. ldentify ¢(X) with X. Then for every element L of &£, the
tH(Z)-closure of L (denoted by L) is equal to H(L).

Proof. Consider any element L of £. Since ¢(X) C I, L C H(L). Hence
L C H(L). To show that H(L) C L, consider the case H(L) # .
Consider any element u of H(L) and any basic open set H(L)' (complement
with respect to I) such that u € H(L)' and show H(L)' N L # §. Assume
H(L) N'L = §. Then, since $(X) C I, L' N L = §. Hence L C L. Since
w € H(L), w(L) = 1. Consequently uw(L) = 1. Moreover, since u € H(L)',
&(i’) = 1, a contradiction. Hence H(L)' N L # @, and u € L. Consequently
L = H(L).

Observation. X = H(X) = I;i.e., X is dense in I.

Special case (1). LetI = I(¥), ¥ = &, and denote H(¥) by V(¥). If
n € I(V(X)), then m € I, from which it follows that V(&) is compact.

THEOREM 5.1. Assume that &£ is separating and consider the topological
space (I(¥F), tV(ZL)).

1. (D), tV()) is T,. ,
2. (I(X), tV(X)) is a compactification of X.

Proof. 1. Consider any two elements u,, u, of I(¥) such that w, # u,.
Then there exists an element L of £ such that u,(L) # u.(L). Assume for
example that w,(L) = 1. Then uy(L) = 0. Consequently u, € V(L)' and
my & V(L)'. Hence (I(&), tV(&L)) is T,.

2. Since V(&) is compact, tV(Z) is compact. Next, consider the function
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¢ introduced in Lemma 5.3. Since tV(&¥) N ¢(X) = td(¥) and ¢ is one-
to-one, ¢ is a (tZ, tV(Z) N ¢(X))-homeomorphism. Moreover, X is dense

in I(¥) (see Lemma 5.3). Consequently (I(%), tV(Z)) is a compactification
of X.

Special case 2). LetI = IR(¥), ¥ = ¥, and denote H(Z) by W(Z).
If H is one-to-one, then, by Lemma 5.2, u € IR(W(¥)) implies u € I,
from which it follows that W(¥) is compact. In particular, note that

{u.; x € X} C IR(Z)

if & is disjunctive (and conversely), and so the foregoing statement is true
in this case. However, it is easy to show that W(X) is always compact.

THEOREM 5.2. Assume % is separating and disjunctive and consider the
topological space {IR(X), tW(X)).

1. (IR, tW(X))is T,.

2. (IR(®), tW(Q)) is a compactification of X.

This theorem is well known (e.g., see [17]).

Special case (3). Let I = IR(o, &), &¥ = £ with ¥ disjunctive, and
denote H(¥) by W(o, &). If u € IR(a, W(a, ¥)), then & € I, from which
it follows that W(o, %) is replete.

Proof. Assume u € IR(o, W(o, ¥)). Since £ is disjunctive,
{u;x€EX}CL

Hence H is one-to-one, and, by Lemma 5.2, @ € IR(¥). Now, to show
that @ € IR(o, £) = I, consider any sequence (L,) in £ such that (L,) is
decreasing and lim, L, = §. Note that

lim, m(L,) = lim, w(W(o, L,)).

Since (L,) is decreasing and lim, L, = @, (W(o, L,)) is decreasing and lim,,
W(o, L,) = @. Hence, since u € IR(o, W(o, X)),

lim, w(W(o, L,)) = 0.
Consequently lim, w(L,) = 0, and @ € IR(o, %) = I.
THEOREM 5.3. Assume that <L is separating and disjunctive and consider
the topological space {IR(o, &), tW(o, £)).

(@) Since (IR(o, &), tW(o, &)) is a subspace of {(IR(Z), tW(Z)) and
the latter space is T,, the former space is T,.

(B) Further, assume any one of the four conditions of Theorem 3.1 is
satisfied by W(o, &). Then, since W(o, &£) is replete, by Theorem 3.1,
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tW(o, &) is replete. Hence (IR(a, £), tW(o, &)) is a-complete. Consequently
(IR(o, &), tW(o, &)
is a repletion of X.
Special case (4). LetI = I(o, &), ¥ = %, and denote H(Z) by V(o, &£).
If
u € I(o, V(o, %))

then @ € I, from which it follows that V(o, £) is fully-replete.

THEOREM 5.4. Assume X is separating and consider the topological
space {I(o, &), tV(c, £)).

1. {(o, B), tV(o, X)) is T,.

2. (l(o, &), tV(o, &)) is a fully-repletion of X.

(Proof omitted.)

Special case (5). Letl = I(c*, ¥), ¥ = %, and denote H(¥) by V(o*,
D). If

u € I(c*, V(o*, &)
then @ € I, from which it follows that V(o*, £) is prime complete.

THEOREM 5.5. Assume that ¥ is separating and consider the topological
space {I(c*, &), tV(c*, &)).

1. {(o*, &), tV(c*, L) is T,.
2. I(a*, &), tV(o*, X)) is a prime completion of X.
(Proof omitted.)

Special case (6). LetI = I(c*, &), ¥ = £, and denote H(¥) by U(¥).
If

w € I(a*, U(Z)")
then @ € I, from which it follows that U(¥) is Cauchy complete.
THEOREM 5.6. Assume that & is separating and consider the topological
space {{(a*, &), tUL)).
1. {(c*, &), tUL)) is T,.
2. I(o*, &), tUZ)) is a Cauchy completion of X.

(Proof omitted.)
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Special case (7). LetI = {u,; x € X} U (IR(¥') N I(c*, ¥)), & = &,
and denote H(Z) by T(¥). If u € IR(T(XL)") N I(c*, (X)), then & € I,
from which it follows that T(¥) is almost-replete.

Proof. Assume
® € IR(T(L)) N I(c*, T(Z)).

Since {u,; x € X} C I, H is one-to-one, and, by Lemma 5.2, @ € IR(Z").
The argument that @ € I(o*, £) is similar to (3), and, hence, also to (4),
(5), and (6).

THEOREM 5.7. Assume that & is separating and consider the topological
space {I, tT(Z)).

1. , tT()) is Ty; it is T, iff £ is disjunctive.
2. , tI(Y)) is an almost-repletion of X if T(X)' semiseparates tT(ZL))'.

Remark 1. We will show that (I, tT(£)) is T, iff £ is disjunctive.

(@) Assume ¥ is disjunctive. Consider any two elements vy, v, of I.
Note that

vy, ¥, € IR(¥') N I(c*, ) (Case 1)
or

vi, ¥, € {u,; x € X} (Case 2)
or

v; € {u,; x € X} and v, € IR(Z') N I(c*, £) (Case 3).

In Case 1, to obtain the desired separation of v, and v,, use the £ -regularity
of v, and »,. As for Cases 2 and 3, first use the disjunctiveness of £’ to
establish the #’-regularity of », and v, in Case 2, or of », in Case 3, and
then proceed as in Case 1.

(B) Assume ¥ is not disjunctive. Then there exists an element x of X
such that u, is not £ -regular. Now, consider any element v of IR(¥") such
that u, < v on £'. Then for every basic open set V(L)' N I, if u, € V(L)'
N I, then v € V(L)' N I, so that the desired separation of u, and v is not
possible. Consequently (I, tT(Z)) is not T,.

Remark 2. T(¥)' semiseparates (¢T(¥))’ if £ is an algebra.

Section 6

In this section we consider an arbitrary set X and an arbitrary lattice £
of subsets of X, and we construct a prime completion of X which is T;.
We note that it is possible to construct a fully-repletion of X which is T,
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a Cauchy completion of X which is T;, and an almost-repletion of X which
is T;, by using the same method.

LEMMA 6.1. Denote any element of the set
{IR(o, &), I(o, &), I(c*, L), I(c*, L), {us; x € X}
U (IR(Z") N I(c*, £))}
by I. Then each of the sets W(o, &), V(o, &), V(ic*, &), UX), T(ZL), is
denoted by H(X). (See Section 5, special cases (3), (4), (5), (6), (7).) Next,
denote the collection of all finite subsets of I by &, and denote H(Z) U
F by H(¥) (cf. Theorem 4.5). Then H(X) is respectively replete (if & is

disjunctive), fully-replete, prime complete, Cauchy complete, almost-replete
(if H&L)' semiseparates H(ZL)").

Proof. Consider any element v of
IR(o, H(2)), I(o, H($)), I(o*, H(£X)), I(c*, H(Z")), IRH(Z)")
N I(o*, H(2)),

and show (imposing suitable conditions, if necessary) that S(¥) # @. Note
that either there exists an element F of % such that v»(F) = 1 (Case 1) or
for every element F of %, v(F) = 0 (Case 2).

Case 1. Consider any element F, of % such that »(Fy) = 1. Then, since
v € I(H(X)), there exists an element u, of F, such that v({ue}) = 1 and
Mo is unique. Hence for every element A of H(Z), if (A) = 1, then u, €
A. Consequently u, € S(v). Hence S(v) # 0.

Case2. Consider v s, and denote it by w. Show S(v) D S(u). Consider
any element A of H(X¥). Then there exist an element L of ¥ and an element
F of ¥ such that A = H(L) U F. Then

v(A) = v(H(L) U F) = v(H(L)),

since »(F) = 0 by the assumption. Consequently if »(A) = 1, then there
exists an element L of £ such that

H(L) CA and w(H(L)) = v(H(L)) = 1.
Hence
N{A € H(Z)w(A) = 1} D N{H(L)|L € Land wH(L)) = 1}.
Consequently S(») D S(u). Next, we will show that S(u) # @.

(@) Assume Zis disjunctive. Then W(o, &) is replete. (See special case
(3).) Hence, by Theorem 4.5, Case 1, W(o, &) is replete.
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(B) Since V(o, &) is fully-replete (see special case (4)) and u € I(o,
Vo, Z)), S(u) # 0.

(y) Since V(o*, ¥) is prime complete (see special case (5)) and u €
I(o*, V(o*, &), S(u) # 9.

(8) Since U(¥) is Cauchy complete (see special case (6)) and u € I(o*,
U, S(uw) + 9.

() Consider special case (7). Note that T(¥) is almost-replete. Further,
assume that T(¥)' semiseparates T(¥)'. Then, since

v € IR(ITL)") N I(o*, T(¥)),
we have

@ € IR(T(X)) N I(a*, T(X)).

Consequently S(u) # @ (except possibly in case (a) where this condition
turned out to be irrelevant).

Observation. tH(Z) is respectively replete (if any one of the four conditions
of Theorem 3.1 is satisfied), fully-replete, prime complete, and so on.

LeEMMA 6.2. Assume £ is separating and t€is T,. Consider the topological
space (I(o*, &), tV(c*, L)).

If (1) t& = &, or (2) for every finite nonempty subset S of X, S &€ (t%£)’,
(i.e., no finite nonempty subset of X is clopen) then X = I(a*, &) (i.e., X
is dense in I(c*, %)).

Proof. Case (1). Consider any basic open set, i.e., any element A’ of
Vio*, £)’ such that A’ # @, and show A’ N X # @. Since A € V(o*, &),
there exist an element L of £ and an element F of % such that A = V(o*,
L) U F. Since I(c*, &) = X U ((c*, &) — X),

F=XnNF)U{o* ¥ — X)NF).
Note that

XNFeF and ((c*, ¥)-X)NFeEZ.
Denote X N F by F, and (I(c*, £) — X) N F by F,. Then
F=F]UF2, F]CX and F2CI(0'*,$)—X.

Since F, is finite and t¥is T,, F, € t¥. Hence, since t¥ = &, F, € £
Next, we show that F;, = V(o*, F)).

(a) Note that Fl Cc V(O'*, F]).

(B We will show that V(o*, F;) C F,. Consider the case V(o*, F,)
# (. Consider any element v of V(o*, F;). Then »(F,) = 1. Hence, since
v € I(Z), there exists an element x of F; such that v({x}) = 1 and x is
unique. Then v = u,. Hence V(o*, F,) C F,.
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(y) So F, = V(o*, F;). Consequently
A=V*L)UF
= V(o*, L) U (F, U F,)
= (V(c*, L) UF,)UF,
(V(e*, L) U V(o*, F|)) U F,
= V(e*,LUF,) UF,.
Since F, € ¥, L U F, € % Denote L U F, by L. Then

A = V(o*,L)UF,.

Hence
A' = V(*, LY NF,DL NF;.

Since F, C I(o*, &) — X, F; D X. Consequently A’ D L' N X = L.
Since A’ # @ and A’ = V(o*, L') N F}, L' # @. Consequently A’ N
X # 0.

Case (2). Consider any basic open set A’ such that A’ # @, and show
A" N X # 0. Since A = V(o*, L) U F (see Case 1), A’ N X # @ iff
ADXIff Ve*, UFDPXIff LUF P Xiff LUF, # X, where F, =
X N F. Since L € t¥, and F, & (t¥)' by the assumption, L U F, # X.
Consequently A’ N X # @.

Thus for every element G of tV(e*, L)), if G # §,then G N X # §.
Hence X = I(c*, &).

THEOREM 6.1. Assume that ¥ is separating and t<L is T,. Then if t¥£ =
<, or for every finite nonempty subset S of X, S & (t£)' (i.e., no finite
nonempty subset of X is clopen) then

1. {(o*, &), tV(c*, L)) is T, and

2. (I(o*, L), tV(c*, %)) is a prime completion (hence, a repletion) of
X.

Proof. 1. Since tV(o*, &) contains %, (I(c*, £), tVic*, &))is T;.

2. Recall that tV(o*, %) is prime complete. (See Lemma 6.1.) Next,
consider the function ¢ introduced in Lemma 5.3. We will show that ¢ is
a (tZ, tVic*, £) N $(X))-homeomorphism. Since ¢ is one-to-one, it suffices
to show that tV(e*, ¥) N X = t¥. To show that

tVie*, Y N X C 1%,

consider any element S of tV(o*, £) N X. Then there exists a subset {A,;
N € A} of V(o*, £) such that

S=MN{A;rNEADNX
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Note that for every element A of A, since A, € V(o*, £), there exist an
element L, of ¥ and an element F of % such that

A)\ = V(O'*, Lx) U F)\.

Then S = N {L, U (F, N X); A € A}. Note that for every A\, F, N X is a
finite subset of X; hence, since t£is T, F, N X € t¥, hence

L, U (F,NX)E &

Consequently S € t%. Hence tV(o*, £) N X C t¥. We omit the proof
that

t¥ C tVio*, £) N X.
Consequently

tVio*, N X = t%,

and ¢ is a (¢&, tV(o*, £) N ¢(X))-homeomorphism.

Assume also that t¥€ = %, or for every finite nonempty subset S of X,
S & (t¥)'. Then X = I(o*, £) (Lemma 6.2).

Consequently (I(c*, %), tV(o*, &)) is a prime completion of X.

Application. Consider any topological space X such that X is 7, and
denote its collection of closed sets by %. Then

{(c*, F), tV(a*, F))
is T, and is a prime completion (hence, a repletion) of X.

Remark. 1t is possible to construct a fully-repletion of X which is T},
a Cauchy completion of X which is T, and an almost-repletion of X which
is T;, by using the same method.
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