ILLINOIS JOURNAL OF MATHEMATICS
Volume 28, Number 1, Spring 1984

FINITELY ADDITIVE MEASURES FROM POSITIVE DEFINITE
FUNCTIONS

BY
JEAN-MARC BELLEY

1. Introduction

In 1953 it was conjectured by E. Hewitt (see [5, pp. 310-311] and the
footnote on page 379 in [4]) that any (not necessarily continuous) positive
definite function on R admits an integral representation by means of a
nonnegative finitely additive set function on an algebra of Borel sets in R.
This conjecture, which was proved in [2, p. 274], is generalized here in
Theorem 3.2 to the case where R is replaced by an arbitrary commutative
semigroup. We then apply Theorem 3.2 to prove theorem 4.2 on the existence
of a finitely additive set function invariant under translations and surjective
group homomorphisms. For the case where the group is R", this is related
to a result of Mycielski [8, p. 317] on the existence of a nonnegative finitely
additive similarity invariant set function on the algebra of Lebesgue measurable
sets in R”. In fact, our set function, though defined on a smaller yet important
algebra of sets, is regular with respect to the zero and cozero sets and is
invariant on a (larger) class of operators which includes the translations
and the linear surjections on R". Theorem 4.5 and Remark 4.7 provide
means of evaluating this set function for the case where the group is R”
and Z respectively. Finally, we introduce the notion of the convolution of
certain finitely additive set functions. In Theorem 5.7 we establish some
properties of convolutions and in Theorem 5.8 we show the existence of
(i) an algebra & of Borel sets in R or Z, which is sufficiently large to be
of interest, and (ii) a finitely additive set function A: & — [0,1] such that
the convolution, evaluated at any set E € &, of A with certain finitely
additive set functions u: & — C is equal to the product u(R)AE) or
MZ)NE).

Parts of Lemma 2.2 and Theorems 3.2, 4.2 and 4.6 were communicated
without proof in [1, pp. 106-108].

2. Preliminaries

2.1. In this paper, X will denote a compact Hausdorff topological space
and AB(X) will designate the class of Borel sets in X. Given an algebra &
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of subsets of a set S dense in X, we shall write C(S, &) for the class of
all complex-valued functions on S which can be uniformly approximated
by #f-measurable step functions, and write I for the characteristic function
of a set E in X. Recall that a function f lies in C(S, &) only if [¢f d\ exists
for every bounded finitely additive complex-valued set function A on & (see
[3, p. 293]), where the integral is defined by the usual Moore-Smith con-
vergence method (see [9, pp. 183-191] and [12, pp. 401-404]) or equivalently
[6] by the Dunford-Schwartz method [4, pp. 101-125]. Let C(X) denote
the space with supremum norm ||-||.. consisting of the continuous complex-
valued functions on X. A finitely additive set function \: & — C will be
said to be regular on A if, given ¢ > 0 and E € &, there exist constants
a, b > 0 and real-valued functions f, g € C(X) such that the sets

K={x€eS: f(x)<a} and V={x€ES: gx) <b}

have the properties (i) K, V € &, (ii) K C E C V and (iii) \|(VN\K) < ¢
where |A| is the total variation of . A linear functional L on C(X) is said
to be nonnegative if L(f) = 0 for all continuous functions f: X — [0, ).
The norm ||L|| of such a functional is equal to L(1). Since a compact space
is normal and so completely regular, the following useful analogue of the
Riesz representation theorem in the context of finitely additive set functions
can be easily deduced from [2, Corollary 2.9 and Remark 2.8, pp. 271].

2.2. LeMMA. Let S be a dense subset of a compact Hausdorff space X
and A be a bounded linear functional on C(X). The class s of sets E N
S such that E € BX) and

;r:ff sup A, =8 fis<Ie<fi i,/ g ECX} =0

is an algebra of sets for which f|s € C(S, ) for all f € C(X), and there
exists a unique regular bounded finitely additive set function N : o — C
such that [sf|sd\ exists in the sense of Moore-Smith convergence and is
equal to A(f) for all f € C(X). Moreover, |A| = |\[(X). Also, when A is
nonnegative, \ is nonnegative and A consists of those sets E N S where
E € B(X) and

inffA(f, — ) fislkk<ffi, LECX)} = 0. 2.2.1

2.3. Remark. In the context of Lemma 2.2, it is not difficult to show
that there exists a regular countably additive measure u : B(X) — C such
that

A ={ENS:EE€ BX),|ul E\E) = 0}

and ME N §) = w(E) for all E N § € &: This fact, which is proved in
[2, pp. 268-270] will be used later. For the familiar case where X = [0, 1]
and S is the rationals, we have the following:
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(a) If u is point mass at a rational r, then {r} & & and \ is again point
mass. Moreover A is countably additive.

(b) If uis point mass at an irrational i, then & contains all closed subsets
of S which do not contain i as a limit point. In this event A is not countably
additive.

(c) If u is Lebesgue measure then & contains all singletons and A is
not countably additive.

(d) If u has positive mass at each rational then & does not contain any
singletons and \ is countably additive.

3. The moment problem

3.1. Given a semigroup G with commutative operation (denoted by -)
we consider a family 7 = {m, : z € G} of continuous functions 7, : X —
C (z € G) for which 7., (x) = 7,(x) m,(x) for all x € X and all 4, v € G.
We write F,(X) for the space, with supremum norm, consisting of all finite
linear combinations of elements in 7, and write F,(X) for its supremum
norm closure in C(X). So given f € F_(X), we shall write 3 csf (2)m (x)
for f(x), where the complex coefficients F (z) vanish for all but finitely many
z € G. We will say that a (not necessarily continuous) complex-valued
function p on G is positive definite with respect to m if 3¢ f(2) p(z) =
0 for all nonnegative f € F,(X). The analogue of Bochner’s representation
theorem, in the context of finitely additive set functions, is now given. It
is on this result that much of this paper will depend.

3.2. THEOREM. Suppose that (i) G is a commutative semigroup, (ii) S is
a dense subset of a compact Hausdorff space X, (iii) m = {m, : z € G} is
a family of functions @, : X — C in C(X) for which m,.(x) = m,(x) 7 ,(x)
for all x € X and all u, v € G, and (iv) p is a complex-valued function
on G which is positive definite with respect to w. Then there is an algebra
s of sets in {EN S : E € BX)} for which (1) the functions {f|s : f €
C(X)} lie in C(S, o), and (2) there exists a regular bounded finitely additive
set function \ : & — C such that, in the sense of Moore-Smith convergence,

P(Z) = fs’ﬂ'z]s d\ fOI‘ allz e€q.

Moreover, if F(X) = C(X), then we can take for A the class of sets E N
S such that E € B(X) and

inf {

in this case \ is nonnegative and is uniquely determined on s by p.

> i) - 2@) p@

rg<Iz<hyg,h€e F,,(X)} =0; (3.2.1)
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Proof. On F,(X), the nonnegative linear functional L given by

L(f) = 2 ,e6 T @ pR)
is well defined. For if 3,c; f1(z) m, = 3,ec f2(2) 7, then

zzEG[.?l(Z) - .? D7) =0
so that

> i@ — F@)p@ =0,

since p is positive definite. Therefore L(3,c6f1(2) m) = LS ,ccf2(2) ).
Interchanging f; and f, shows L to be well defined. Now, for f € F,(X)
with [|fll. = 1, let 6, be that complex number for which |L(f)| = 6; L(f).
Then,

IL(A)| = L(6f) = L(Re(6:f)) < L(1)

and so |L(f)| < L(1)|/f]l. for all f € F,(X). Hence L is a bounded nonnegative
linear functional on F,(X) and so, by the Hahn-Banach theorem, can be
extended to a bounded linear functional A on C(X) which is nonnegative
and unique if F,(X) = C(X). Taking for & the algebra given by Lemma
2.2, we have part (1). Also, there exists a unique regular bounded finitely
additive set function A on & such that [f|s d\ exists in the sense of Moore-
Smith convergence and is equal to A(f) for all f € C(X). In particular, if
f = m, for any given z € G, we get part (2). Moreover, if F,(X) = C(X),
then the extension A is nonnegative and unique and so A\ is nonnegative
and uniquely determined by L. This completes the proof.

3.3. Remarks. (1) For & and A as in Theorem 3.2, we have
AE) = [ flsdh = [(Als - 1o ax
for all F € & and all f € F.(X). Now, for the F,(X) = C(X), (3.2.1) yields
inf{js(hls - IF) d)\: IF = h|s, h (S F,,,-(X)}
= inf{J's(Ms —gls)dn: gls<Iz<h|; g, hE F‘n’(X)}

=0
and so

MF) = inf { ths d\: I <hghe F,,(X)}. (3.3.1)
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Similarly,
ANF) = sup{jsgls d\: glss<Ipg € F,,(X)}.

It now follows from the definition of C(S, &) that if F(X) = C(X) then

[a

inf{ ths d\: f<hs;h € F,,(X)}

sup{ Lgls dr: gls<f,g €EF.(X )} (3.3.2)

for all f € C(S, ).

(2) For not necessarily continuous positive definite functions on the real
line R, Hewitt tried to obtain a concrete representation theorem similar to
that of Bochner in the continuous case, by means of finitely additive set
functions on a subalgebra of Borel sets in R (see [5, pp. 310, 311] and the
footnote on page 379 in [4]). The corrected version of Hewitt’s result
obtained in [2, p. 274] in the more general setting of an arbitrary locally
compact abelian group G, can also be obtained from Theorem 3.2 by (a)
taking S to be the dual group G~ of G, (b) taking X to be the Bohr
compactification of §, (c) taking for 7 the characters x — 7,(x) on X (z €
G), and (d) showing, as we do in Example 3.4, that a function p: G — C
which is positive definite in the classical sense (i.e., 3, ,0@p(z; - z,7") = 0
for all finite sequences (¢;) C C and (z;) C G) is necessarily positive definite
with respect to .

3.4. Example. Let m designate the normalized Haar measure on the
Bohr compactification X of the dual group S of a locally compact abelian
group G with identity e. First let us show that if p: G — C is positive
definite in the classical sense then it is positive definite with respect to the
class 7 of characters on X. Then we will establish the existence of a finitely
additive set function on a subalgebra of the Borel sets in §, with properties
that probably make it the most important such function.

If G, denotes the group G with discrete topology, then (i) the function
p: G, — C is a continuous positive definite function, and (ii) X is the set
of all characters on G,. Hence, by Bochner’s theorem (see [10, p. 19-21]
and [11, pp. 285, 286, 290]) there exists a nonnegative measure v on the
Borel subsets of X such that

p2) = L (%) dv(x).
Thus, 3,c¢ f(2) 7, = 0 implies
e @ PR = L (2160 f@ wz(x)) dv(x) = 0.

This shows that p is positive definite with respect to .
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It now follows from Theorem 3.2 that a function p : G — C is positive
definite in the classical sense if and only if there is an algebra & of Borel
sets in S on which is defined a unique regular finitely additive set function
A : o — [0, 1] for which p(z) = [¢m|s d\ (z € G). In particular, to the
discontinuous function

_J0 ifz#e
p(Z) - {1 ifZ = ¢ (3.4.1)
which is positive definite in the classical sense, can be associated (by (3.2.1))
an algebra € of subsets of S on which is defined a unique regular finitely
additive set function m : € — [0, 1] such that

0 ifz#e

szls(x) dm(x) = {1 ifz oo (3.4.2)

This algebra and set function each have a property that will be used in
Section 4. First, & is translation invariant in the sense that if F € &, then
s+ F € &for all s € §. Secondly, m is translation invariant in the sense
that m(F) = m(s - F) for all F € €and all s € S. The first property follows
directly from (3.2.1). The second property follows from the regularity of
m and the fact that f € F_(X) if and only if f, € F,(X) for all s € §; where
fix) = f(x - s)forall x € X and s € §. For, given F € & and given s €
S, then f(e) = Ff,(e) and

inf{ Dl @ PRt Ir<fls;fE FW(X)}

inf{f(e) : I <fls; fE FX)} (see (3.4.1)

inf{f () : I.r < fys; f, € F,(X)}
inf{2(e) : I,.r < gls; g € F,(X)}

inf{

= m(s - F).

m(F)

I

2o p@)

I

cLp<gls; g EF (X )}

Furthermore, by remark 2.3, there exists a regular countably additive
measure u : B(X) — [0, 1] such that if & is the algebra of sets E € B(X)
for which |u|(ENE) = 0,then € = {EN S : E€ Hand mE N §) =
Ww(E) for all E € &. Since

0 if
fXﬂsz=jSﬂz|Sdm= {1 lf;ii’

it follows that u = 7.
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3.5. By a tuple (A, &) we mean a bounded finitely additive complex-
valued set function A defined on an algebra & of Borel sets in S. Let M(S)
denote the family of tuples (A, &) such that (i) for some regular complex-
valued countably additive measure X on an algebra & C %B(X) we have
NENE) = 0 for all E € &, (i) f € C(X, ) for all f € C(X), and (iii)
A={ENS:EEs}and ME N S) = ME) for all E € &. Note that the
regularity of A on & follows from Lemma 2.5 in [2, p. 268]. We shall say
that (A, &f) € M(S) lies in M_(S) if, given E € o, there exist uniformly
bounded sequences (g,), (h,) C F,(X) for which

&n-1 sgn sIES hn = hn—l

and h, — g, — 0 (as n — ©) on XN\(E\E). In Sections 5.3 and 5.4
examples of such tuples are given.

3.6. Remark. 1If S is a locally compact abelian group with dual group
S=, if (s, §) denotes the character § € §~ evaluated at s € §, and if
(m, ) € M(S) and (A, €) € M(S™), then it follows (see [2, pp. 276, 277])
that (1) the Fourier-Stieltjes transforms

w@s) = L(s, §)du(s) and A(s) = LA(s, 5) d\(3)

lie in C(S™, &) and C(S, &) respectively and (2)

Usls’ §) dNS) duts) = LA fs (s, 8) dpa(s) M)

In particular, for any given 7 € S, the function p, : $~ — [0, 1] given
by

pi(8) = L (s, 5+ 77" dmls),
where m is the set function of Section 3.4, lies in C(S™, %). Since

o _ [0 if5#7
P?(s)‘{l if5 = 7

it follows that the singleton {7} lies in €. So € contains the set {{f}, 7 €
S”} of singletons.

4. A Set Function Invariant Under Translations and Homomorphisms

4.1. Mycielski [8, p. 317] proved the existence of a finitely additive set
function u over the algebra L, of all Lebesgue measurable sets in R"” (n =
1) such that w(R") = 1 and u(TF) = w(F) for all F € L, and all similarities
T of R”". In this section we show the existence of a regular finitely additive
set function m defined over an algebra € of Borel sets in R” such that
mR") = 1 and m(TF) = m(F) for all F € € and all T in a class of opera-
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tors on R" which includes the similarities. Though this generalization is ob-
tained at the expense of the size of &, we show that it is still large enough
to be of interest. This result of ours follows from the following general
theorem.

4.2 THEOREM. Given a locally compact abelian group S, there exist a
translation invariant algebra & of Borel sets in S and a translation invariant
finitely additive set function m : € — [0, 1] with the following properties:

(1) Any continuous almost periodic function on S is the uniform limit
of &measurable step functions.

(2) m is inner and outer regular with respect to the zero and cozero
sets (in &), respectively, and m(S) = 1.

(3) For any surjective homomorphism T : S, — S, between locally
compact abelian groups, T~' maps &, into €, and m\(T™'F) = my(F) for
all F € &,; where (m;, &) is the tuple associated, as above, with S; (i =
1, 2).

Proof. Let X be the Bohr compactification of S and let (m, &) be the
translation invariant tuple given in Example 3.4. Since {f|s : f € C(X)}
consists of the family of all continuous almost periodic functions of S (see
[7, p. 168]), and since, by Theorem 3.2, {f|s : f € C(X)} C C(S, ¥), we
get part (1) of the theorem. Part (2) follows from Theorem 3.2 and equation
(3.4.2).

There remains to prove part (3). Given §, € S,~, the complex-valued
function on S, given by s, — (Ts,, §,) is positive definite. So, by Theorem
3.2, there exists a bounded finitely additive set function A;, defined on an
algebra &f;, of Borel subsets of S,”, for which

A?z(sl’\) = 1’ (}\3“2, ‘-ngs’z) E M(SIA)9
and

Ts1, 5 = [ (5, M dha® 1€ 5. “.2.1)

Since [(Tsy, )| = |(s;, W) = 1(s; € §;, W € S}, §, € S,) and since A;,
takes its values in [0, 1], it follows that if A\;,({2,}) # 0 (&, the identity in
S7), then \;, would have its support concentrated at &;,. So, we would have
(Ts, §) = 1 for all s, € §;, and since T is onto, this would imply that
$, = &, (the identity in S3). So, A;,({¢;})) = 0 whenever 5, # &,. Hence,
by equation (3.4.2) and Section 3.6, we have

L| (Tsy, §3) dmy(s)) = fslfsl* (1, ) d}\sz (W) dmy(sy)

= fsl‘js; (81, W) dmy(s,) d\g, (W)

= )‘3’2({?1})
=0
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for all §, € 8,7, 5, # &. It now follows from Section 3.6 that ¢ o T €
C(S,y, &) and

L,"’ °Tdm = Lﬁf’ dm, 4.2.2)

for all $€F, (X,), wherem; = S, (j = 1, 2)
Choose an arbitrary E € %,. We now show that T"'E € &, and that

my(T'E) = my(E).
By (3.2.1), given & > 0, there exist g', b’ € F,(X;) with
g'ls, <Ig<h'ls, and Lz(hlisz — g'ls) dm, < s.
So, by (4.2.2) we have
fSI(h,lsz - g'|52) ° Tdml <eg

where
gls,oT<Ip-g<h'lseT

and, by (4.2.1) and Section 3.6, the functions g'|s, ° T and h'l, o T lie in
C(S,, %,). Thus, by (3.3.2), we get

inf{jsl(hlsl - g|S|) dml : ngl < IT“E = h|SI; 8 he Fm(Xl)} =0.
This proves that T™'E € &,. Furthermore,

m,(T_lE) = inf{fs hlsl dm, . IT“’E = hlsl; he Fm(Xl)}

N

inf{fs h,l‘s2 ° Tdm1 . IT"'E = hl|s2 ° T; h' e F‘n’z(XZ)}

inf{J's Wls,oTdm,: Iz <hl|s; h' € F"Z(Xz)}

inf{fs R |s,dmy : Ig<h'|s,; ' € F,,Z(Xz)} (see (4.2.2))

= my(E) (see (3.3.1)).
Similarly, m(T"'(S,\E)) < m,(S,\E). Also,

1 = myS,) = myE) + my(S;\E) = m\(T"'E) + my(T"'(S,\E))
= m,(T"1S2) = my(S, = 1.

So, m(T"'E) = m,(E). This completes the proof.
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4.3. By an isometry of a subset E of R” onto another, we mean an
(invertible surjective) operator T on E which, like its inverse, preserves
distances. It is an elementary fact that such an operator can be extended
to an isometry of R” (onto itself). An isometry of R" is a rigid motion of
R” and so is necessarily an affine transformation of the form z — Uz +
2o (z € R") for fixed z, € R” and a bijective homomorphism U of R". Now,
a similarity is, by definition, the product of a magnification from the origin
(which, like its inverse, is surjective and affine) and an isometry of R”". So
Theorem 4.2 for the case § = R” yields the analogue on & of Mycielski’s
result on the Lebesgue subsets of R”.

4.4, If, for a given Borel measurable function f : R" — C, the sequence
of Lebesgue integrals
1
B Jn

converges (as k — ) to a common limit regardless of the sequence (B))
of spheres in R” for which their volumes |B,| — , then we write

1
lim — I f
g |B] J
for the common limit and we say that

lim —
1Bl IBI

exists. This notion provides us with a means of evaluating integrals with
respect to m for the case § = R".

4.5. THEOREM. Let (m, €) be the tuple of Theorem 4.2 for the case S =
R". Then

o1 f
lim — | zf
15— |B] J

exists and

fmfdm lim fo 4.5.1)
15l |B

for all f € CR", &); where the integral on the left hand side exists in the

sense of Moore-Smith convergence, while those on the right exist in the

sense of Lebesgue.

Proof. Since, by definition, any given f € C(R", &) can be uniformly
approximated by &-measurable (Borel) step functions on R”, it follows that
the function s — f(s) on an arbitrary sphere B C R" is the uniform limit
of Borel measurable step functions. Hence, the integrals [zf exist in the
sense Lebesgue.
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Since f can be uniformly approximated by &-measurable step functions,
it is sufficient to take f = I for a set E € &. Given ¢ > 0, there exist two
real-valued functions g, h € F,(R") (where 7 = (R")” and R” is the Bohr
compactification of R") such that g|g. < Iz < hlg. and

fm gl dm — & < fm Iy dm < Jm Rl dm + &. 4.5.2)

Clearly

.1 f ~ _ J1 if 2 = identity
Il(l_rg IB,| J5 @2 = {0 otherwise

for all sequences (B)) of spheres such that |B,| — «. Hence,

1
lim — J.
iB—= |B] a?

exists and is equal to [g«¢p dm for all pEF.(R"). So, for any sequence (B,)
of spheres such that |B,| — », we have

1
n d = l'm —J
jR"gIR " |B}—>oo |B| B g

R”

lim—l— j
|By] B“gm

< lim inf L f I
By )5

. 1 J’
< lim sup B, BkIE

. 1 J’
< lim sup B skhl""

1
lim — f hgn
lim_ 73] Jolle

= J;('l h R dm.
Thus
limsup—l—f I — liminflf I; < lim iJ‘(h -9
B, Jai ® Bi| /5" 5o B J ¥
= Ln(h = @lr-dm

<2e.
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So

lim — f 1
Bl |B] J8

exists and, by (4.5.2), is equal to [g« Iz dm. The theorem is proved.

4.6. Remark. When S = R, we can use Theorem 4.5 to show that sets
of the form

F=U{la,b] +nc:n=0,x1+2,..}
lie in €for all @ < b and all ¢ = b — a. In fact, since
APR) = {flx : fCR)},
then, by (2.2.1), € consists of all sets £ N R such that E € B(R) and

inf{fs(fz —fddm: fislgp<fifi, L E AP(R)} =

If we write Z for the character given by z — (z, 2) = exp (2mz/c) (z €
R), and if we let I denote the interval on the unit circle in C consisting of
all points (z, 2) such that z € F, thenthe set E = {z € R : (z, 2) € I} lies
in BQR) and F = E N R. Also, given ¢ > 0, there clearly exist functions
g, h € AP(R) such that g < I < h and

— -9<
lim 2Tf h =g <e.

By Theorem 4.5, this implies the inequality fg(h — g) dm < & and so we
have F € &. Moreover, m(F) = (b — a)/c.

4.7 Remark. Let (m, &) be the tuple of Theorem 4.2 for the case § =
Z. Then we can repeat the ideas in the proof of Theorem 4.5 to show that
the following limit exists and is given by

N
ffdm = lim N+ 1,.E_Nf(j) @.7.1)

for all f € C(Z, €) where the integral on the left exists in the sense of
Moore-Smith convergence. By an argument identical to that used in the
previous remark, it can be shown that sets of the form

F=U{la,bl+nc:n=0, =1, £2,..}JNZ
licin €foralla < b and all ¢ > 1.

5. Convolutions of Finitely Additive Set Functions

5.1. In the following sections we shall introduce the notion of convolution
for finitely additive set functions. To do this, we shall work on the space
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M~(S) introduced in Section 3.5 for the case where S is a locally compact
abelian group with character group S~

5.2. THEOREM. Given (i) a locally compact abelian group S with character
group 87, (ii) (\, ) € M (S) where A is translation invariant, and (iii)
E € oA, then the function z — \ (E - 2) lies in C(S, o).

Proof. Taking the Jordan decomposition of the real and imaginary parts
of A (see [12, pp. 374, 401]) we see that A may be assumed to take its
values in [0, ). Now, if Z € §~, then

fs (w2, 2) dNw) = M@}z, 2),

and since Z € C(S, &) it follows that the function z — [«w - z, Z ) dA(w)
also lies in C(S, &). So, for any f € F¢(S) where S is the Bohr compactification
of S, the function

7> f S ls(w * 2) dA(w)

lies in C(S, ). Hence it is sufficient to show that, given & > 0, there exist
functions f, g € F~(S) such that g|s < Iy < h|s; and

[ s = elrow - 2 dhowy < 6

forall z € S.

Let F € (S) be such that F N S = E and let (g,), (h,) be uniformly
bounded sequences in F¢-(S) for which

En-1S8n S IF$ hn = hn—l and hn — & Oon g\(F\ﬁ‘)'

Now, by definition of M(S), there exists an algebra & C B(S) and there
exists a bounded regular countably additive set function X : () —
[0, ) such that () & = & N S, (i) MGG = 0 (G € &) and (iii)
MG N S) = MG) (G € ). So, it is sufficient to show that there exists n’
such that

L(hn/ — gn)w - 2) d\(w) < ¢ 5.2.1)

for all z € §S.
Let

E,={z€S: J; (h, — g )W - 2) d\(w) = &}

Since z — (z, 2) is continuous on § (Z € $7), so is

- L(hn — g)(w * 2) d\(w).
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(see first part of proof and [7, p. 168]). Hence, E, is closed in S. Furthermore,
since A,y — gui1 = h, — g, it follows that E,,; C E, for all n. Let
E. = NE,If E, #¢ for all n (i.e., (5.2.1) does not hold), then by
the compactness of S, E. # @¢.That is, there exists z, € E., C S for which

fg(hn - gn)(w : Zoo) dX(W) =g

for all n. But this cannot hold since

lim L(h,, - g)W-2)d\(w) =0

n—co

for all z € S. To see this, note that (F - 2)"\(F - 2)° = (F\F) - z for all
z € S and so the function w — (h, — g,)(w - z) convergences to 0 (as
n — «) almost everywhere with respect to A. Hence there must exist n’
such that E,. = @ (i.e. (5.2.1) holds for some n'). The theorem is proved.

5.3. Example. Here, we provide an example of a tuple (A, &f) € Mg~(R)
with A and & translation invariant. Let & be the algebra of sets in R
generated by the singletons and by sets of the form

F=U{la,b] + nc:n=0, =1, £2,...}

where a < b and —© < ¢ < «, By Remark 4.6, & is a (translation invariant)
subalgebra of the algebra & in Example 3.4. Let A : & — [0, 1] be the
restriction to & of the set function m in Example 3.4. Now, for any set
such as F above, there clearly exist uniformly bounded sequences

(gn), (h,) C AP(R)
such that
gno1Sg,SIgs<h,<h,_, foraln
and h, — g, — 0 (as n — «) on the set
R\{a + ke,b + nc: k,n =0, £1 £2,...}.
Hence, there exist uniformly bounded sequences
@) (h,) C CR)
such that
Zo1<8.<Ig<h,<h,_, foralln,

and %, — g, — 0 (as n — ©) on R\(E\E) where E is a set in B(R) such
that E N R = F (see the final paragraph in Example 3.4). Since Fx-(R) =
C(R), we can take g,, A, in Fx-(R).

Since Mi~(R) C M(R), we must_also show that any function in AP(R)
lies in C(R, &f). Since Fx-(R) = C(R) and since AP(R) = {flg : f € CR)}
it is sufficient to note that any given Z € R” lies in C(R, &); which is
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evident from the fact that to any given Z € R~ one can associate a point
t € R such that (z, Z) = exp (itz) for all z € R (see Remark 4.6 and [7,
pp- 139, 140]).

5.4. Example. For the case S = Z, let o be the algebra of sets in Z
generated by the singletons and by sets of the form

F=U{abl+nc:n=0,=«1,£2,...}NZ

for all @ < b and all ¢ > 1. Then by Remark 4.7, & is a subalgebra of the
algebra & in Example 3.4. If we let A : & — [0, 1] be the restriction to &
of the set function m in Example 3.4, then we can repeat the reasoning in
the previous example to show that (\, &) € M,-(Z) with A and & translation
invariant.

5.5. Remark. Given a countably additive regular measure  : %B(S) —
C which is absolutely continuous with respect to the Haar measure on the
Bohr compactification S of S = R or § = Z, then clearly (u, &) € M-(S)
when & is the algebra of example 5.3 or 5.4 respectively, and u is given
by w(E N S) = @(E) for all E € B(S) such that EN § € .

5.6. Let (u, &) and (v, &) be two tuples in Ms~(S) with & translation
invariant. By Theorem 5.2, [su(E - z7') dv(z) exists, in the sense of Moore-
Smith convergence, for all E € . We shall write u * v for the bounded
finitely additive complex-valued set function on & given by the convolution

(u* V)(E) = js,u(E 27 ) dv(z) (EE A).

If S denotes the Bohr compactification of S, then (by definition of Ms-(S))
there exists an algebra & C %B(S) (which is necessarily translation invariant)
for which & = {E N S : E € A}, and there exist regular (countably additive)
measures &, 7 : B(S) — C such that

IWENE) = ENE) =0, wENS)=RE) and wENS) = HE)
for all E € . Now, if L is the bounded linear functional on C(S) given
by

Lp = [ ra@en (rec.
where @ * ¥ denotes the convolution given by
E*V(E) = Ln(E 27 dv(z) (EE )

then by the Riesz representation theorem, there exists a regular (countably)
additive) measure A : %B(S) — C such that

L(f) = Lfdx (fE€ C@O).
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If we write A for the finitely additive set fungtion regular on .sd_ (see Lemma
2.2 and remark 2.3) given by AM(E N S) = ME) for all E € «, then

L) = [ flsar (Fec®)

and so

[ Asdwnn = [ra@em = [ v = [ floan re oo

the first equality being a consequence of the definition of the Moore-Smith
type integral. So,

ME) = p*v(E) (E€E )
and so u * v is regular on . Similarly, N(E) = & * %(E) for all E € %(S).
5.7. THEOREM. Given a locally compact abelian group S with dual group
S™, and given (u, A), (v, A) € M(S) with oA translation invariant, then

(1) (”’ * v, d) e MS"(S)’
Q2 wpw*v=pwu*v, and
B3) (w*v)" =ap

Proof. Since (u, &) and (v, &) lie il‘_l_ M(S) there exists, by definition,
a (translation invariant) algebra of C %(S) for which

A={ENS:EE€H},

and there exist regular (countably additive) measures &, ¥ : B() — C
such that

[BENE) = [P{ENE) =0, wENS)=mE) and »ENS) = HE)
for all E € «. Now, the measure A : B(S) — C given by the convolution
NME) = LF(E 27 dwz) (E € B(S)

is regular (see Section 5.6) and
MNENE) =0

for all E € ¥ (since WW(ENE) - z) = 0 for all z € 5). So, the tuple (\, &)
where M(E N S) = NE) for all E € «, lies in M(S). Furthermore, since
the function z — w(E - z7') lies in C(S, ) (see Theorem 5.2), it follows
from the definition of the Moore-Smith type integral (see, for example, [12,
pp. 401-403]) that

LF(E 27 )d(z) = LM(E NS) -z Ndv(z) (EE .
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So A = u*xvandso (u*v, &) € M(S). In fact, it is easy to see that
(n * v, o) € Mg~(S). This proves part (1). Also, we have
pw*vENS)=m*v(E) and v+*uwENS) =7*wWE)

for all E € . So, by Fubini’s theorem, we have u * v = v * g which is
part (2). Now if f € C(S), then [5f d\ = [sf d\. Since any given Z € S~
admits a unique continuous extension (which we also denote by %) to S
then

R2) = 2@) = 5E@)PR) = a@)PQ)
and so we have part (3). The theorem is proved.
5.8. THEOREM. For § = R or § = Z, there exists a tuple \\, &) €
M~(S), with £ and N : 4 — [0, 1] translation invariant, such that
m*NE) = WS)NE) (E€E A

Sor all finitely additive set functions u : s — C for which (u, ) € Ms~(S).
Furthermore, the following limits exist and are given by
T

lim L WE + 2)dz = p(R)ME) (EE A) (5.8.1)
T— 2T -T
when S = R, and
1 N
i i) = 5.8.2
lim oo IENME +j) = WZ)ME) (E€E ) (5.8.2)
when S = Z.

Proof. Let (A, &) be that tuple given in example 5.3 or 5.4 when § = R
or § = Z respectively. Then, by part (2) of Theorem 5.7, we have

wxME) = A x w(E) = L ME - z7") du(z) = L ME) du(z) = w(S) ME)

for all E € & and all finitely additive set functions u : & — C such that
(1, o) € Ms~(S).

Also, (5.8.1) and (5.8.2) follow from the definition of A and equations (4.5.1)
and (4.7.1) respectively. This completes the proof of the theorem.
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