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ON GENERAL LATTICE REPLETENESS AND COMPLETENESS

BY

GEORGE BACHMAN AND PANAGIOTIS D. STRATIGOS

Introduction

In this paper we wish to initiate a systematic study of various concepts
pertaining to repleteness or completeness of a lattice. Special cases include
such notions as realcompactness, a-completeness, Borel completeness,
N-compactness, almost-realcompactness, and so on.

Specifically we consider an arbitrary set X and an arbitrary lattice of
subsets of X. We denote the algebra of subsets of X generated by by
s() and the set of all (finitely additive) two-valued measures on M() by
I(). We then consider various subsets of I() and, denoting the general
element of I() by/z, .we demand that the support of/z, S(/x) be non-empty
for/z in these Subsets. Particular choices of these subsets, in the case where
X is a topological space and a particular lattice of subsets of X, give all
the special cases referred to above as well as many others.
We proceed to analyze in the abstract setting of (X, ) interrelations

between these various concepts of repleteness-completeness, and then con-
sider the important situation of two lattices 0’1, 2, with 1 C 2, and
investigate when l-(repleteness-completeness) implies 2-(repleteness-
completeness), and conversely. Our results subsume all the known rela-
tionships in the special cases referred to above and they also yield new
applications. We give a few of the applications, but it should be clear from
these that many more such applications are available by appropriate choice
of the lattices.
We then investigate particular lattices in subsets ofI(7) which are replete-

complete and show how these can be utilized in constructing repletions-
completions in particular cases.
The important point throughout the paper is that we can systematically

treat all cases of repleteness-completeness, uniformly, by general measure-
theoretic techniques. This was done to a limited extent in [2], just for
repleteness, and in [10] using filter arguments with just one lattice and with
just certain completeness notions. The advantage of the measure approach
is that it is particularly simple with respect to extension-restriction matters
and that much of it can be extended to the case of arbitrary measures---
not necessarily two-valued; in this paper we will just pursue the case of
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the two-valued measures for the sake of the topological applications and
in order to keep the definitions to a minimum.
We take pleasure in acknowledging our indebtedness to the referee for

improving throughout the presentation of this paper and for considerably
strengthening a number of results. In particular, we just cite the improved
presentation of Lemma 5.2 which is due to the referee, as well as Lemma
4.1, which greatly strengthened and shortened the proof of Theorem 4.4.

Section 1

For convenience, we review some terminology which is consistent with
that used in [4], [16], and elsewhere.

(a) Consider any set X and any lattice . of subsets of X. We shall
always assume, without loss of generality for our purposes, that.. . is said to be 5 iff, for every subset {L; a A} of, ifA is countable
then fq {L; a A} .. is said to be complemented iff, for every
element L of , L’ .. The set whose general element is the complement
of an element of is denoted by ’. .is said to be complement generated
iff, for every element L of ., there exists a subset {L; a A} of such
that L fq{L’; ct A} and A is countable. is said to be separating
iff, for any two elements a, b of X, if a - b then there exists an element
A of such that a A and b A. is said to be disjunctive iff, for
every element a of X and every element B of , if a B then there exists
an elementA of.such that a A andA fq B fl. is said to be
regular iff, for every element a of X and every element B of , if a B
then there exist two elements C, D of such that a C’ and B C D’ and
C’ D’ . is said to be normal iff, for any two elements A, B of, if A fq B fl then there exist two elements C, D of . such that A C
C’ and B C D’ and C’f’I D’ t. . is said to be Lindelb’f iff, for every
subset {L; a A} of , if

f3{L;a A}

then there exists a subset A* of A such that f3{L; a A*} and A*
is countable. . is said to be compact iff, for every subset {L; ct A}
of ., if {L; a A} ft then there exists a subset A* of A such that
fq{L; a A*} and A* is finite. A subset S of X is said to be
compact iff the lattice

S f (S g= {S f LIL })

is compact. . is said to be countably compact iff, for every subset
{L; c A} of , if fq{L; c A} j and A is countable then there exists
a subset A* of A such that q{L; a A*} = and A* is finite. is said
to be countably paracompact iff, for every sequence (An) in ., if (A) i,s
decreasing and limn An j then there exists a sequence (B,) in such
that for every n, An C B’n and (B,) is decreasing and limn B,
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Next, consider any two lattices , 2 of subsets of X. is said to
semiseparate L2 iff, for every element L of t and every element L2 of
2, if L L2 then there exists an element/, of such that L2 C
/ and L fq /, . is said to separate 2 iff for any two elements
L2, /,2 of 2, if L2 f3 /2 then there exist two elements L1, /l of
such that L2 C L,/,2 C/,1 and L , . 2 is said to be l-countably
bounded iff, for every sequence (B) in 2, if (B) is decreasing and limn
n then there exists a sequence (A,) in -l such that, for every n,
nn An, (An) is decreasing and lim A 9t. 2 is said to be f-countably
paracompact iff, for every sequence (Bn) in &e2, if (B) is decreasing and
lim B 1 then there exists a sequence (A) in such that for every n,
n (Z A’, (A’) is decreasing and lim A’ .

(b) The set of natural numbers is denoted by N. For an arbitrary function
f, the domain off is denoted by Dr. The set whose general element is the
intersection of an arbitrary subset of which is countable is denoted by.. The set whose general element is the intersection of an arbitrary subset
of . is denoted by t. The set whose general element is the union of an
arbitrary subset of which is countable is denoted by E. The algebra of
subsets of X generated by is denoted by (.). The or-algebra of subsets
of X generated by is denoted by tr(L). The family of subsets of X which
is closed under countable unions and intersections and contains , and is
minimal is denoted by p(.). The family of subsets of X obtainable from
X by the lattice Souslin operations is denoted by s(.). Next, consider any
algebra g of subsets of X. A measure on g is defined to be a function/x
from to R such that/z is bounded and finitely additive. The set whose
general element is a measure on /() is denoted by M(). For an element
/x of M(), the support of/z is defined to be

f’l{L ; I ,I(L) I l(X)}
and is denoted by S(/x). An element tz of M() is said to be -regular iff,
for every element E of s4() and every positive number e, there exists an
element L of such that L C E and I/z(E) /z(L)l < e. The set whose
general element is an element of M() which is -regular is denoted by
MR(Sf). An element/z ofM() is said to be it-smooth iff, for every sequence
(A) in M(), if (A) is decreasing and limn An J then lim/x(A) 0.
The set whose general element is an element of M() which is tr-smooth
is denoted by M(r, ). The set whose general element is an element of
M() which is o--smooth just for (A) in is denoted by M(tr*, ). Note
that if/x MR(SE), then/z MR(g, 0) iff/z M(tr*, ). The set whose
general element is an element/z of M() such that/z(M()) {0, 1} is
denoted by I(). is said to be replete iff, whenever an element/x of
I() belongs to IR(tr, ) then S(/z) # . Next, consider any topological
space X, and denote its collection of zero sets by Z, its collection of closed
sets by , its collection of clopen sets by % and its collection of Borel
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sets by 3. ifX is 3 1/2, X is said to be realcompact iff is replete 11]. X
is said to be a-complete iff is replete [8]. X is said to be N-compact
iff qg is replete [13]. X is said to be Borel-complete iff is replete [12].

Since every element of M(.) is equal to the difference of nonnegative
elements of M(), without loss of generality we may work exclusively with
nonnegative elements of M().

Note. Occasionally we shall use variants of the notation introduced
above either for simplicity or for clarity.

(c) We note for convenience that there exists a one-to-one correspondence
between I() and the set of all prime -filters and a one-to-one correspondence
between IR() and the set of all -ultrafilters. (Details can be found in [1]
and [7].) It follows, therefore, that for every element/ of I(), there exists
an element v of IR(..) such that/x < v on . (The proof involves a filter-
ultrafilter argument.) It is interesting to note that this fact can be extended
to nonnegative measures in M(); i.e., for every element/x of M(), if
> 0 then there exists an element z, of MR(&e) such that/z < u on and

/x(X) u(X). (Details can be found in [18].)
In addition, we observe that for any two lattices , 2 of subsets of X,

if C &2, then for every element/z of IR(), there exists an element
ofIR(2) such that z,le,) =/x. (The proof involves a filter-ultrafilter argument.)
Again, this fact can be extended to the more general case: for every element
/. of MR(-I), there exists an element v of MR(2) such that
moreover, such a u is unique if separates 2. (Details can be found in
[3] and [4].) Also, if/x MR(or, ..) and 2 is -countably paracompact,
or wl-countably bounded, then u MR(or, 5f2).

Section 2

In this section we define repleteness, fully-repleteness, prime completeness,
Cauchy completeness, and almost-repleteness. Then, we present various
relationships among these concepts (additional such relationships are presented
in Section 3). Finally, we make some relevant observations.

Consider any set X and any lattice of subsets of X.

DEFINITION 2.1. Denote the general element of M() by

(a)

()
()
()

is replete iff S(/x) - whenever/x IR(tr, ).
is fully-replete iff S(/z) whenever/x I(tr, ).
is prime complete iff S(/x) whenever/ I(cr*, ).
is Cauchy complete, iff S(/x) whenever/x I(tr*, ’).
is almost-replete iff S(/x) whenever/x IR(’) fq I(tr*, ).

Observation. Prime completeness implies fully-repleteness implies
repleteness.
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THEOREM 2.1. Assume is complement generated. Then:

1. Repleteness is equivalent to Cauchy completeness.
2. Repleteness is equivalent to fully-repleteness.

Proof. 1. Since is complement generated,/(tr*, ’) C IR(&). Also,
since is complement generated, is countably paracompact; hence
I(tr*, ’) C I(tr*, ). Consequently I(tr*, ’) C IR(cr, ). Also, since
IR(cr, ) C I(tr*, ’), IR(cr, ) I(tr*, ’). Hence repleteness is
equivalent to Cauchy completeness.

2. Since fully-repleteness implies repleteness, it suffices to show the
converse. Assume is replete. Consider any element/z of I(tr, ). Note
that /z /(or*, ’). Since is replete and repleteness implies Cauchy
completeness, is Cauchy complete. Consequently S(/x) :p . Hence L is
fully-replete.

THEOREM 2.2. Assume Sg is normal and countably paracompact. Then:

1. Repleteness is equivalent to fully-repleteness.
2. Fully-repleteness is equivalent to prime completeness.
3. Prime completeness is equivalent to Cauchy completeness.

Proof. First, establish 1 and 2 by showing that repleteness is equivalent
to prime completeness. Since prime completeness implies repleteness, it
suffices to show the converse. Assume is replete. Consider any
element/z of I(cr*, ). Next, consider any element v of IR() such that
/x < v on . Then S(/x) S(v). Show v IR(tr, ). Consider any sequence
(An) in w such that (An) is decreasing and limn An . Since w is countably
paracompact, there exists a sequence (Bn) in such that for every n,
An C B’ and (B;,) is decreasing and limn Bn’ . For every n, since An C
B;, and is normal, there exist two elements Cn, Dn ofsuchthatAn C C;,, Bn C
D;, and C;, N D;, I; then An C C’ C Dn C B;,. (Assume, without loss ofgener-
ality, that these inclusions hold with (Dn) decreasing.) Then v(An) < v(C’,) <
tx(C’n) < tx(Dn). Since (B,) is decreasing and limn Bn’ , limn Dn I. Hence,
since/x I(cr*, ), limn/x(Dn) 0. Consequently limn v(An) 0. Hence v I(tr*,
). Consequently v IR(tr, ), and, since is replete, S(v) (k. Thus
S(/z) 4: , and is prime complete.
The proof of 3 is similar and will be omitted.

Applications. (1) Consider any topological space X such that S is
T31/2. Then " is replete" (or X is realcompact [11]), "Y is fully-replete",
"Lr is prime complete" and "Lr is Cauchy complete" are equivalent.

(2) Consider any topological space X such that X is normal and countably
paracompact. Then " is replete" (or X is a-complete [8]), " is fully-
replete", "o% is prime complete" and "is Cauchy complete" are equivalent.

(3) Consider any topological space X such that X is 0-dimensional and
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T. Then ,,c is replete" (or X is N-compact [13]),
are equivalent.

c is fully-replete", etc.

THEOREM 2.3. Assume 0 is regular. Then prime completeness is equivalent
to almost-repleteness.

Proof. We omit the proof that prime completeness implies almost-
repleteness.
To show that almost-repleteness implies prime completeness, assume

is almost-replete. Consider any element/z of I(tr*, ). Note that tx I(’).
Consider any element p of IR(.’) such that/ < p on L’. Then p </z on. Hence, since is regular, S(/x) S(p). To show that p I(r*, 0),
consider any sequence (A) in such that (An) is decreasing and limn An. Note that for every n, p(A,) < Ix(A,). Hence

lim p(An lim/x(An )"

Since/x I(cr*, ), lim,/z(A,) 0. Consequently lim, p(An) O. Hence
p I(cr*, ). Consequently p IR(’) fq I(tr*, ), and since is almost-
replete, S(0) 0. Thus S(/x) - 0, and is prime complete.

Applications. (1) Consider any topological space X such that X is
T3 /2. Then " is prime complete" is equivalent to " is almost-replete".
Moreover, since in this case " is replete" is equivalent to " is prime
complete", " is replete" (or X is realcompact) is equivalent to " is
almost-replete".

(2) Consider any topological space X such that X is regular. Then "is prime complete" is equivalent to " is almost-replete".

The purpose of the following two observations is to present situations
of non-repleteness.

Observation 2.1. (a). Assume X is uncountable. Note that the set whose
general element is a subset E of X such that E or E’ is countable is a
algebra. Denote this or-algebra by . Now, consider the measure/x on
determined by/x(E) 0 if E is countable, and/.(E) 1 if E’ is countable.
Note that/z I(tr, M) IR(tr, M), but S(/z) O. Hence M is non-replete.

(fl) Assume is disjunctive. Consider any element/z of IR(’). Assume
S:e,(Ix) # O. Consider any element y of Se,(/x). Then/x </zy on ’. Hence
/Xy < /z on . Hence, since is disjunctive,/Xy /x. Consequently
IR(’).

Special Case. Consider any topological space X such that X is T and
let . Further, assume for every element x of X, {x} is not open.
Then for every element/z of IR(’), Se,(/z) . Hence, in case IR(r,, ’ is non-replete.

The purpose of the following observation is to show that prime completeness
does not imply "normality and countable paracompactness."
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Observation 2.2. Let X R. Denote the usual topology on R by (7.

(a) We will show that 6 is prime complete. Since (R, 6) is metrizable,. Hence I(cr*, 6) I(o’*, ’). Since is complement generated,
I(r*, ’) C IR(cr, ). (See Theorem 2.1, Part 1.) Since is Lindel6f,
is replete. Hence IR(cr, ) {tXx;X X}. Consequently I(r*, 0) C {/Xx;
x X}. Hence 0 is prime complete.

(/3) 6 is neither normal nor countably paracompact.
(y) Consequently prime completeness does not imply "normality and

countable paracompactness."

The purpose of the following observation is to show that prime completeness
does not imply normality.

Observation 2.3. Assume X is uncountable. Denote the co-countable
topology on X by $.

(a) is Lindel6f. Hence ; is prime complete.
(/3) $; is not normal.
(y) Consequently prime completeness does not imply normality.

The purpose of the following observation is to show that normality and
countable paracompactness does not imply repleteness.

Observation 2.4. Assume X is uncountable. Denote the co-countable
topology on X by 0.

(a) 0 is normal (vacuously) and countably paracompact (vacuously).
(/3) We will show that 6 is not replete. Since 6 is normal and countably

paracompact, IR(cr, ) . Consider any element /x of IR(cr, ). Note
that

S(/x) {0 l/x(0) 1}.

Next, note for every element x of X, {x} () and/z({x}) 0. Hence
for every element F of , if F # X, then /x(F) 0. Hence for every
elemfnt O of U, if O ft, then/z(O) 1. Further, note for element x of
X, X {x} 0’ and X {x} : ; thus/z(X {x}) 1. Consequently

c Ix {x}; x x}

and is not replete.
(y) Consequently "normality and countable paracompactness" does not

imply repleteness.

The purpose of the following observation is to present a situation, under
which the cardinal of a set is measurable. (See [11] for the definition of
measurable cardinal.)

Observation 2.5. Assume that (X, 0) is a topological space and replace
by . Further, assume there exists an element/z of I() such that/z

IR(cr, ) and S(/x) 0. Next, consider any subset {U; a A} of such
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that for every a,/(U) Oand {U; c A} is disjoint, and {U; ct A}
is maximal. Note that U {U; a A} (. Denote {U; a A} by U.

(a) We will show that X. Consider any element x of X. Note that
either there exists an a such that x U (Case 1), or for every a, x U
(Case 2). For Case 1, note that x U. For Case 2, consider any element
O of6such thatx O. Since S(/) , {F :I/(F) 1} .
Hence

U {F’ 0} x.
Consequently there exists an element 0 of 6 such that/(0) 0 and x
0. Then O 0 6 and/(O 0) 0 and x O 0. Consequently
for every c, O 0 - U. Hence, since {U; a A} is maximal, there
exists an a such that (O 0) n U 4: . Hence O U . Hence x
U. Consequently U X. This argument is due to Frolik [10].

(/3) We omit the proof that/(U) 1.

Next, consider the function O which is such that DO (A) and for
every element M of (A), o(M) I(U {U; ct M}). Note that

p I((A)) IR((A)).

Next, note that p I(tr, (A)). Consequently p IR(r, (A)). Now, show
S(p) . Assume S(p) - . Consider any element a0 of S(p). Then p <
/o on (A). Hence, since p IR((A)), p /0" Consequently

1 io ({ao}) p({ao}) /(t {U,;a {ao}}) /(Uo) 0,

a contradiction. Hence S(p) .
Hence card A is measurable, so card X is measurable.

Section 3

In this section we consider an arbitrary set X and two arbitrary lattices
1, w2 of subsets of X such that C w2. We investigate criteria under
which various repleteness or completeness properties of will hold for
2, and conversely.

Consider any set X and any two lattices , 2 of subsets ofX such that
c

THEOREM 3.1. Assume is replete. Further, assume one of the following
conditions is satisfied:

1. is complement generated.
2. is and cr(l) C s().
3. semiseparates 2.
4. is normal and countably paracompact.

Finally, assume C 2 C t. Then 2 is replete.
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Proof. Consider any element v of IR(tr, 2). Denote vl:e) by/z. Since
C 2 C t, S(v) S(/z). Moreover, note in cases 1, 2, and 3, /z

IR(r, ). Hence, since ’1 is replete, S(/x) : ft. Consequently S(v) fJ.
As for case 4, note that /x I(tr*, 1), and, using the normality and
countable paracompactness of , consider any element p of IR(tr, 1)
such that/x < p on 1. Then S(/x) S(p). Moreover, since is replete,
S(p) fJ. Consequently S(v) fJ, and 2 is replete.

Applications. (1) Consider any topological space X such that X is
T31/2 and let 1 and 2 . Then is replete implies is replete;
i.e., X is realcompact implies X is a-complete.

(2) Consider any topological space X such that X is 0-dimensional and
T1, and let 1 qg and 2 . Then q is replete implies is replete;
i.e., X is N-compact implies X is realcompact. (Consequently X is N-
compact implies X is a-complete.)

THEOREM 3.2. Assume 1 is fully-replete (resp. prime complete, Cauchy
complete). Further, assume 1 C 2 C t. Then 2 is fully-replete (resp.
prime complete, Cauchy complete).

(Proof omitted.)

THEOREM 3.3. Assume 1 is replete. Further, assume 1 is normal and
countably paracompact, and Sf C 2 C t.l. Then Sf2 is almost-replete.

(The proof involves essentially the same argument as the proof of Theorem
3. l, Part 4, and will be omitted.)

Applications. (1) In Theorem 3.3, let 2 1. Then &l is replete implies
is almost-replete.

(2) Consider any topological space X such that X is T31/2 and let 1
and 2 . Then is replete implies is almost-replete; i.e., X is

realcompact implies is almost-realcompact. The terminology "almost-
realcompact" is due to Frolik [9].

THEOREM 3.4. Assume 2 is replete. Further, assume 2 is l-countably
paracompact or l-countably bounded. Then 1 is replete.

Proof. Consider any element/x of IR(cr, 1). Using the condition "2
is l-countably paracompact or l-countably bounded", consider any ele-
ment v of IR(tr, ’2) such that vla<:e) /x. (This is a special case of a
general measure-extension theorem for lattice-regular measures [3], [4]; in
the present situation it can also be achieved in a more elementary fashion,
using the correspondence between IR() and the set of all -ultrafilters
[1], [7]. Also, see Section 1(c).) Then S(/x) S(v). Moreover, since ’2 is
replete, S(v) fJ. Consequently S(/x) fl. Hence 1 is replete.
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Remark. Note the condition "2 is -countably paracompact or -countably bounded" is satisfied for example if 2 is countably paracompact
and w separates 2.

Applications. (1) Consider any topological space X such that X is
T3 1/2 and let Lr and 2 . Further, assume X is countably paracompact
and normal. Then 5 is replete implies is replete; i.e., X is a-complete
implies X is realcompact.

(2) Consider any topological space X such that X is 0-dimensional and
T and let and 2 Z. Further, assume X is strongly 0-dimensional
(i.e., c separates Y). Then is replete implies qg is replete; i.e., X is real-
compact implies X is N-compact.

(3) Consider any topological space X such that X is 0-dimensional, T,
and countably paracompact, and let c and 2 . Further, assume
X is ultranormal (i.e., qg separates ’). Then X is a-complete implies X is
N-compact.

THEOREM 3.5. Assume 82 is replete. Further, assume 2 is t-countably
paracompact. Then is fully-replete.

Proof. Consider any element/z of I(0-, Wl). Using Tarski’s Extension
Theorem [6], consider any element v of I(2) such that vla(e,) /z. Then
S(Iz) S(v). Now, consider any element p of IR(2) such that v < p on

2. Then S(v) S(p). To show that p IR(tr, 2), consider any sequence
(An) in 2 such that (An) is decreasing and lim, An . Since 22 is Wl-
countably paracompact, there exists a sequence (B,) in .t such that for
every n, An C B’, (B) is decreasing and limn B’ . Then for every n,

p(An) p(Bn) v(Bn) Il,(Bn).

Hence limn p(An) < limn/x(B,). Since/ I(tr, ), limn/x(B,) 0. Con-
sequently limn p(An) 0. Hence p l(tr*, 2), so p IR(tr, 2). Hence,
since 02 is replete, S(p) O. Consequently S(/z) -, and l is fully-
replete.

THEOREM 3.6. Assume 2 is prime complete. Further, assume 2g2 is gl-
countably bounded. Then is prime complete.

Proof. Consider any element of I(0-* ). Using Tarski’s Extension
Theorem, consider any element v of I(2) such that vla(,) /x. Then
S(tz) S(v). Moreover, since 02 is l-countably bounded, v I(tr*, 2).
Hence, since 2 is prime complete, S(v) . Consequently S(/z) 4: , so

is prime complete.

THEOREM 3.7. Assume 2 is Cauchy complete. Further, assume 2 is
l-countably paracompact. Then 0 is Cauchy complete.



LATTICE REPLETENESS AND COMPLETENESS 545

Proof. Consider any element/z of I(r*, &t]). Next, consider any element
v of I(2) such that vle,) = /x. Then S(/z) 3 S(v). Now, consider any
element p of IR(z) such that v < p on 2. Then S(v) S(p). To show
that p I(o-*, ), consider any sequence (A,) in such that (A,) is
decreasing and lim, A, . Then for every n, since p IR(2), there
exists an element B,, of 5f2 such that nn C A’n and p(An’) p(nn). Assume
(B,) is decreasing. Then (Bn) is in w2 and (B,) is decreasing and limn Bn. Hence, since 2 is -countably paracompact, there exists a sequence
(Cn) in such that for every n, B, C C’,, (C,)is decreasing and limn C,
I. Then for every n,

p(A’n) p(8) < p(C’) < v(C’n) ,(C’).

Hence lim, p(A’,) lim,/z(C,). Hence, since/z I(tr*, L), lim,/x(C,)
0. Consequently lira, p(A’,) 0. Hence p I(tr*, ). Hence, since is
Cauchy complete, S(p) k. Consequently S(/z) , and is Cauchy
complete.

THEOREM 3.8. Assume 2 is almost-replete. Further, assume Sgz is regular
and 2 is -countably paracompact or l-countably bounded. Then is
replete.

(The result follows from Theorems 3.4 and 2.3.)

Remark. The general extension and restriction theorems we have just
established can be readily applied, in a systematic fashion, to mappings T
described by T: (X, ) ---> (X, ’2), to obtain conditions for l-repleteness-
completeness to imply" 2-repleteness-completeness, and conversely.

Section 4

In this section we consider some special cases of the setting considered
in Section 3.

Consider any set X and any lattice of subsets of X.

Partl. and2 cr().

THEOREM 4.1. 1. /f cr() is replete, then is fully-replete.
2. If is replete, and tr() C s(&), then tr() is replete.

Proof. 1. Assume r() is replete. Consider any element tz of/(r, ).
Denote the extension of/x to I(o-, r()) by v. Note S(/z) 3 S(v). Since
o-() is an algebra, I(cr()) IR(()). Consequently IR(r, r()).
Hence, since r() is replete, S(v) fk. Consequently S(/x) : , and is
fully-replete.

2. Assume 5f is replete, 6 and o-() C s(). Consider any element v
of IR(tr, tr()). Consider ’l) and denote it by/x. Since v IR(tr, tr()),
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/z /(r, ). Since is 8 and tr() C s(),/z IR(tr, ..), and/z is -regular. Hence, since is , v is also -regular. Hence for every element
B of tr(), if v(B) then there exists an element L of such that L C
B and/x(L) v(L) 1. Then

Consequently S(v) =) S(tz). Moreover, since/z IR(r, ) and w is replete,
S(/x) . Consequently S(v) fk, and cr() is replete.

Observation.
is replete.

If w is replete and is complement generated, then

Applications. (1) Consider any topological space X such that X is
T3 /2 and let Y. Then, by the preceding theorem, is replete iff tr()
is replete; i.e., X is realcompact iff X is Baire-replete. This result is due
to Hewitt [14].

(2) Consider any topological space X such that X is analytic [15] and
let . Then, by the preceding theorem, is replete iff tr(5-) is replete,
i.e., X is a-complete iff X is Borel-complete.

PartlI. and2 5().

THEOREM 4.2. Assume is replete. Further, assume any one of the four
conditions of Theorem 3.1 is satisfied. Finally, note that C () C t.
Then, by Theorem 3.1, () is replete.

Application. Consider any topological space X such that X is 0-dimensional
and T and let c. Then, by the preceding theorem, c is replete implies
(c) is replete.

THEOREM 4.3. Assume is fully-replete, or prime complete, or Cauchy
complete. Further, note that c () C t. Then, by Theorem 3.2, ()
is respectively fully-replete, prime complete, Cauchy complete.

The following lemmas will prove exceedingly useful in the applications.

LEMMA 4.1.
paracompact.

If is countably paracompact, then () is -countably

Proof. Assume is countably paracompact. Consider any sequence
(A.) in (w) such that (A.) is decreasing and lim. A. . Then for every
n, A Ni=l Zn, where L., . Now, for every n, let
Then (M.) is in and (M.) is decreasing and lim. M. . Hence, since

is countably paracompact, there exists a sequence (B.) in such that
for every n, M. C B;, and (Bn’) is decreasing and lim. B;, . Now, note
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for every n, A C Ai C Li,j where i, j < n; consequently A, C Mn C B’.
Consequently 8() is -countably paracompact.

COROLLARY TO THEOREM 3.4.
is replete implies w is replete.

If is countably paracompact, then ()

(The result follows from Theorem 3.4 and the above lemma.)

The last result gives the following special case"

THEOREM 4.4.
replete.

If g is complemented, then () is replete implies is

Proof. Assume is complemented. Then is countably paracompact,
and the result follows from the preceding corollary.

We will also need the following result for applications:

Ifi,() fq () C and is complemented then f separates

(The proof is straightforward, though tedious, and will be omitted.)

The following lemma has importance in itself. It will also be used in
some applications of Theorem 4.4.

LEMMA 4.3. Consider any two lattices , 2 of subsets ofX such that
5 C 2. Further, assume is , separates 2, and 2 is complement
generated. Then 1 2.

Proof. Consider any element B of 2. Since 2 is complement generated,
there exists a sequence (nn) in 2 such that B O n. Note for every
n, B N n ; hence, since separates 2, there exist two elements
A C of such that B C An, B, C C, and An CI C 0" then

B A C’n CB’n.
Hence B C n An C fqn B’n B. Hence B fq An. Since is 6, fqn A. Consequently B . Hence 2 C . Consequently 2.

Application. Consider any topological space X such that X is 0-dimensional
and T1. Then X is strongly 0-dimensional (i.e., separates iff 5(c)

Proof. (a) Assume X is strongly 0-dimensional. Then qg separates Y.
Hence, since qg C i() C , 5(qg) separates Y. Hence, by Lemma 4.3,
() .
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(b) Assume 6(qg) . Since E(cg) 6(cg) C cg and cg is complemented,
by Lemma 4.2, cg separates 6(cg). Consequently separates . Hence X
is strongly 0-dimensional.

An application of Theorem 4.4. Consider any topological space X such
that X is 0-dimensional and T and let % Then, by Theorem 4.4, 6()
is replete implies is replete.

In particular, if X is strongly 0-dimensional, then 6() (see the
preceding application), and, consequently, is replete implies is replete;
i.e., X is realcompact implies X is N-compact.

Part III. In this part we construct other lattices from , by adjoining
certain collections of subsets of X to , such as the collection of finite
subsets, or the collection of countable subsets, or the collection of -compact sets, etc. Then we give conditions on under which is replete,
and vice versa.
For any two collections , of subsets of X, let

1 U 2 {S1 $21S1 1 and S2 2}

and

1 2 {S1 SElSl Sl and S2 S2}.

THEOREM 4.5. Denote the collection of allfinite subsets ofX by . Then
is a lattice. (Proof omitted.) Denote ; by . Note that c

1. If

_
is replete then is replete.

2. If is replete and is -countably paracompact or -countably
bounded then is replete.

Proof_. To prove 1, assume is replete. Consider any element v of
IR(r, ). By the definition of support of a measure,

S(v) {A lv(A) I}.

Note that either there exists an element F of such that v(F) I (Case
I) or for every element F of , v(F) 0 (Case 2).

Case I. Consider any element Fo of such that v(Fo) I. Then, since
v I(), there exists an element xo of Fo_such that v({x0}) I and xo is
unique. Hence for every element A of , if v(A) I, then xo A.
Consequently Xo S(v). Hence S(v) # .
Case 2. Consider v[#(e) and denote it by/z. Note that

S(/z) {L /z(L) I}.

Show S(v) D S(/z). Denote the general element of by A. Then there exist
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an element L of and an element F of : such that A L t3 F. Then
v(A) v(L t_J F) v(L), since v(F) 0 by the assumption. Consequently
if v(A) 1, then there exists an element L of such that L C A and
I.(L) v(L) 1. Hence

{A lv(A) 1} 23 f’) {L ,l/x(L) 1}.

C_onsequently S(v) S(/z). Next, show/z IR(r, ). Since v IR(r,
), /x l(tr, ). Also, show/z IR(.). Consider any element L of
such that/x(L’) 1. Then v(L’) 1. Hence, since v IR(), there exists
an element A of such that A C L’ and v(A) 1. Then there exists an
element of such that f_, C A and/z() 1. Then and C L’
and/x(L) 1. Hence/x is .-regular on ’, and/x IR(). Consequently
/x IR(tr,_). Hence, since is replete, S(/x) # fi. Consequently S(v)
# fl, and is replete.
For a proof of 2, use Theorem 3.4.

Remark. Denote the collection of all countable subsets of X by qg. If
in the formulation of Theorem 4.5, 5F is replaced by qg, then the resulting
statement is true.
More generally, consider any subset S of X and denote the collection of

all countable subsets of S by qg. If in the formulation of Theorem 4.5,
is replaced by rE, then the resulting statement is true.

Application. Let X R. Denote the usual topology on R by and
Smirnov’s deleted sequence topology on R by 2. (Smimov’s deleted sequence
topology is defined as follows: Let

A {l/n; n N}.

For any subset V of X, V 72 iff there exist an element U of and a
subset B of A such that V U B.) Since (R, ) is metrizable,. Since Lrl is Lindel6f, it is replete. Consequently (R, ) is a-complete.
Further, C 2 and 2 is obtained from by adjoining the collection
of all subsets of A. Hence, by the above remark, 2 is replete. Hence (R,
2) is a-complete.

THEOREM 4.6. Denote the collection of.-compact sets by Xand assume
C t. Then U is a lattice. (Proof omitted.) Denote U Y by .

Note that C .
1. If is replete then 0 is replete.
2. If 0 is replete and is .-countably paracompact or .-countably

bounded then is replete.

Proof. For a proof of 1, assume is replete. Consider any element v
of IR(r, ). Note there exists an element K of X such that v(K) 1 (Case
1), or for every element K of X, v(K) 0 (Case 2).
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Case 1. Consider any element K0 of Y{ such that v(Ko) 1. Recall that

S(v) n {A [v(A) 1}.

Consider any element A of such that v(A) 1. Then v(A Ko) 1.
Hence A n Ko - . Consequently for every natural number n, for every
n elements A, A of, if(A) 1, 1, n, then n__A n
K_o -fi . Further, note since K_o is -compact, Ko is t-compact. Also, since

U ’f and f C t, C t. Consequently

n {a 1} n
Hence n {A v(A) 1} - O, so S(v) fJ. Note the condition Jf C
t is satisfied, if is separating, disjunctive, and normal, or if is T2.
Case 2. To show S(v) fJ, use the same argument as for the case of

Consequently is replete.
For a proof of 2, use Theorem 3.4.

Remark. If is replete and for every element v of IR(cr, ), vl is -regular, then is replete. (Proof omitted.)

Applications. (1) Consider any topological space X such that X is
T3 1/2 and realcompact and denote its collection of g-compact sets by
(Note that since t, Yf is the collection of compact sets of X.) Then
Lr U Yf is replete.

Proof. Since Y is replete and Yf c tLr, by Theorem 4.6, part 1, Lr U
is replete.

(2) Consider any topological space X such that X is T, normal and
countably paracompact (and denote its collection of compact sets by Y{).
Then if ’ U Yf is replete, X is realcompact.

Proof. Assume U Y( is replete. Note that Yf C t. Also, since t is
countably paracompact and Y separates t’, tY is Y-countably paracompact.
Consequently Y U Y{ is Y-countably paracompact. Hence, by Theorem 4.6,
part 2, Y is replete. Hence X is realcompact.

DEFINITION 4.1. A collection @ of subsets of X is an -ideal in X iff
is a lattice and for every element D of and every element L of , L
D@.

Note that , c, y{ are -ideals in X, where in the case of Yf we assume
c tw. Also, the collection of all W-countably compact sets is an -ideal

in X.

THEOREM 4.7. Consider any -ideal in X. Then U is a lattice.
(Proof omitted.) Denote U by . Note that C .
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1. If is r_eplete, any o_ne of the four conditions of Theorem 3.1 is
satisfied and C t. then is replete.

2. If is replete and is -countably paracompact or -countably
bounded then is replete.

Proof. Use Theorem 3.1 to prove part 1, and Theorem 3.4 for part 2.

Remarks. (1) The condition C t is equivalent to # C t.
(2) If is replete and for every element v of IR(tr, ), Ply is -regular

and is Lindel6f, then is replete. (Proof omitted.)

The following lemma is related to Theorem 4.7, part 1,_ in that it gives
an answer to the question of when semiseEarates ; it also gives
an answer to the question of when separates .
LEMMA 4.4. Consider any -ideal in X.

1. If semiseparates # then semiseparates .
2. If semiseparates # and separates then separates

Proof To prove part 1, assume semiseparates . Consider any_element
L of and any element A of such that L A . Since A , there
exist an element , of and an element I of such that A , t3 I. Then

O Lf’IA LfI(LUI) (Lf’IL) U(Lf’II).

Hence L 1 L and L I ft. Since L fl I 0 and s..emiseparates, the.re exists an element L of such that I C L and L fl L . Then
Z, U L ,A C . U Land

Lf’I(UL) (Lfq,)U(Lf’IL) 0U9t 0.
Hence ’ semiseparates .
We omit the proof of part 2.

Section 5

In this section we consider an arbitrary set X and an arbitrary lattice
of subsets of X, and we define compactification of X, repletion of X, fully-
repletion of X, prime completion ofX, Cauchy completion ofX, and almost-
repletion of X. Then, we introduce a model for the representation of the
pairs

(I(), V(..)), (Ig(), W()), (Ig(o-, ), W(o-, )),

(I(tr, o97), V(tr, )>, (I(tr*, ), V(tr*, )5

and others. (For the definitions of V(), W(), W(cr, ), etc., see special
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cases below.) By introducing suitable conditions, we obtain a compactification
of X, a repletion of X, a fully-repletion of X, a prime completion of X, a
Cauchy completion of X, and an almost-repletion of X.

DEFINITION 5.1. A topological space (Y, F) is a compactification of X,
a repletion of X, a fully-repletion of X, a prime completion of X, a Cauchy
completion of X, or an almost-repletion of X iff F is compact, replete,
fully-replete, prime complete, Cauchy complete, or almost-replete, respec-
tively, and there exists a function $ from X to Y such that $ is a (t,

b(X))-homeomorphism and th(X) is dense in Y.

Next, we introduce the model mentioned above.

Preliminaries. Consider any subset I of I() and any lattice 5e contained
in M(). Denote the general element of M(SQ by A and let H(A) {Ix
IIIx(A) 1}.

lo

(a)

()
(,)
(,)

If A M(G), then I H(A) H(A’).
Let A, B ,(.
H(A to B) H(A) tO H(B);
H(A f) B) H(A) N H(B);
If A 23 B then H(A) D H(B);
If {Ixx; x X} C I, then H(A) H(B) implies A 23 B;
If {Ixx; x X} C I, then A B iff H(A) H(B).

We shall prove only (). Assume {Ixx; x X} C I and consider any two
elements A, B of M(, such that H(A) H(B). Consider the case B # 9t.
Consider any element x of B. Note /Zx I and/z(B) 1. Hence /Zx
H(B). Consequently Ixx H(A), and x A. Consequently A 23 B. Hence
() is true.
We summarize these results as follows.

LEMMA 5.1. Consider the function H such that Dn M(50, and for
every element A of M(,Sv), H(A) {Ix /[Ix(A) 1}. Then H is a Boolean
homomorphism from M(Sf) to the algebra of subsets of I. If {Ix; x X}
C I, then H is one-to-one.

Also M(H()) H(M(Se)).
(Proof omitted.)

LEMMA 5.2. Given v I(H(S)), define by (A) v(H(A)) for A
M(SQ. Then I(Se). The map-" I(H(SO) I(S) is one-to-one and is
also onto when (and only when) H is one-to-one. IfH is one-to-one, then
v IR(H(S)) iff IR(S).

Proof. For any Boolean algebra ,/z I() can be identified with the
ultrafilter {B /z(B) 1}. Thus the interrelationship of the maps H
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and is an instance of the well-known (see Chapter IV, Section 3 of [5])
contravariant coequivalence of the categories of Boolean algebras and Boolean
spaces. The final assertion is obvious.

If H is one-to-one, then for each element h of I(6e), we designate by h
the unique element of l(H(be)) such that h h.

Observation. If/z I(H(S)) satisfies I, then S(/z) .
Proof. Consider any element/x of I(H()) such that I. Note that

S(tz) f {H(S)IS Sand tz(n(s)) 1}.

Further, note that for every element S of 5e, if tx(H(S)) then (S)
1, and, since "fi I, "fi H(S). Consequently S(/x), and S(/z) .
The following lemma will be used in the study of the various special

cases represented by the model.

LEMMA 5.3. Assume is separating and consider any subset I ofI(g).
Consider the function d such that D4, X and, for every element x ofX,
4(x) /x, and assume dp(X) C I, if necessary. Since is separating, d
is one-to-one. Identify 4(X) with X. Then for every element L of , the
tH()-closure of L (denoted by L) is equal to H(L).

Proof. Consider any element L of . Since tb(X) c I, L C H(L). Hence
L C H(L). To show that H(L) C L, consider the case H(L) .
Consider any element of H(L) and any basic open set H(/,)’ (complement
with respect to I) such that/z H(/,)’ and show H(/,)’ L - . Assume
H(/,)’ L 1. Then, since tb(X) c I, ’ fq L t. Hence L C/. Since
I H(L),/z(L) 1. Consequently/z(L) 1 Moreover, since/z H(L)’,
/x(/,’) 1, a contradiction. Hence H()’ fq L l, and/z Z. Consequently
L H(L).

Observation. X H(X) I; i.e., X is dense in I.

Special case (1). Let ! I(.), 9 ., and denote H() by V(). If
tz I(V()), then I, from which it follows that V() is compact.

THEOREM 5.1. Assume that is separating and consider the topological
space (I(), tV()).

1. (I(5f), tV()) is To.
2. (I(), tV()) is a compactification of X.

Proof. 1. Consider any two elements/z, ]’/’2 of I() such that/z : /.1,2
Then there exists an element L of such that/x(L) 4: /2(L). Assume for
example that/x(L) 1. Then /J,2(L) 0. Consequently ]-/’2 l V(L)’ and
tx q V(L)’. Hence (I(), tV()) is To.

2. Since V() is compact, tV() is compact. Next, consider the function
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b introduced in Lemma 5.3. Since tV() b(X) tb() add b is one-
to-one, b is a (t, tV() f) b(X))-homeomorphism. Moreover, X is dense
in I() (see Lemma 5.3). Consequently (I(), tV()) is a compactification
of X.

Special case (2). Let I IR(), 5e , and denote H(w) by W().
If H is one-to-one, then, by Lemma 5.2, /z IR(W()) implies g I,
from which it follows that W() is compact. In particular, note that

{txx; x X} C IR()

if is disjunctive (and conversely), and so the foregoing statement is true
in this case. However, it is easy to show that W() is always compact.

THEOREM 5.2. Assume is separating and disjunctive and consider the
topological space (IR(), tW()).

1. (IR(), tW()) is T,.
2. (IR(), tW()) is a compactification of X.

This theorem is well known (e.g., see [17]).

Special case (3). Let I IR(tr, ), 5e with disjunctive, and
denote H(w) by W(tr, ). If/x IR(tr, W(tr, )), then g I, from which
it follows that W(cr, ) is replete.

Proof. Assume/x IR(r, W(cr, )). Since . is disjunctive,

{tz;x X} I.

Hence H is one-to-one, and, by Lemma 5.2, g IR(). Now, to show
that g IR(r, Sg) 1, consider any sequence (Ln) in such that (L,) is
decreasing and lim, Ln . Note that

lim, -(L,) lim,/x(W(o-, Ln)).

Since (L,) is decreasing and limn L, , (W(r, L,)) is decreasing and limn
W(r, L,) . Hence, since tz IR(r, W(r, )),

lim, tz(W(r, Ln)) O.

Consequently lim, g(L,) 0, and g IR(r, ) I.

THEOREM 5.3. Assume that is separating and disjunctive and consider
the topological space (IR(tr, ), tW(tr, )).

(a) Since (IR(tr, ), tW(cr, )) is a subspace of (IR(), tW()) and
the latter space is T, the former space is T.

(fl) Further, assume any one of the four conditions of Theorem 3.1 is
satisfied by W(cr, ). Then, since W(tr, ) is replete, by Theorem 3.1,
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tW(tr, ) is replete. Hence (IR(cr, ), tW(cr, )) is a-complete. Consequently

(IR(tr, ), tW(tr, ))

is a repletion of X.

Special case (4). Let I I(o-, Y), Y Y, and denote H() by V(tr, ).
If

I(r, V(r, ))

then g I, from which it follows that V(r, ) is fully-replete.

THEOREM 5.4. Assume is separating and consider the topological
space (I(cr, ), tV(tr, )).

1. (I(cr, ), tV(r, )) is To.
2. (I(r, ), V(tr, )) is a fully-repletion of X.

(Proof omitted.)

Special case (5). Let I I(tr*, ), , and denote H() by V(tr*,
). If

I(tr*, V(cr*, ))

then g I, from which it follows that V(tr*, w) is prime complete.

THEOREM 5.5. Assume that is separating and consider the topological
space if(o’*, Y), tV(r*, )).

1. (I(tr*, ), tV(tr*, g)) is To.
2. (I(cr*, c[,), tV(ty*, )) is a prime completion of X.

(Proof omitted.)

Special case (6). Let I I(tr*, w,), O w, and denote H() by U().
If

(cr*, U()’)

then I, from which it follows that U() is Cauchy complete.

THEOREM 5.6. Assume that is separating and consider the topological
space (I(cr*, ’), tU()).

1. (I(cr*, ’), tU()) is To.
2. (I(cr*, ’), tU()) is a Cauchy completion of X.

(Proof omitted.)
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Special case (7). Let I {tZx; X X} tO (IR(,’) n I(tr*, )), ,
and denote H() by T(W). If/z IR(T()’) I(cr*, T()), then g I,
from which it follows that T() is almost-replete.

Proof. Assume

Since {/x; x X} C I, H is one-to-one, and, by Lemma 5.2, g IR(’).
The argument that g I(tr*, ) is similar to (3), and, hence, also to (4),
(5), and (6).

THEOREM 5.7.
space (I, tT(W)).

Assume that ., is separating and consider the topological

1. (I, tT()) is To; it is T iff ’ is disjunctive.
2. (I, tT()) is an almost-repletion ofX if T(.)’ semiseparates (tT())’

Remark 1. We will show that (I, tT()) is T1 iff ’ is disjunctive.
(a) Assume w, is disjunctive. Consider any two elements v, v2 of I.

Note that

or

or

l/l, 112 - IR(,’) I(iT*, ,) (Case 1)

v, v2 {/xx;xX} (Case 2)

v
_

{tXx;X X} and v2 IR(..’) n l(cr*, ) (Case 3).

In Case 1, to obtain the desired separation of v and 1/2, use the W’-regularity
of v and rE. As for Cases 2 and 3, first use the disjunctiveness of w, to
establish the ’-regularity of v and v2 in Case 2, or of v in Case 3, and
then proceed as in Case 1.

(/3) Assume L’ is not disjunctive. Then there exists an element x of X
such that/Xx is not ’-regular. Now, consider any element v of IR(’) such
that/Xx < v on ’. Then for every basic open set V(L)’ n I, if tXx V(L)’
n I, then v V(L)’ n I, so that the desired separation of/Zx and v is not
possible. Consequently (I, tT()) is not T.
Remark 2. T()’ semiseparates (tT())’ if is an algebra.

Section 6

In this section we consider an arbitrary set X and an arbitrary lattice
of subsets of X, and we construct a prime completion of X which is T.
We note that it is possible to construct a fully-repletion of X which is T,
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a Cauchy completion of X which is T, and an almost-repletion ofX which
is T, by using the same method.

LEMMA 6.1. Denote any element of the set

{IR(cr, ), I(tr, ), I(tr*, ), I(tr*, ’), {tx x X}
U (IR(’) n I(r*, ))}

by I. Then each of the sets W(o’, ), V(tr, ), V(tr*, ), U(), T(), is
denoted by H(). (See Section 5, special cases (3), (4), (5), (6), (7).) Next,
denote the collection of all finite subsets of I by , and denote H() tO

by H(SE) (cf. Theorem 4.5). Then H() is respectively replete (if is
disjunctive), fully-replete, prime complete, Cauchy complete, almost-replete
(if H()’ semiseparates H()’).

Proof. Consider any element v of

IR(o-, H)), I(o-, H..)), I(o’*, tt)), I(o-*, H-(’)), IR(It..)’)
n I(o’*, t1)),

and show (imposing suitable conditions, if necessary) that S(v) . Note
that either there exists an element F of such that v(F) (Case 1) or
for every element F of , v(F) 0 (Case 2).

Case 1. Consider any element F0 of such that v(Fo) 1. Then, since
v I(H()), there exists an element/Xo of Fo such that v({/o}) and
/Xo is unique. Hence for every element A of H’), if v(A) 1, then/Xo
A. Consequently/Zo S(v). Hence S(v) # O.

Case 2. Consider vlana) and denote it by Ix. Show S(v) S(tx). Consider
any element A of H(). Then there exist an element L of and an element
F of such that A H(L) to F. Then

v(A) v(H(L) to F) v(H(L)),

since v(F) 0 by the assumption. Consequently if v(A) 1, then there
exists an element L of such that

Hence

H(L) C A and tx(H(L)) v(H(L)) 1.

F1 {A H)Iv(A) 1} D n {H(L)IL and tz(H(L)) 1}.
Consequently S(v) D S(/z). Next, we will show that S(/z) 4: .

(a) Assume w is disjunctive. Then W(r, ) is replete. (See special case
(3).) Hence, by Theorem 4.5, Case 1, Wo-, ) is replete.
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(/3) Since V(tr, w) is fully-replete (see special case (4)) and/x I(tr,
v(, Le)), s() .

(,) Since V(r*, ) is prime complete (see special case (5)) and /z
(r*, v(r*, )), S() 0.

(8) Since U() is Cauchy complete (see special case (6)) and/z I(r*,
u()’), s() .

(e) Consider special case (7). Note that T() is almost-replete. Further,
assume that T()’ semiseparates T()’. Then, since

we have

n(T)’) n I(,r*, r)),

n(r()’) n (r*, r()).

Consequently S(pt) (except possibly in case (a) where this condition
turned out to be irrelevant).

Observation. tH() is respectively replete (if" any one of the four conditions
of Theorem 3.1 is satisfied), fully-replete, prime complete, and so on.

LEMMA 6.2. Assume is separating and t is T. Consider the topological
space (I(tr*, -9), tV(cr*, )).

/f (1) t9 ’, or (2)for every finite nonempty subset S ofX, S q (t)’,
(i.e., no finite nonempty subset ofX is clopen) then X I(tr*, ) (i.e., X
is dense in I(tr*, )).

Proof. Case (1). Consider any basic open set, i.e., any element A’ of
V(-cr*, )’ such that A’ = , and show A’ n x . Since A V’cr*, ),
there exist an element L of and an element F of such that A V(tr*,
L) U F. Since I(tr*, ) X U (I(r*, ) X),

Note that

F (X n F) U ((I(tr*, ) X) n F).

X n F and (I(r*, ) X) n F .
Denote X n F by F and (I(o-*., ) X) n F by F. Then

F= FUF2, FCX and F2CI(cr*,)-X.

Since F is finite and t is T, F tw. Hence, since tw , F .
Next, we show that FI V(o’*, F1).

(a) Note that F C V(cr*, F).
(/3) We will show that V(o-*, F1) C F1. Consider the case V(o-*, F1). Consider any element v of V(o’*, F). Then v(F) 1. Hence, since, 1(), there exists an element x of F such that ,({x}) 1 and x is

unique. Then /x..Hence V(tr*, F) C F.
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(y) So F1 V(o’*, F1). Consequently

A V(tr*, L) U F
V(o’*, L) U (El U F2)

(V(o’*, L) U F,) U F2
(V(o’*, L) U V(o’*, F)) U F

V(cr*, L U F) U F2.

Since F , L U F . Denote L U F by L. Then

A V(cr*, L) U F2.

Hence
A’ V(tr*, L)’ n F2 z) L’ n F2.

Since F2 C I(cr*, ) X, F 3 X. Consequently A’ 3 L’ n X L’.
Since A’ # and A’ V(cr*, L’) F, L’ # . Consequently A’ n

Case (2). Consider any basic open set A’ such hat A’ , and show
A’ X j. SinceA V(r*, L) U F(see Case 1),A’ X iff
A bXiffV(o-*,L) UFXiffL UFbXiffL UF1 X, whereF
X n F. Since L t, and F (t)’ by the assumption, L U F X.
Consequently A’ X j.
Thus for every element G of (tV(-r*, L))’, if G j, hen G X j.

Hence X I(o-*, ).

THEOREM 6.1. Assume that is separating and t is T. Then ift, or for every finite nonempty subset S of X, S (t)’ (i.e., no finite
nonempty subset ofX is clopen) then

1. (I(cr*, ?), tV’(tr*, )) is T and
2. (I(tr*, ), tV’(tr*, )) is a prime completion (hence, a repletion) of

X.

Proof. 1. Since tV(-cr*, ) contains , if(o-*, ), tV(-o-*, )) is T1.
2. Recall that tV(tr*, ) is prime complete. (See Lemma 6.1.) Next,

consider the function b introduced in Lemma 5.3. We will show that 6 is
a (t’, tV-(tr*, ) n b(X))-homeomorphism. Since b is one-to-one, it suffices
to show that tV(cr*, ) n X t. To show that

V(cr*, ) n s c t,

consider any element S of tV(-o-*, ) X. Then there exists a subset {Ax;
h E A} of Vo-*, ) such that

s=(n{A ;XEA})nx.
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Note that for every element h of A, since Ax V(o-*, &e), there exist an
element Lx of and an element F of such that

A V(o-*, Lx) U F.
Then S tq {Lx U (Fx fq X); h A}. Note that for every h, Fx N X is a
finite subset of X; hence, since t is T, Fx X t&e; hence

Lx U (Fa f’l X) t.

Consequently S t. Hence tV(r*, ) fq X C t. We omit the proof
that

Consequently

t C tV(tr*, ) f’l X.

tV(tr*, ) fq X t,

and b is a (t, tV’(tr*, ) f’l b(X))-homeomorphism.
Assume also that t.’ , or for every finite nonempty subset S of X,

S (t)’. Then X I(o-*, )(Lemma 6.2).
Consequently (l(tr*, ), tV(tr*, )) is a prime completion of X.

Application. Consider any topological space X such that X is T and
denote its collection of closed sets by . Then

(I(o’*, ;), tVo’*, ;))

is T and is a prime completion (hence, a repletion) of X.

Remark. It is possible to construct a fully-repletion of X which is T,
a Cauchy completion of X which is T, and an almost-repletion of X which
is T, by using the same method.
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