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LIFTING HOMOMORPHISMS OF MODULES

BY

ROBERT M. GURALNICK

Throughout this note R will denote a commutative noetherian ring with an
ideal P. Let A be a module finite R-algebra and M and N finitely generated
A-modules. Obviously, if M N, then Mk M/P*M N, for each k > 0.
The reverse implication has been studied in the case R is a discrete valuation
ring and P is the maximal ideal of R. Maranda [4] and Higman [3] considered
the case where A is an order in a separable algebra and M and N are R-free
and proved that there exists a positive integer k (depending only on A) such
that M N implies M N. Reiner [5] extended this result and proved

THEOREM (Reiner). Let R be a dvr with quotient field K. If A is an order in
an arbitrary finite dimensional K-algebra and M and N are R-free A-modules,
then Mk Nk for all k > 0 implies M N.

In this article, we extend this result in several directions. We only assume R
is a local noetherian ring, P is its maximal ideal, A is module finite over R,
and M and N are finitely generated. Moreover, we show that it suffices to
check if M, N, for a sufficiently large k instead of all k. It is easy to see that
the k can no longer be chosen to depend only on A; in our result, k depends
on M and N. The main ingredient in the proof is the following weak version of
the Artin-Rees Lemma (see [1, p. 197]).

LEMMA. If L is a finitely generated R-module with a submodule L0, then
there exists a nonnegative integer e such that Lo q p e+jz C PJLo for allj > O.

Our first result shows that homomorphisms from Mk to N can be lifted to

homomorphisms from M to N provided k is large and we don’t insist they
agree completely on Mk.

THEOREM A. There exists a nonnegatioe integer e ep(M, N) such that if

o noma(Mf+e, Nf+e) forf > O,

then there exists z Homa(M, N) with z and o inducing the same maps from
to
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Proof. Choose presentations A(n)/AA(t) M and A(")/BA(t) N where A
and B A,t, the set of n t matrices over A. Define T: A, A ---) An
by T(U, V) UA BV. Here A is the ring of n n matrices over A. By the
Artin-Rees Lemma, there exists a nonnegative integer e satisfying

im T (3 Pe+fAn>(t c Pfim T. ( )

Now if o HOmA(mf+e, Mr+e) choose U0 A, inducing o on

if+ A(’)/(AA(t) + py+eA(’)).

Since UoAA(t)BA(t) + PT+eA("), we can find Vo with UoA =-BVo(modPf+e)
Thus

T(Vo, Vo) Pe+fAn

and so by (,), T(Uo, Vo)= T(U1, V1) for some (U., V1) Pf(A, A,). Set
U’= Uo U and V’ V0 V1. Then T(U’,V’)= 0, and so U’ induces a
A-homomorphism, of M into N. Since U-= U’ mod Pf, - and o induce the
same maps from Mf to Nf as desired.

For the next two corollaries, assume R is local and P is its maximal ideal.
An easy consequence of the theorem is our promised generalization of Reiner’s
theorem.

COROLLARY 1. Let l= max(e,(M,N),e,(N,M)}. If MI+ NI+I, then
M=N.

Proof Choose inverse isomorphisms (X and a2 between Mz+ and Nz+ 1.

By the theorem, we can find fll HomA(M, N) and f12 HomA(N, M) such
that eq fll in HomA(M1, N1) and a2 =/32 in HomA(N1, M1). Hence 12
induces an automorphism of M and thus fllfl2 is a surjective endomorphism
by Nakayama’s Lemma. As M is noetherian, this implies fllfl2 AutA(M).
Similarly fl2fll AutA(N)- Hence fll is an isomorphism from M to N as
desired.

Write NIM if N is isomorphic to a summand of M. Let be defined as
above.

COROLLARY 2. If N1+ Mt+ 1, then NIM.

Proof Since Nt+ Mt+ 1, there exist

O HomA(N+ 1, Mr+l) and a2 HomA(Mt+x, Nt+)
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so that a2a AUtA(NI+I). By the theorem, we can find

fll HomA(N,M) and f12 HA(M,N)

so that 21 induces the same automorphism as O201 on N1. Hence
AUtA(N ) and so M N kerfl2 as desired.

Note that Corollary 2 does not imply that if Mr+ is decomposable, then M
is. Indeed, this is easily seen to be false. A version of this is true if R is
complete. We first need a preliminary lemma.

LEMMA. There exists a nonnegative integer g gp(M, N) such that if

o HomA(M,N ) and o(M) c Pf+gN,

then o PfHomA(M, N).

Proof. Choose generators m1,..., m, for M. Define an R-linear map

0: HomA(M, N ) N(n)

by 0(o) (o(ml),..., o(m,)).
Again, by the Artin-Rees Lemma, there exists a nonnegative integer g such

that

imO P]+gN(n) C primo

for all f> 0. Thus if o(M) c Pf+gN, 0(o)= O(.r) for some
PfHomA(M, N). Hence o(mi)= "r(mi) and so o " PfHomA(M, N).

THEOREM B. Let R be a noetherian local ring with maximal ideal P which is

complete with respect to the P-adic topology. Let A be a module finite R-algebra
andM afinitely generated A-module. Set , u(M) ep(M, M) + gp(M, M).
If M,+ is decomposable, then so is M.

Proof Let E EndA(M). If Mu+ is decomposable, there exists a nontriv-
ial idempotent a EndA(M+). By Theorem A, we can choose fl EndA(M)
such that fl and a agree on M,+ 1-e. Thus

(fl- fl2)(M) C P"+-eM Pg+M.

Hence by the 1emma, fl- 2_ PE. Note since fl and a induce the same
endomorphism of M1, fl is neither the zero map nor an isomorphism on M1.

Hence neither fl nor 1 fl PE. This shows E/PE has a nontrivial idempo-
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tent. Since E is a module finite R-algebra and R is complete, this implies E
has a nontrivial idempotent . Hence M (M) keri is decomposable.

Special cases of Theorem B have been obtained by Maranda, Heller, and
Reiner. For references, see [2, Section 76] and [5].

In general, it seems fairly difficult to determine the integers ep(M, N) and
gp(M, N). However, if R is a discrete valuation ring with prime P (r), A is
R-torsion-free (for e) and M and N are R-torsion-free (for g), then one can
obtain upper bounds by computing the Smith normal form for the maps T and

constructed above. For example, if T has invariants ral,..., r a’,0,...,0,
then e,(M,N) < max(a/}.
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