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THE ISOMORPHISM PROBLEM FOR INCIDENCE RINGS

BY

JOHN FROELICH

Introduction

Let P be a locally finite pre-ordered set, hereafter shortened to pre-ordered
set, and let R be a ring (with identity). The incidence ring I(P, R) consists of
all functions f: P P --, R such that f(x, y) 0 whenever x y. If f, g
I(P, R) and r R then f + g, rf and fg are defined by the equations

(f + g)(x, y) f(x, y) + g(x, y), (rf )(x, y) rf(x, y),
(fg)(x, y) E f(x,z)g(z, y).

x<z<y

Let C be a class of pre-ordered sets. We say that a ring R respects order in
C if whenever P, Q C and I(P, R) -- I(Q, R) then P -- Q. If C is the class
of all pre-ordered (partially ordered) sets then we say that R respects preorder
(partial order). Given C, our objective is to determine conditions on a ring R
which imply that R respects order in C. This isomorphism problem, as well as
its analogue in the theory of group rings [cf. 10], has attracted considerable
attention lately (cf. [3], [7], [8], [9], [11], [12]).
Our main result is a solution of the isomorphism problem for incidence rings

over products of indecomposable commutative tings. We will also study
conditions under which commutative rings respect order in the class of finite
connected pre-ordered sets.
For unexplained notation, see [12]. Given a disjoint family (Pi } of pre-

ordered sets, the disjoint union pre-ordered set 0Pi is obtained by declaring
x < y iff there exists an such that x, y Pi and x < y in Pi- For any
cardinal number n and pre-ordered set P, let nP be the disjoint union of Pn
times. We shall use the fact that any preordered set P is order isomorphic to
some OniK where (Ki) is a family of connected pre-ordered sets such that
K ;e Kj for j. It will be convenient to allow n 0. In this event nK .

Section I

In this section we shall prove that indecomposable commutative rings
respect pre-order. We begin with some lemmas.
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LEMMA 1.1. Let R be a commutative ring and N M.(R). If each entry of
N is nilpotent then N is nilpotent.

Proof Recall that any ideal in R which is generated by a finite number of
nilpotent elements is nilpotent. Let I be the ideal generated by the entries of
N. Then there exists an S such that Is 0. We now check that Ns 0. Each
entry of Ns is a sum of terms of the form xl... xs where each x I. Hence
xl... xs I so Ns O.

LEMMA 1.2. Suppose R is an indecomposable commutative ring and that E is
an idempotent in Mn(R). If for every A, B Mn(R) EABE EAEBE then
E=OorE=l.

Proof We first prove the lemma when R is a field. Define a map "M,(R) M,(R) by A EAE. The hypotheses imply that is a homomor-
phism. Since M,(R) is simple, ker 0 or ker tp M,(R). If ker tp Mn(R)
then E1E 0 so E 0. If ker 0 then from (1) (E) we conclude that
E=I.
Next we prove the lemma when R is an integral domain. So let R be an

integral domain and K its quotient field. Given A, B M,(K) there exist
r, s 4: 0, r, s R such that rA, sB M,(R). From the equation E(rA)(sB)E
E(rA)E(sB)E we see that rsEABE rsEAEBE. So for any A, B M,(K),

EABE EAEBE. Therefore E 0 or E 1.
Now let R be any indecomposable commutative ring, let P be a prime ideal

in R, and consider the quotient map re" M,(R) Mn(R/P). Then for all
A, B M,(R),

and re(E)= re(E) 2. Therefore re(E) satisfies the hypotheses of the lemma
in M,(R/P). Since R/P is an integral domain, we(E ) 0 or we(E)= 1. In
either case the off-diagonal entries of E are in P. Since P is arbitrary, the
off-diagonal entries of E are in rad R, the nilradical of R, and hence are
nilpotent. Write E D / N where D is a diagonal matrix and N has
nilpotent entries, and consider the quotient map r: M,(R) -, M,(R/tad R).
r(E) is idempotent in Mn(R/rad R) and has the form

[dl]

where [di] 2-- [di]. Since idempotents [di] can be lifted to idempotents
mod rad R [1, Prop. 27.1], there exist idempotents e R, 1,..., n, such
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that e d rad R. Since R is indecomposable e 0 or e 1. Suppose for
some i, e 0. Then for any prime ideal P, re(E ) 0 so the entries of E are
all nilpotent. Lemma 1.1 implies that E 0. Assume, then, that e 1 for
each i. Then E 1 + N where each entry of N is nilpotent. 1 E is then
an idempotent so 1 E 0, or E 1.
Throughout the rest of this section f I(P, R) is called strictly upper

triangular (SUT) in case efe 0 for every a P.

LEMMA 1.3. Let P be a pre-ordered set and R a ring. Then I(P, R) has no
nonzero SUT idempotents.

Proof. By [12, Proposition 4] any SUT f I(P, R) is in the Jacobson
radical of I(P, R). If f2= f then f(1- f)= 0. Since 1- f is invertible,

THEOREM 1.4. Let R be an indecomposable commutative ring and let P, Q be
pre-ordered sets. If I( P, R) I(Q, R) then P Q.

Proof Let q: I(P, R) I(Q, R) be an isomorphism. For a ,
(cf. [12]), let f (e) and let h eaf,ea. If f, g I(P, R) then

q)( efge) faq( f )p( g)f

and

qo ( efege) f,, ( f )f( g )f.

Since efge efege, fqo(f)q(g)f fq(f)f,q(g)f. This says that h,
when viewed as an element of MII(R), where 1/31 denotes the cardinality of
fl, has the property that for any A, B MttI(R ), hABh hAhBh. Also

h is idempotent in MII(R) since f is idempotent in I(Q, R). Therefore by
Lemma 1.2, h 0 or 1. In other words, the diagonal blocks of f are 1 or 0.

Let S ( fl " h 1 ). If a a2 then ee2 0 so [L2 0 and ts
impes that S S 0. Next we show that US Q. Suppose fl
and fl US. Then there is an idempotent e in I(P, R) such that (e) e.
By Lena 1.3, e is not SUT. Hence there is an a P such that eee e.
But then (e,) (eee)= fef, wch is SUT. Ts contradiction shows
that fl OS.

If f I(P, R) is SUT then efe 0 for all a ft. Therefore f(f)f 0
for all a ft. Ts impfies that (f) is SUT.
Next we show that each S is singleton. Let fl S. Then there is an

idempotent e I(P, R) such that (e)= ea. Let

S {’,/ " e.eev ev}.
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If a S then e,ee, 0 so f,e#f,, 0, which is a contradiction. So a S.
Suppose i 4= a and 8 S. Then eee e so f fe#f is SUT. This shows
that 8 S. Thus S (a). It follows that e,- e is SUT so f,- e# is SUT
and S (fl}.

Define a bijection U: P by U(a) fl where fl S. Then

f eu() + N,

where N is SUT. For al, a2 P, Ct _< Ct 2 if and only if e,I(P, R)e,, 4= O.
This in turn occurs if and only if f,,lI(Q, R)f2 4= O, which happens if and only
if ev(,,)I(Q, R)ev(,,2) =/= 0; by Stanley’s lemma [11, Lemma]. This inequality is
equivalent to the assertion that U(al)< U(a). Thus U is an order isomor-
phism. To show that P -- Q it suffices to show that for each a P, la
U(a)[. For a pre-ordered set Z, let

Jz ( f I( Z, R ) f is SUT)

and observe that Jz is an ideal in I(Z, R). We then have (J,)= Jo by an
earlier argument. This gives

el(P,R)e + Je LI(Q,R)f + JQ

An elementary computation shows that the left side is isomorphic to MII(R)
and the right side is isomorphic to MI v()l(R ). This implies that lal U(a)l.

Section 2

In order to use Theorem 1.4 to solve the isomorphism problem for products
of indecomposable commutative tings we shall need some mildly technical
lemmas. In some of these, routine verification will be left to the reader.

LEMMA 2.1. Let P be a pre-ordered set and (Ri) a family of rings. Then
I(P, )< ,R,) -- )< ,I(P,

Proof Let r: )<jRj R be the ith projection map. Given f
I(P, )< iRi) send f to (fi) where f(x, y) rif(x, y). It is clear that this map
is an isomorphism.

LEMMA 2.2. Let P (-JPi and R a ring. Then

I(P, R) I(OPi, R) -- ,I(P, R).
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Proof For f I((.JPi, R), send f to (f/), where f/(x, y)= f(x, y) when
x, y Pi. By definition fg maps to ((fg)i) where

(fg),Cx, Y) =fgCx, Y)= f(x,z)g(z,y) forx, yP.
x<_z<y

Any z appearing in the sum is in P so

(fg)i(x, y)

_
f(x,z

x<z<y
)g,(z, y)=fig (x,y).

Thus ((fg)i)= (f). (gi). The map is clearly additive, 1-1, onto and so is an
isomorphism.

The next lemma can be proven by appealing to [12, Theorem 4 and
concluding remarks], but for the sake of clarity we give the following simple
proof.

LEMMA 2.3. Let P, Q be pre-ordered sets and suppose 0 < n < o.
nP nQ then P Q.

Proof Write P --(..JmK, Q --OniKc Then the isomorphism nP nQ
implies that n(OmKi)= n(OnK). So I.JnmiK --(.JnnKi. From this it fol-
lows that nm nni as cardinal numbers. Since n is finite, m n for each i.
Thus P -- Q.

As an immediate corollary we have the following interesting result which will
be used later in the section.

COROLLARY 2.4.
pre-order.

If R respects pre-order then for finite n > 0, R respects

IProof Assume I(P, R") I(Q, R"). Then )<i (P, R) X iI(Q, R), so
I(nP, R)= I(nQ, R) using Lemmas 2.1 and 2.2. Thus nP nQ and P -- Qby Lemma 2.3.
One can also easily show that if there exists a finite n > 0 such that R"

respects pre-order, then R respects preorder. We shall later construct a ring
which respects pre-order but which has a factor that doesn’t.

LEMMA 2.5. Let P be a connected pre-ordered set. Then CEN(I(P, R))=
CEN(R) where CEN denotes the center of the ring.

Proof The proof will generalize an argument in [2, Theorem 1]. Suppose
f CEN(I(P, R)). Then for ct, fl /b, a 4: fl, we have efea eeaf= O.
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This says that only the diagonal blocks of f are nonzero. Also for a /3 we
have efe CEN(MII(R)). Hence efe r 1 where r CEN(R) and 1
is the identity in MII(R). For x, y P, x < y, define txy by

1xy(a, b)
0

if a x and b =y
otherwise.

Let a < fl and suppose x a and y /3. Then the equation fxy xyf
gives retxy rflxy SO r rfl. If a, fl are arbitrary elements of P, then since P
is connected, there is a sequence at,..., a, in P such that ct ct, a fl and
either a < ai+ or et+l < a for 1,2,..., n 1. Hence r rot
r, r#. Therefore f r3 where r CEN(R) and 8 in the identity in I(P, R).

LEMMA 2.6. Let P be a connected pre-ordered set and let R be a ring. Then
I( P, R) is indecomposable if and only if R is.

Proof. The proof is immediate from Lemma 2.5 and elementary ring theory
[1, Corollary 7.7].

THEOREM 2.7. Let R be an indecomposable ring which respects pre-order and
suppose ( S ) is a family of indecomposable rings such that CENR e CENS for
all i. Then for all finite n > O, R X iSi respects pre-order.

Proof. Suppose I(P, R X iSi) I(Q, R X iSi). Then

I(P,R") I(P, X,Si) -- I(Q,R") I(Q, X iSi).

Let tp be an isomorphism. The hypotheses imply that each of the factors
present decomposes into a product of indecomposable tings. For example, if
Q 0Qj where the Q. are the components of Q then

I(Q, XiSi)-- XjI(Qj, XiSi)= Xj X iI(Qj, S)

using Lemmas 2.1 and 2.2. Lemma 2.6 implies that I(Q, Si) is indecompos-
able, so the assertion is established. It now follows, as is well known, that the
indecomposable factors of

I(P,R") XI(P, XiSi)

are in isomorphic correspondence with those of

I(Q, R") x I(Q, x isi),

the correspondence being implemented by tp. An indecomposable factor of
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I(P,R") which will have the form I(K,R), K a component of P, will
correspond to an indecomposable factor of I(Q, iSi) or of I(Q, R"). In the
first case we would have an isomorphism between I(K, R) and, say, I(Q., Si).
Then

CEN(I(K, R)) -- CEN(I(Q,, Si) ).
So by Lemma 2.5, CENR--CENSi, which is a contradiction. Thus an
indecomposable factor of I(P, R") must correspond to an indecomposable
factor of I(Q, Rn). In fact, we can conclude that the indecomposable factors of
I(P, R") are in isomorphic correspondence with the indecomposable factors of
I(Q, R"). Thus I(P, R) I(Q, R"). Since R" respects pre-order by Corollary
2.4, P=O.

COROLLARY 2.8. Let (R } be a family of indecomposable commutative rings
such that R e Rj for i4= j, and let (ei} be a family of nonzero cardinal
numbers. Then X Re’i respects pre-order iff there exists an such that e is finite.

Proof If e is finite we apply Theorem 1.4 and Theorem 2.7 to R,e. X X .,,,=J

R/to conclude that X R[, respects pre-order. Conversely, if each e is infinite,
take any connected pre-ordered set P. Then

1(2P, X iRe,) I(P, XiRe,)i XI(P, X Re,)i
= I(P, X ,R,’ X X iR,’)-- I(P, X

However, since P is connected, 2P e p, so X iR, does not respect pre-order.

Remarks. Since any product of indecomposable commutative rings is iso-
morphic to a product X Rei as in Corollary 2.8, we can, in fact, tell when such
a ring respects pre-order. Although it is still unknown to us whether a finite
product of rings which respect pre-order (partial order) respects pre-order
(partial order), cf. [12], Corollary 2.4 and Theorem 2.7 can be used to decide
the issue in certain concrete cases, e.g., in the cases of certain artinian rings.
We shall have more to say about this problem in Section 4.

Let K, F be fields with K e F. It follows from [12] that I(N, K) is an
indecomposable ring which doesn’t respect pre-order. By Theorem 2.7,
F I(N, K) respects pre-order, hence there are rings which respect pre-order
but which have factors that don’t.

We now proceed to solve the isomorphism problem for incidence tings over
products of indecomposable commutative tings. Let P 0mK Q On;K
and let R X R, be a product of indecomposable rings as in Corollary 2.8.
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Reasoning as in the proof of Theorem 2.7 we see that I(P, R) I(Q, R) if
and only if for each i, I(P, R,e.’)

__
I(Q, R,e.’). So I(P, R) -- I(Q, R) if and

only if for each i, I(eiP, Ri)--I(eiQ, R). Since R respects pre-order,
I(P, R) -- I(Q, R) if and only if for each i, eP -- eQ, and this occurs if and
only if for each i, emj enn for all j. In summary we have the following.

THEOREM 2.9. Let R X R be a product of indecomposable commutative
rings as in Corollary 2.8. Write P OmiK and Q OniKi. Then I(P, R)
I(Q, R) if and only if either

(i) there is an such that e is finite and P -- Q or

(ii) each e is infinite and for any i, elm ein for any j.

COROLLARY 2.10. Commutative Noetherian rings respect pre-order.

Section 3

It follows from Theorem 2.9 that if P, Q are connected pre-ordered sets, if R
is a product of indecomposable commutative tings, and if I(P, R) -- I(Q, R)
then P -- Q. It is therefore plausible to conjecture that commutative tings
respect order in the class of connected pre-ordered sets. In this section we will
show that commutative tings respect order in the class of finite, connected,
pre-ordered sets.

LEMMA 3.1. Suppose that R is a commutative ring and that P, Q are
connectedpre-ordered sets. If I( P, R) and I(Q, R) are isomorphic as rings then
they are isomorphic as R-algebras.

Proof. Let p: I(P, R)- I(Q, R) be a ring isomorphism. If r R then
p(r/) H CEN(I(Q, R)), where/ is the identity in I(P, R). Using Lemma 2.5
we obtain a ring isomorphism a: R -o R such that p(r/5)= a(r)& Define
k: I(Q,R) I(Q,R) by (kf)(x,y)= a-l(f(x,y)). It is clear that k
is a ring isomorphism and that k P is a ring isomorphism. If r H R and
f H I(P, R), then

o p(rf) o p((r5)f) (a(r)5. p(f)) (r/) p(f) rko {p(f).

So k op is an R-algebra isomorphism.

THEOREM 3.2. Let R be a commutative ring and let P, Q be finite, connected,
pre-ordered sets. If I( P, R)-- I(Q, R) then P -- Q.

Proof. Let p: I(P, R)-o I(Q, R) be a ring isomorphism. By Lemma 3.1
we may assume that p is an isomorphism of R-algebras. Since R is commuta-
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tive it has a maximal ideal M. Let

I(P,M)= {fI(P,R)" f(x,y)Mforallx, yP}.

We shall show that

qg(I(P, M)) I(Q, M).

Let f I(P, M). Then f= Y’.ijmijSi.i (cf. Lemma 2.5) where mq M, and
so q(f) ep(Z,i <_ ./mqSq) Y"i <_ mqp(Si.i) I(Q, M). Thus

p(I(P, M)) c_ I(Q, M).

Using p-1 we can conclude that

q-I(I(Q, M))
_

I(P, M),

and so tp(I(P, M)) I(Q, M). Next consider the epimorphism

defined by the formula

r" I(P, R) I(Q, R/M)

(f )(x, y) If(x, y)] in R/M.

Since ker rr I(P, M), I(P, R)/I(P, M) " I(Q, R/M). Therefore, from
I(P, R)/I(P, M) . I(P, R/M), we have I(P, R/M) I(O, R/M). Since
R/M is a field we find that P -- Q.

Section 4

Throughout the section, C will denote the class of connected pre-ordered
sets. We wish to describe how the methods of the previous section can be used
to show that many familiar commutative tings respect order in C.

THEOREM 4.1. Let R be a commutative ring and A a finitely generated ideal
in R such that R/A respects order in C. Then R respects order in C.

Proof Let A (x,...,x,) and let p: I(P,R) I(Q,R) be an R-
algebra isomorphism. If f I(P,A) then f can be written as Y’.i=lxifi
where f/ I(P,R). So (f)= 2i"__xiq(fi)-I(Q,A), and consequently,
q(I(P, A)) I(Q, A). The epimorphism r: I(P, R) I(Q, R/Q) defined as
in Theorem 3.2 has kernel I(P, A). Hence I(P, R/A) -- I(Q, R/A), so P -- Q.

COROLLARY 4.2. If R is commutative and has a finitely generated maximal
ideal then R respects order in C.
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COROLLARY 4.3 (D. D. Anderson). If R is commutative and respects order
in C then R x and R[[x ]] respect order in C.

Proof Set A (x) and use the isomorphisms R[x]/(x) R[[x]]/(x) --- R.
The next somewhat surprising corollary settles a question in [12, concluding

remarks] for commutative tings and connected pre-ordered sets.

COROLLARY 4.4. Let R be a commutative ring which respects order in C and
let S be any commutative ring. Then R S respects order in C.

Proof. Take A O S and use the isomorphism R S/A R.

We would like to conclude by giving two interesting applications of the
above theory. Let R { f )< n=lZ2 f is eventually constant}. R is not a
product of indecomposable commutative rings (use the fact that an indecom-
posable Boolean ring must be Z2 and a cardinality argument) and from
R R R we see that R doesn’t respect pre-order (cf. Corollary 2.8).
However since R -- Z2 R, R respects order in C by Corollary 4.4.
For the second application let R (f: Q Q If is continuous at all but a

finite number of rationals} (here Q has the relative topology induced by reals).
R is not a product of indecomposable rings and R doesn’t respect pre-order
since R R -- R. Let f: Q Q be defined by

1 ifx 0f(x)= 0 if x=0.

Then f R and (f) is a maximal ideal. Therefore R respects order in C by
Corollary 4.2. If however we set

R ( f: Q ---, Q If is continuous

then it is unknown whether R respects order in C.
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