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POTENTIAL THEORY ON COMPLEX PROJECTIVE SPACE:
APPLICATION TO

CHARACTERIZATION OF PLURIPOLAR SETS AND
GROWTH OF ANALYTIC VARIETIES

BY

R. E. MoLzoN

O. Introduction

A set ECPnC is said to be locally pluripolar if for each pointp E E there ex-
ists a neighborhood U of p and a plurisubharmonic function defined on U
such that E C U Ix b(x) oo and is not identically oo on each com-
ponent of U. A basic problem in function theory of several complex variables
is to characterize those sets which are pluripolar. In his paper on projective
capacity [1], Alexander gives a characterization of pluripolar sets in PnC in
terms of a Tchebycheff constant z(E). His theorem says that E is locally
pluripolar if and only if z(E) 0. The constant z(E) is defined in terms of
normalized homogeneous polynomials on PnC. Another characterization of
pluripolar sets was recently given by Bedford and Taylor [3]. Their
characterization involves the Monge-Ampere equation and a "balayage" for a
set ECC.

In this paper I give a characterization of locally pluripolar sets in P’C in
terms of a singular integral with respect to a probability measure, supported
on E; the set in question. The kernel of this singular integral is defined on

P"C x P(S,,/t.d)

where S/t.d is the d-fold symmetric tensor product of C+1; hence the kernel is
not symmetric. Explicitly the kernel is given by

Kd(Z, a) log

where a* denotes the homogeneous polynomial of degree d dual to a.
The kernel Ka(Z, a) also turns out to play an important role in value distri-

bution theory. If X is an analytic subvariety of C" then a basic problem is to
relate the growth of X to the growth of intersections of X with algebraic sub-
varieties of C". This was done in [9] in the case where the algebraic subvarieties
where hyperplanes. We also remarked in [9] that the growth of X could be
related to the growth of X tq Vx where IVx} was a sufficiently large family of
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104 R.U. MOZON

algebraic hypersurfaces. The family of algebraic hypersurfaces needed was
much larger than in the case of hyperplanes.
Using singular integrals with the kernel Kd(Z, a), I have been able to obtain a

result analogous to the hyperplane section growth estimates of [9]. Essentially
a family of algebraic hypersurfaces [V’I paramaterized by one real variable t
suffices to determine the growth of X in terms of the growth of X N V’.

1. Preliminaries
Let S./l,d denote the d-fold symmetric tensor product of Cn/t. This is the

space dual to the vector space of homogeneous polynomials of degree d on
Cn/. Let P(Sn/t,d) be the associated projective space. Let $ and denote the
Veronese map and the lifted Veronese map respectively. If P is a homogeneous
polynomial of degree d on Cn/t then

(P, ,(z)) P(z)

where ( denotes the dual pairing. The following diagram commutes.

Sn+l, d

P C >
Here r denotes the usual projection from affine to projective space. Given

a P(S/.)

the projective algebraic variety defined by a is

V [ZPC:a*(Z) O]

where a* denotes the homogeneous polynomial dual to a. V may also be ex-
pressed as

v Iz P-c (a, (z)) 01.
Let [. denote the norm on C"/t so zl [zo ]" + + zn [2 and I[" denote
the norm on S./t, induced by l" on C-/t.
We now define a singular kernel on P’C x P(S+t,a); this kernel will then be

used to define potential functions.
Let a E P(S./t,) and Z E P’C. Let

(1.1)
Ka(Z, a) log [IZI’*/la*(z)l] log

I(a, (Z))
where zl I/ol /... zl’- and a (ao,...,a) with N ( aa)- 1.
Note that Ka(Z, a) is well defined since a*(Z) is a homogeneous polynomial in
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Z of degree d and the expression for Ka is independent of the representations
for Z.

If E C P"C is a Borel measurable set let (E) denote the probability
measures supported on E, that is the positive Borel measures of unit mass sup-
ported on E. Similarly if F C P(S,/I.a) is Borel measurable let (F) denote the
probability measures supported on F. Let

Define

/z E (S,/1,) and v E t’(P"C).

(1.2) Ua.(Z)= Kd(Z,a)dl(a)
Sn+ l,d

and

If ECP(S,/.) is compact, define

(1.4) Ud(E) inf sup
(E) zE pnc

If FCP"C is compact, define

(1.5) Vd(F) inf sup Vd,o(a).
E#(F) a*6.Wd

where denotes the normalized polynomials of degree d as defined by Alex-
ander 1|.

A homogeneous polynomialfon C/ is said to be normalized if deg f d
and

(1.6) L log ]f]do dL loglzoldo

where S denotes the unit sphere in C"/ and do denotes the normalized unitarily
invariant measure on S and z (Zo,..., z,) C"/. The quantities U(E) and
V(E) may of course take on the value + oo. If #(v) is a probability measure
with the property that

(1.6) Ud(E) sup Ud,,,(Z)
Z pnc

and

(1.7) [Vd(F) sup

then we call/(v) an equilibrium measure for the set E(F).
The potential function Vd.,(a) will be used to give a characterization of

pluripolar sets in PC and the potential function Ud.(Z) will be used to make a
growth estimate for a problem in value distribution theory. We remark that
one could define capacity functions on subsets of P(S,,,Ld) or P"C as the
reciprocal of Ud or Vd respectively. We will state our results here however in
terms of the set functions Ud and Vd.
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2. Piuripolar subsets of P"C

We say a set E C P"C is locally pluripolar if for each point p E E there exist
a neighborhood U ofp in P"C and a plurisubharmonic function defined on
U such that is not identically oo on any component of E and

gn uclg,

Alexander gives in [1] a criterion, in terms of Tchebyeheff polynomials, that a
set E C PC be pluripolar. We will give here a necessary and sufficient condi-
tion that a set be pluripolar in terms of the potentials Valor(a). This will be done
by relating Vd,(a) to the Tchebycheff constant of Alexander.
We first define some Tchebycheff constants closely related to the potential

function V.(a). For d and k positive integers and E PC a compact set let

(2.1) rd.k(E)= inf sup [" [(a,,c(Z))[]llkd.
(2.2) r(E) lim r.(E)

and

(2.3) r(E) lim r(E).
d--oo

The proof that these limits exist follows from the same arguments used in the
classical definition of the Tchebycheff constant. See, for example, [1].

PROPOSITION 2.1. Let E C P"C be compact. Then for all positive integers
d we have the inequality e-vtg r(E).

Proof. First fix d. Suppose FC P(S,,/I,d) is compact. We may identify F
with K C S C C where S is the unit sphere in C’. Define

(2.4) IT(F) inf sup I log 1 dl(X)

,( inf sup I(a,,X)
[aill,kd XK

and

(2.5) Y(F) lim Y,(F).

Let F (E) so F P(S./.,). Given a probability measure on E the push
forward ,/ gives a probability measure on E) F. it follows that

(2.7) inf ued-P(F)

lal ixl a (x) <_
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Izlog al I,(z)[ d(Z).(a",’
Again with F $(E) we have

inf sup(2.8)
{a*,ll,kONd xe

k 1 llk

inf su 7r I(a"
lal,ktqNd, Z.I i= a, I*(z)

Now using (2.6), (2.7) and (2.8) and taking d-th roots we get the result.

Our next result will compare r(E) with the Tchebycheff constant defined by
Alexander in [1].
The Tchebycheff constant r(E) (denoted by cap(E) in [1]) is defined for

E PC compact, as

z(E)= lim m,(E)
d--

where
lid

m,(E) inf sup |
L IZl .J

where the infimum is taken over normalized homogeneous polynomials of deg
d. The Tchebycheff constant, m(E) may be expressed as

(2.10) m(E,= inf sup/I (a’ (Z" I/ lid

a*.Nd ZE L jlalIz)"

PROPOSITION 2.2. Let E C PC be compact. Then for all positive integers
d we have ra(E) <_ m(E).

Proof. We have by definition

inf supra.,(E)
la l,k Nd Z..E "= IZl’

< inf

by (2.10). Taking the limit as k- on the left-hand side gives the result. I

We now present a result which gives a lower bound on e-v’(’) for E C PC
compact. Letting r C"/t-P’C as before, let S t:: C"/t be the unit sphere and
K ,r-t(E) tq S. Then K is a compact circled subset of S. We let/ denote the
polynomially convex hull of K.
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PROPOSITION 2.3. Suppose E C PC is compact, K and 1 as above. If1
contains a neighborhood of0 in C/ then there exists a constant Msuch that
V(E) <_ Mfor all d sufficiently large.

Proof. Let g denote the normalized homogeneous polynomials on C"/
which factor as a product of homogeneous polynomials of degree <_ d. Note
that ifP and Q are elements of ga thenP Q is an element of a. LetXdenote
the hull of K in C"/, that is,

X {z E C/ [P(z) < sup [P(x) for all P .
Then g C X. By an extension of Bishop’s theorem on Jonson measures given
by Alexander (see [2]) there exists for each probability measure # on X a
probability measure on K such that

(2.11) x lglPId , lglPdv

for all P e.
By the assumptions of the proposition there exists a > 0 independent of d

such that Be C R C Xwhere B denotes the closed ball of radius in C’*. Let
o denote the normalized unitarily invariant measure on 0Be and ,. Now
apply Bishop’s theorem with a* e. We have

(2.12) oga-,lg la*(Z) Ida
oix log ia*(Z) d,

since OB C X and the measure v is a probability measure on K. Let ,
which is a probability measure on E. Then (2.12) becomes

 0 lg la*( Z) log la*(Z) d (Z)

with Z [Zo: :Z]E C PC. Since a* is a normalized
polynomial in the sense of (1.0 we obtain

log ["] + I log zo I"d r -< log la*(Z) d (Z)

Hence

d. V,E, <_d [1og--Islog[zolda ]
and the proposition follows by letting

We now state two results concerning locally pluripolar subsets ofP"C due to
Alexander 1 ].
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PROPOSITION 2.4. Let E C PnC be compact, K and 1 as above. Then the
following statements hold:

(1) E is not locally pluripolar ifand only ifg contains a neighborhood of 0
in C+.

(2) IfE is locally pluripolar then z(E) O.

We now give the characterization of locally pluripolar subsets of PnC in
terms of the potential V(E).

THEOREM 2.5.
and only if

Let E C PC be compact. Then E is locally pluripolar if

lim V(E)= +

Proof. First suppose limd_Vd(E)= + . Suppose E is not locally
pluripolar. Then by Proposition 2.4, g, the polynomially convex hull of

K 7r-l(E) NS,

contains a neighborhood of 0 E C"/1. By Proposition 2.3, Vd(E) must be
bounded, a contradiction.
Now suppose E is locally pluripolar. By Proposition 2.4, r(E) O. Using

the inequalities of Propositions 2.1 and 2.2, and letting d--oo, we conclude
V(E)- + oo.

3. Growth estimates for affine analytic varieties

We now turn to a problem in value distribution theory related to the poten-
tial functions Ua.(Z). In an earlier paper [9], growth estimates for an affine
analytic variety X C C were given in terms of the growth of X FI H where
[Hx} was a family of hyperplanes. A family [Hx} parameterized by , E [0, 1]
sufficed to obtain the growth estimate for X. In this paper we also remarked
that the growth of X could be expressed in terms of X FIgS where [gS] con-
sisted of the family of algebraic hypersurfaces obtained by letting
g

_
Gt(n + 1 ,C) act on the algebraic hypersurface S. A set E of g’s in

Gt(n + 1, C) of positive volume was required to obtain the growth estimate in
contrast to the case where S was a hyperplane.

Using the potential functions Ua.(Z) we can now show that in fact a much
smaller family of algebraic hypersurfaces suffices to estimate the growth ofX
in terms of intersection with the hypersurfaces.
We will first recall some necessary notation from value distribution theory.
Suppose X C C is an analytic subvariety of pure dimension s _> 1. We

want to consider the intersection of X with algebraic varieties. We will regard
C as projective space minus the hyperplane at oo so C PC H,. If

z [Zo ...: Z.l
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are homogeneous coordinates on P"C then on P"C-H**, Z
[1 x, x.l and a point in C" is identified as

(x,,...,x)-[1 :x, :x.].

For x C" write Ixl = Ix, = / / Ixl =, Write
X[rl [x X Ixl -< rl,

X<r> [xX Ixl r},

X[ro, r,l Ix x ro <- Ix -< rffil.
Recall that for a P(S./,,d) a projective algebraic hypersurface is defined by

V {Z(P"C a*(Z) 01.
V" may be regarded as an affine variety and is then given by

V {xC": a*(1,x,,...,x.) 0}.

When we consider the intersection of X with V" we will be considering V" as
the affine variety.
For most a P(S,/,.d), Vo f3 X will have dimension s 1. Precisely, let

(3.1) D, {a P(S,/,.d) X[r] f3 V or

dimXf3 V" s- 1 for allpX[r] f) V}.

Then D, is a nonempty open set in P(S,/t.d). For a D,, the set

xc vllxl r}

is a pure (s- 1)-dimensional subvariety of the open ball [[x[ < r} or it is
empty.

Growth of Analytic Varieties.
forms.

On C" define the following differential

(3.2) 1 dd ixl ,
1 d log Ix a e,-t.
2r

The growth of X is then defined by

(3.3)
1 I [3"- 1 I d’log ]xl2Aa’-’= I ot’+n(X,O)n(X, r)
r2 xt,] rr x<,> xt,l

where n(X, O) is the Lelong number ofX at O. The integrated growth function
ofXis, fors z 1,

ot .1 dd" log Ixl ,4r
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(3.4) N(X, r)

where

n(X, t)d log t r: + r(O)n(X, O)

(3.5) r,

0 iflxl > r

log(r/lx[) ifro_< Ix[ < r

log (r/ro) if [xl -< ro.

Note: If s 0, that is, dim X 0, then N(X, r) Exxr,(x).
We will be interested in computing the growth of X f3 V*. This will be done

by means of Jensen’s formula. Suppose D is a pure (s- 1)-dimensional sub-
variety of the s-dimensional variety X so D divisor (f). Then

(3.6) N(D,r) 1 I log Ifl dlog Ixl A (.-1__ I log If a"
2r X<ro> X[ro.r]

1 I loglfld* log XlAc"-t

2r X<,o>

Let I’ D,--R be defined by

(3.7) r(a) N(X tq V’, r).

Then I" is continuous and bounded on D, (see for example [11] or [16]).
We now turn to the connection with the potential function U.(Z) defined

by (1.2). Define a function L(x) for a P(S,/t.a) and x C" by

(3.8) (x) a*(,x,...,x.)
Ilall

Note that f(x) is well defined since it is independent of the representation
chosen for a P(S/t.D. By Jensen’s formula we have

(3.9)

N(Xf3 V*,r, log lfl/- { log lfl,- log
J X< r> J x[ ro,r J x< to>

Let E C P(S./t.) be compact and (E #(E). Let

(3.10) O.,(x) S. lglf(x)Ida(a).

We will integrate equation (3.9) with respect to a measure tt on E C P(S,/,.)
and then estimate the resulting integrals on the right-hand side, For this we need
the following:

LSMtA 3.1. Suppose v(x) is a CO plurisubharmonic function on C such
thatfor some constantMand an integer d,

(3.11) d. log (1 + Ixl M v(x) < d. log (1 + Ixl’),



Then there exist constants kl and k2 depending only on Msuch that

(3.12) r2 1 ddv A 3"’l >- kl I 3".
X[r] X[k2r

Proof. The lemma is a straightforward extension of a result due to Gruman
[8]. We present a proof for the convenience of the reader.

Let

X’[r] {xX: v(x) _< d. log(l+r’)}

and

y (x) d. log (1 + r) v (x).

If xEX’[r] then Ixl" <- (eu/d- 1)+ eU’dr. Hence if r is sufficiently large
then x E X’[ r] implies Ixl -< klr for some constant kl. Hence

X[r] C X’ir] C ,X[k,r].(3.13)

Then

(3.14)

We also have

(3.15)

IX’ r]

yd,=Ixl+ A 3

since y 0 on OX’ r].
Let 0 < k,_ < 1. Then

X’[k+r] {xX" v(x)- d. log(1 + klr) <_ 01
and there exists a constant k3 such that y (x) _> k3 if x X’ [k+r]. Using (3.14)
and (3.15) we have

(3.16) k:r" I dd’v.A3"-1>’ 4"xk+ I 3,.
X’ [rl X’ [k2r|

Finally using (3.13) and relabeling the constants we get
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X[r] X[k2r]

We may now give the main growth estimate for X V* for a family {V*} of
algebraic hypersurfaces.

TrlEOIEM 3.2.
s >_ 1. Let

Let X be an analytic subvariety of C of pure dimension

E C P(Sn/l.d)

be a compact set such that Ud(E) <_ M < + 00 for some constant M. Then
them exist positive constants k, 1,..., 4 depending only on M such that

(3.17) k,N(X, kr) <_ N(X fq V:, r)d#(a) <_ k3N(X, k4r)
P(S,,,, .9

where # is an equilibrium measure for E.

Proof. The proof follows the idea of the proof of Theorem 3.1 of [91. The
first inequality involves some extra technical difficulty because of the non-
symmetric nature of the kernel K(Z,a). The second inequality however
follows by the same argument used in [9] and we therefore only present the
proof of the first inequality.
By Jensen’s formula,

(3.18)

N(Xt V,r)= I loglf:(x) [,y- I loglf(x)ltx’- I loglf(x) [.Y.
X< r> X[r0 r] X< to>

With N (",)-1 as before, let H C U(N+ 1,C) be subgroup of
U(N+ 1, C) defined as follows. Let Y (C"/t) S,/t.. An element of the
unitary group U(N+ 1, C) is determined by its action on Y since Y contains a
set of (") linearly independent (over C) elements of S,/t.. If g E U(n + 1, C),
let

a(g) U(N+ 1, C)

such that

a(g)(Z) (gZ)
where Z E C"/t. Then a(g) determines a unique element of U(N+ 1, C). Let

H a(U(n + 1,C)).

Let dh denote the normalized Haar measure onHand let [b,] be a C approx-
imate identity on H so

I !k.(h)dh 1

and the support of . decreases to id (1)(5 H. Define the sequence of
measures t* by
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’ S,, ,,(h)h,ah.
Define potentials U. by letting K:(Z, a) log [I Z a all / (a, (z)) l] and

(3.20)

.(Z) ( K(Z, a)d(a) [( K(Z, ha),,(h)da)ah
P(S,,.,) H

log
ha (z)II

og a IIh-6(

log all

5
where dg is Hr measure on U(n + I, E) and ff,(g) ff,(a(g)). By assump-
tion,

(3.2) 0 s u,.,( s M

for all Z P’E. It follows that U,, C(P’E) and is bounded by M.
Now define 0. C(E") by

(3,22) O.(x) d. log

Iog
where x (x,...,x,) and [x] [I x x,]. Then. we have the inequity

0.23) d. log (l + Ixl ) -M O.(x) d. log (l + lxl).
We have also the equation of currents

I ddloIPl.(3.24) V*-
2r

Assuming 0 X we use the expression (3.3) for n (X, r), equations (3.23) and
(3.24) to obtain

(3.25) n(Xn V*, r)dt,,(a)
2r a’-’--’i- xt,

It follows from Lemma 3.1 that

for some constants kt, k depending only on M. It then follows from (3.25)
and (3.26) that
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(3.27)

Integrating gives
I n(Xf V*, r)d#(a) n(X, lr).

(3.28) I N(Xn V, r)di,(a) k,N(X, k:r)

(after relabeling the constants).
Now if 0 X then we replace X by X, X+ tb and let t-0. (This is a

standard argument, see for example [9].) Hence equation (3.28) holds in
general.
The first inequality then follows by letting k-oo in (3.28) since

l N(X Iq V*, r)d/(a) IN(Xn V, r)d/(a) as k- oo. I

We now give, as an application of the above theorem, a sufficient condition
that an affine analytic variety be algebraic.

Trmo.M 3.3. Let X be an analytic subvariety of C" ofpure dimension s.
Suppose E C P(S./,.d) is a compact set such that Ud(E) is finite and suppose
X f V* is algebraic for all a E E. Then X is algebraic.

Proof. We may assume dim(X f3 V*) s- 1 for all a E E since in fact

dim(X Iq V*) s- 1

for t almost all a E E where t is an equilibrium measure supported on E. To
see this fix p E X C". Let

Qp [a P(S,/,.) a*(p) 0}.

Since U.(E) is finite,/(Qp) 0. Now choose points p,p’,.., in each ir-
reducible component of X and let Q UQ,. Then /(Q)= 0 and
dim(X V*) s- 1 for all a Q.
Now let

E, {a E N(Xf V*, r) < m log rfor r 2}.

A theorem of Stoll says that if Y C C" is an affine analytic variety of pure
dimension then Y is algebraic if and only if N(Y, r) O(log r).
Hence N(X3 V*, r) O(log r) for all a E andE U,E,. Since U(E) is

finite it follows that U(Em) is finite for some m, say mo. (This follows by the
usual argument that a countable union of sets of capacity zero has capacity
zero; see, for example, [9].) By Theorem 3.2 it then follows that

N(X, r) O(log r)

which implies that X is algebraic. 1

One could at this point present a whole sequence of results concerning
growth estimates for X in terms of the growth estimates for Xf V for
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families of algebraic hypersurfaces V* following the results of [9]. We will
leave this to the reader. We will however give a result concerning growth
estimates when the family of hypersurfaces V* is parameterized by t [0, 1].
The nondegeneracy condition in the present context is not so simple as in [9].
We state the result in terms of intersection with codimension s algebraic
varieties although what we have is essentially a codimension one result.
We will say that a curve tr: [0, 1]--Ge(n + 1 ,C) is algebraically non-

degenerate if the matrix entries go(t) of g(t) are algebraically independent.

THEOREM 3.4. Let tr: [0, 1]--Ge(n + 1,C) be an analytic algebraically
non-degenerate arc. LetX C C be an analytic variety ofpure dimension s and
V c C an algebraic variety of pure dimension n- s such that V Yt n

n Y,_, is a complete intersection of algebraic hypersurfaces. Let

t (t,,...,t._.)P-"

with I [0, 1] and V’ the family of varieties

V’ g(tOY n n g(t._,) g._,.

f v, n x is finite for all t I’-" then X is algebraic.

Proof The proof will follow from Theorem 3.3 and a series of lemmas.
We first give a class of sets E C P(S/a,d) such that Ud(E) is finite.

LEMMA 3.5. Let a: [0, 1]--P(S,,/.) be a linearly nondegenerate analytic
curve; that is, assume E (r([0, 1]) is not contained in a hyperplane of
P(S./o,,). Then U(E) M < + o. for some constant M.

Proof. Theorem 2.1 of [9] tells us that

inf sup log Ila!l, IIbll d(a) <_ M

for some constant M. Let t be a measure such that

sup og Ilall Ilbll d(a) M.
( I(a,b)

Ua,(Z) I log Ila (z)II a(a) <_ M. I
a I(a, O(z))

LEMMA 3.6. Let

v [a*(Z) oI
be an algebraic hypersurface of degree d in P"C so a S,/.. Let

a [0,1] Ge(n + 1, C)
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be an algebraically nondegenerate real analytic arc. Then the set E C P(S,/.)
corresponding to the set of algebraic hypersurfaces {g(t)V" t [0,111 has the
property that Ud(E) is finite.

Proof. By the previous lemma it suffices to show that E is the image of a
map

" [0,11 --P(S./,.d)

and that E is not contained in a hypersurface in P(S,/.). With

V= [ZP"C’a*(Z) 01
we have

g(t) V [Z P"C a*(g(t)Z) 01 [Z" (a, 4(g(t)Z)) 0}.

Write (g(t)Z) gu(t)Zj, i,j O,...,n, where we use the summation con-
vention. Since the ge(t) are algebraically independent, the linear polynomials
(g(t)Z), C[(Zj)] are algebraically independent. Now if W P"C then write

O(w) [Oo(W);...; O(W)l

where the 4.(W) arc linearly independent polynomials of dcgrcc d in the W,,
0,n; v ON. Hence it follows that 4.(g(t)Z) arc linearly independent

polynomials of degree d in g#(t) with coefficients which arc polynomials of
dcgrccd in Z. In fact the polynomials 4.(g(t)Z) arc linearly independent over
C[(Z,)], 0,n. Considering 4.(g(t)Z) as a polynomial with coefficients in
the g(t), ,(g(t)Z) is homogeneous in the Z and of degree d and the d,(g(t)Z)
are linearly independent over C. We may write

4,(g(t)Z) h,(t)b(Z)

where ,,/z 0,Nand k, is a homogeneous polynomial of degree d. It follows
that the functions h,,(t) are linearly independent over C and

E [[a,h,o(t):... :a,h,(t)]} C P(S,/.).

Since the h.,(O arc linearly independent over C, E does not lic in a hypcrplane
of P(S,/.,).

To prove the theorem write

Xn V’ (Xn g(t) Y, n... n g(t._,.) Y,_,_,) O g(t._,) Y,_,.

It follows by the two lemmas above and Theorem 3.3 that

X fl g(t)Y fl... n g(t._,_) Y,.,_

is algebraic and hence the result follows by induction. I

A simple example shows that some sort of nondcgencracy condition is need-
ed in Theorem 3.4. Suppose
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1 0 0 0

g(t)=
0 1 0 0 G’(4 C), t[0 1]0 0 l/t 0
0 0 0

Let V C P4C be given by

V IZ" 0}.ZoZ3- Zo- Z
Then

v, Iz t)z ol.ZoZ3- Zo-(1 +
The affine algebraic variety associated with V is

V [z C:z 1 + (1 + t)z3}.
Let XC C be the analytic curve

ZX {z’z e*’, z3].

ConsiderX V. For each t there are three points in the intersection; however,
X is not algebraic.
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