LIFTING HOMOMORPHISMS OF MODULES

BY

ROBERT M. GURALNICK

Throughout this note R will denote a commutative noetherian ring with an ideal P. Let Λ be a module finite R-algebra and M and N finitely generated Λ -modules. Obviously, if $M \simeq N$, then $M_k = M/P^k M \simeq N_k$ for each k > 0. The reverse implication has been studied in the case R is a discrete valuation ring and P is the maximal ideal of R. Maranda [4] and Higman [3] considered the case where Λ is an order in a separable algebra and M and N are R-free and proved that there exists a positive integer k (depending only on Λ) such that $M_k \simeq N_k$ implies $M \simeq N$. Reiner [5] extended this result and proved

THEOREM (Reiner). Let R be a dvr with quotient field K. If Λ is an order in an arbitrary finite dimensional K-algebra and M and N are R-free Λ -modules, then $M_k \simeq N_k$ for all k > 0 implies $M \simeq N$.

In this article, we extend this result in several directions. We only assume R is a local noetherian ring, P is its maximal ideal, Λ is module finite over R, and M and N are finitely generated. Moreover, we show that it suffices to check if $M_k \approx N_k$ for a sufficiently large k instead of all k. It is easy to see that the k can no longer be chosen to depend only on Λ ; in our result, k depends on M and N. The main ingredient in the proof is the following weak version of the Artin-Rees Lemma (see [1, p. 197]).

LEMMA. If L is a finitely generated R-module with a submodule L_0 , then there exists a nonnegative integer e such that $L_0 \cap P^{e+j}L \subset P^jL_0$ for all j > 0.

Our first result shows that homomorphisms from M_k to N_k can be lifted to homomorphisms from M to N provided k is large and we don't insist they agree completely on M_k .

THEOREM A. There exists a nonnegative integer $e = e_P(M, N)$ such that if

$$\sigma \in \operatorname{Hom}_{\Lambda}(M_{f+e}, N_{f+e}) \quad for f > 0,$$

then there exists $\tau \in \text{Hom}_{\Lambda}(M, N)$ with τ and σ inducing the same maps from M_f to N_f .

Received November 23, 1982.

© 1985 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Proof. Choose presentations $\Lambda^{(n)}/A\Lambda^{(t)} = M$ and $\Lambda^{(n)}/B\Lambda^{(t)} = N$ where A and $B \in \Lambda_{n \times t}$, the set of $n \times t$ matrices over Λ . Define $T: \Lambda_n \times \Lambda_t \to \Lambda_{n \times t}$ by T(U, V) = UA - BV. Here Λ_n is the ring of $n \times n$ matrices over Λ . By the Artin-Rees Lemma, there exists a nonnegative integer e satisfying

$$\operatorname{im} T \cap P^{e+f} \Lambda_{n \times t} \subset P^{f} \operatorname{im} T. \tag{(*)}$$

Now if $\sigma \in \operatorname{Hom}_{\Lambda}(M_{f+e}, N_{f+e})$, choose $U_0 \in \Lambda_n$ inducing σ on

$$M_{f+e} = \Lambda^{(n)} / (A\Lambda^{(t)} + P^{f+e}\Lambda^{(n)}).$$

Since $U_0 A \Lambda^{(t)} B \Lambda^{(t)} + P^{f+e} \Lambda^{(n)}$, we can find V_0 with $U_0 A \equiv B V_0 \pmod{P^{f+e}}$ Thus

$$T(U_0, V_0) \in P^{e+f} \Lambda_{n \times t}$$

and so by (*), $T(U_0, V_0) = T(U_1, V_1)$ for some $(U_1, V_1) \in P^f(\Lambda_n \times \Lambda_i)$. Set $U' = U_0 - U_1$ and $V' = V_0 - V_1$. Then T(U', V') = 0, and so U' induces a Λ -homomorphism τ of M into N. Since $U \equiv U' \mod P^f$, τ and σ induce the same maps from M_f to N_f as desired.

For the next two corollaries, assume R is local and P is its maximal ideal. An easy consequence of the theorem is our promised generalization of Reiner's theorem.

COROLLARY 1. Let $l = \max\{e_P(M, N), e_P(N, M)\}$. If $M_{l+1} \simeq N_{l+1}$, then $M \simeq N$.

Proof. Choose inverse isomorphisms α_1 and α_2 between M_{l+1} and N_{l+1} . By the theorem, we can find $\beta_1 \in \text{Hom}_{\Lambda}(M, N)$ and $\beta_2 \in \text{Hom}_{\Lambda}(N, M)$ such that $\alpha_1 = \beta_1$ in $\text{Hom}_{\Lambda}(M_1, N_1)$ and $\alpha_2 = \beta_2$ in $\text{Hom}_{\Lambda}(N_1, M_1)$. Hence $\beta_1\beta_2$ induces an automorphism of M_1 and thus $\beta_1\beta_2$ is a surjective endomorphism by Nakayama's Lemma. As M is noetherian, this implies $\beta_1\beta_2 \in \text{Aut}_{\Lambda}(M)$. Similarly $\beta_2\beta_1 \in \text{Aut}_{\Lambda}(N)$. Hence β_1 is an isomorphism from M to N as desired.

Write N|M if N is isomorphic to a summand of M. Let l be defined as above.

COROLLARY 2. If
$$N_{l+1}|M_{l+1}$$
, then $N|M$.
Proof. Since $N_{l+1}|M_{l+1}$, there exist
 $\alpha_1 \in \operatorname{Hom}_{\Lambda}(N_{l+1}, M_{l+1})$ and $\alpha_2 \in \operatorname{Hom}_{\Lambda}(M_{l+1}, N_{l+1})$

so that $\alpha_2 \alpha_1 \in \operatorname{Aut}_{\Lambda}(N_{l+1})$. By the theorem, we can find

$$\beta_1 \in \operatorname{Hom}_{\Lambda}(N, M)$$
 and $\beta_2 \in H_{\Lambda}(M, N)$

so that $\beta_2 \beta_1$ induces the same automorphism as $\alpha_2 \alpha_1$ on N_1 . Hence $\beta_2 \beta_1 \in Aut_{\Lambda}(N)$ and so $M \simeq N \oplus \ker \beta_2$ as desired.

Note that Corollary 2 does not imply that if M_{l+1} is decomposable, then M is. Indeed, this is easily seen to be false. A version of this is true if R is complete. We first need a preliminary lemma.

LEMMA. There exists a nonnegative integer $g = g_P(M, N)$ such that if

$$\sigma \in \operatorname{Hom}_{\Lambda}(M, N)$$
 and $\sigma(M) \subset P^{f+g}N$,

then $\sigma \in P^f \operatorname{Hom}_{\Lambda}(M, N)$.

Proof. Choose generators m_1, \ldots, m_n for M. Define an R-linear map

$$\theta$$
: Hom _{Λ} $(M, N) \to N^{(n)}$

by $\theta(\sigma) = (\sigma(m_1), \ldots, \sigma(m_n)).$

Again, by the Artin-Rees Lemma, there exists a nonnegative integer g such that

$$\operatorname{im} \theta \cap P^{f+g} N^{(n)} \subset P^{f} \operatorname{im} \theta$$

for all f > 0. Thus if $\sigma(M) \subset P^{f+g}N$, $\theta(\sigma) = \theta(\tau)$ for some $\tau \in P^f \operatorname{Hom}_{\Lambda}(M, N)$. Hence $\sigma(m_i) = \tau(m_i)$ and so $\sigma = \tau \in P^f \operatorname{Hom}_{\Lambda}(M, N)$.

THEOREM B. Let R be a noetherian local ring with maximal ideal P which is complete with respect to the P-adic topology. Let Λ be a module finite R-algebra and M a finitely generated Λ -module. Set $\nu = \nu(M) = e_p(M, M) + g_p(M, M)$. If $M_{\nu+1}$ is decomposable, then so is M.

Proof. Let $E = \operatorname{End}_{\Lambda}(M)$. If $M_{\nu+1}$ is decomposable, there exists a nontrivial idempotent $\alpha \in \operatorname{End}_{\Lambda}(M_{\nu+1})$. By Theorem A, we can choose $\beta \in \operatorname{End}_{\Lambda}(M)$ such that β and α agree on $M_{\nu+1-e}$. Thus

$$(\beta - \beta^2)(M) \subset P^{\nu+1-e}M = P^{g+1}M.$$

Hence by the lemma, $\beta - \beta^2 \in PE$. Note since β and α induce the same endomorphism of M_1 , β is neither the zero map nor an isomorphism on M_1 . Hence neither β nor $1 - \beta \in PE$. This shows E/PE has a nontrivial idempotent. Since E is a module finite R-algebra and R is complete, this implies E has a nontrivial idempotent δ . Hence $M = \delta(M) \oplus \ker \delta$ is decomposable.

Special cases of Theorem B have been obtained by Maranda, Heller, and Reiner. For references, see [2, Section 76] and [5].

In general, it seems fairly difficult to determine the integers $e_P(M, N)$ and $g_P(M, N)$. However, if R is a discrete valuation ring with prime $P = (\pi)$, Λ is R-torsion-free (for e) and M and N are R-torsion-free (for g), then one can obtain upper bounds by computing the Smith normal form for the maps T and θ constructed above. For example, if T has invariants $\pi^{a_1}, \ldots, \pi^{a_r}, 0, \ldots, 0$, then $e_P(M, N) \leq \max\{a_i\}$.

References

1. N. BOURBAKI, Commutative algebra, Hermann, Paris, 1972.

- 2. C.W. CURTIS and I. REINER, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
- 3. D.G. HIGMAN, On representations of orders over Dedekind domains, Canadian J. Math., vol. 12 (1960), pp. 107-125.
- 4. J.M. MARANDA, On p-adic integral representations of finite groups, Canadian J. Math., vol. 5 (1953), pp. 344–355.
- 5. I. REINER, Lifting isomorphisms of modules, Canadian J. Math., vol. 31 (1979), pp. 808-811.

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA