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SUPPORTS OF EXTREMAL MEASURES WITH GIVEN
MARGINALS

BY

H. G. MUKERJEE

1. Introduction

Let X and Y be countable measure spaces with positive finite measures #
and v, respectively. Let M(#, v) be the (convex) class of all positive measures
on X Y with marginals (projections) # and v, respectively. The extreme
points of M(/t, v) have been characterized by Douglas [2] and Lindenstrauss
[4] by the following theorem:

THEOREM 1.1 (Douglas-Lindenstrauss). k M(, v)
only if

( p + q" p LI(#), q L(v))
is norm-dense in LI().

is extreme if and

Letac [3] and Denny [1] give two different characterizations of the supports
of the extremes. Letac [3] proved his Theorem 4 without using the Douglas-
Lindenstrauss theorem. It is a long proof using substantial machinery--he
omits the ’only if’ part of the Douglas-Lindenstrauss theorem from the
corollary to his Theorem 4 because of the length of the proof. Denny’s [1]
characterization is based on an idea in Letac [3] and he does depend on the
Douglas-Lindenstrauss theorem for his proof.
The problem of characterizing the supports of the extremes is essentially

combinatorial rather than measure-theoretic. The purpose of this paper is to
use some simple combinatorial ideas to develop several characterizations of the
extremes by their supports. The proofs are elementary, geometrically intuitive,
and do not use the Douglas-Lindenstrauss theorem. One result is a strengthened
version of the Douglas-Lindenstrauss theorem (Theorem 2.7) in this countable
case.

2. Results

We take advantage of the usual abuse of notation and write k(x, y), (x),
and u(y) for X(( x, y }), (( x }) and ,(( y }), respectively.
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If X is a measure on a countable set Z the support S of X is defined by

s= z.

Since we will be dealing with many sequences we will not indicate the ranges
of the indices when they are obvious.
The notations A + B and Y’.A indicate disjoint unions of sets.

DEFINITION 1. Let , be a measure on X Y and let S be its support.
L ((xi, Yi): 1 <_ <_ k) is called a ,-link if L c S and, for >_ 1, either

Y. Y2-1, x2+ x, x2i 4: x2i_l, and Y2i+1 4: Y2, or the same conditions
with x and y interchanged.

DEFINITION 2. A A-link L {(x, y)" 1 < < 2n } is called a A-loop if
x x2, (in which case y- Y2) or y YZn (in which case x x2) and
x4=xjand yi4=yjforl <i<j-3 <2n- 3.

Remark 1. Note that the ),-loop L defined above is contained in an n : n
rectangle every row and column of which contains exactly two elements of L.

DEFINITION 3. If is a measure on X Y then a non-empty rectangle
A B is said to be A-full if every row and every column of A B contains at
least one element of the support of .

All of our proofs depend crucially on the following technical result.

LEMMA Let ) be a measure on X Y with support S. Suppose for some
N >_ 1, ( C R i: 1 < < N } is a sequence of X-full rectangles such that C is a
singleton, R2i c R2i_l, C2i +1 c C2i and

C2i f C2i-1 C2i (’) C2i+2 R 2i + (’) R 2i R 2i +1 0 R 2i_ O.

Then there exists a -loop if either
(i) R N Rj 4 O or CiN Cj 4: O for some l < <j 3 < N 3, or,
(ii) a row(column) of C R contains more than one element of S for an

odd(even) i.

Proof First suppose C f3 Cn 4:0 or R (3 R 4:0 for some 1 < m < n

3 < N 3. Suppose this happens for the first time when n k; i.e., C ( C
RRj=O forl <i<j- 3 <k- 3 and Cp( Ck 4: o (in which case k is

necessarily even) or Re Rk 4:0 (in which case k is necessarily odd) for some
1 < p < k 3. We consider the case k even only; the case k odd is similar.
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If p > 1 it is possible that Cp n Ck 4:0 for two consecutive values of p, in
which case we choose p odd (the higher value).

Since (C Ri} is h-full and R2 c R2_1, if (x, y) (C2 R2i ) S then
there exists

(x’, y) (C2i_ X R2i_1) CI S for some x’ C2i_ 1.

Similarly, (x, y) (C2i+1 R2i+l) N S implies there exists

(x, y’) (C2i X Rzi) 3 S for somey’R2i.

Now suppose p is odd and xk Cp Ck. Then there exists a ,-link

(x,, y,), (X,_x, y,_),..., (Xp, yp) with (x, Yi) (Ci R) S.

By hypothesis x 4: xj. and yi 4: yj for p _< _< j 3 < k 3. If Xp xk or if
there exists (xk, yp) (Cp Rp) S then we clearly have a X-loop. If not,
there exists (x, y;,) (Cp Rp)0 S with x xk and y (necessarily) not
equal to yp. Again from the properties of { C R} there exist X-links

(, ,)(, ) (,(Xp, yp), (Xp_l, Yp-l),--’, (Xl, Yl) and Xp, y Xp_l, Y/-I x1, Yl

with (xi, Yi) and (x;, y’) in (C R) q S, and by hypothesis xg(x;) 4: xj(xfi)
and y(y/’) 4: y(yj.’) for 1 _< < j 3 _< p 3. Since C1 is a singleton x X.
Let be the smallest for which Xp_- Xp_ (p- odd) or yp_- y;_
(p even), 1 < < p 1. Then, using the hypothesis on k,

((Xk, Yk) (Xp, yp) (Xp-t, Yp-t), Xp-t, Yj-t

(, ) (, ,)p-t+1’ Y-t+l Xp-l’ Y-I

is a X-loop with xk Xp Xp_x. If p is even we can similarly form a -loop
from the X-links (x,, Yk),--., (Xl, Y) and (x, y),..., (x, y), where x, x
and x x1.

Now suppose a row(column) of C Rn has at least two elements of S for
some odd(even) n, 1 _< n _< N, and assume n is the smallest integer for which
this is true. We also assume Ci q Cj. R Rj. 0 for I _< _< j 3 _< n 3;
otherwise we have a X-loop by (i). By hypothesis there exist (x,, y,) and
(x,, y.’) in (C. R.) S with x 4: x;, and yn y’ or x- x’ and y. 4: y,.
Then there exist ,-links

(Xn, Yn),’" (X1, Yl) and (x,, y,’) (x, y)

with (xi, Yi) and (x;, y/’) in (C Ri) q S and xi(x;) 4: x2(xfi ) and Yi(Y;) 4:
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yj(yf) for 1 < < j- 3 < n 3. Since x X we can construct a X-loop

( ( ,)(x, ) (, ,)Xn, Yn Xn-t, Yn-t Xn-t, Y;-t n-t+1, Y-t+l Xn, Y;,

in the same way as in the proof of (i) for some 1 < < n 1.

Our first characterization of the support of an extreme is the same as that of
Letac [3] although the proof of the ’if’ part is different.

THEOREM 2.1 (Letac).
if there exists no X-loop.

Suppose M(l, ,). Then 2t is extreme if and only

Proof Suppose ((xi, Yi): 1 < < 2n } is a )k-loop. Let

m min{X(xi, Yi): 1 <i < 2n}.

Define ,’ and ?t" by

)t’(xi, Y,) t(xi, Yi) +( 1)’m, X"(x;, y,) X(x,,y,),-(-1)’m

forl <i< 2n, and

X’(x,y)=X"(x,y)=X(x,y)

otherwise. Then X’ and X" are positive measures on X x Y, X’ 4: X, and
X (X’ + X")/2. From the definition of X-loops both X’ and " are in
M(/, ,). Thus X is not extreme.
Now suppose X is not extreme. Then there exist X’ and X" in M(/, ,) such

that )g’ 4: X and ) (X’ + X")/2. Thus there exists (x1, Yl) S Y such
that X’(xl, Yl) X(Xl, Yl) c > 0. Let Cl {Xl} and R (Yl}" Now for
> 1 define recursively

C2i { x X C2i_1" X(x, y) > X’(x, y) for some y R2_ 1},
R2 (y R2_ x" X(x, y) > ;V(x, y) for some x Ci},

R2i+, { y Y- R2i" X(x, y) < X’(x, y) for some x C,},
and

C2i+1 ( x - C2i" k(x, y) < X’(x, y) for some y R2i+1 }.

Since X and X’ have the same marginals,

I)k(Ci+I Ri+I) kt(Ci+l X Ri+I) >_ IX(Ci Ri) X’(C R,)I >- c

for >_ 1.
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Since/x and v are finite, C; n Cj. 4:0 or R n Rj 4: O for some 1 < < j 3.
From their construction (C Ri) satisfy condition (i) of the lemma and
hence there exists a h-loop. [3

Remark 2. In his Theorem 2 Denny [1] generalizes his results to signed
measures/ and v. Unfortunately, using the ideas above it is easy to see that
there are no extremes in M(/, v) if /t and v are nondegenerate signed
measures. [3

DEFINITION 4. For X M(g, v), A c X, and B c Y let X,s be the
restriction of X to A B and let/A and vs be the corresponding marginals;
i.e.,

/A(S)=X,s(SxB)forScA and vs(T ) XAs(A T) for T c B.

Let M(/, vs) be the convex class of measures on A B with marginals A
and vs. We say is conditionally extreme in A B if ,s is extreme in
M(t, vs).

The proof of the next theorem is immediate from Theorem 2.1 and is
omitted.

THEOREM 2.2. M(l,V) is extreme if and only if is conditionally
extreme in all finite rectangles A B.

DEFINITION 5. Suppose 2 is a measure on X Y with support S and
F c X Y. If a row(column) of F contains at most one element of S we say
the row(column) of F is ;k-erasable. F is said to be ;k-erasable if by first
deleting all the X-erasable rows, then deleting all the ?-erasable columns of the
remaining set, and repeating the process a finite or infinite number of times, we
can delete all the rows and columns of F. We will also use expressions like
"X-erase the rows of F ", whose meanings will be obvious. If a set F c X Y
has been X-erased partially or completely and if (x, y) F n S has been
deleted by h-erasure of the column x or the row y in some subset of F then we
say (x, y) has been X-erased in F, or simply (x, y) has been X-erased if there
is no ambiguity about the set F in question.

The next theorem possibly provides the easiest method of checking the
extremality of a given , M(/, v) when X and Y are finite.

THEOREM 2.3. Suppose M(l, v) with support S. Then , is extreme if
and only if every finite rectangle A B is X-erasable, or, equivalently, for every

finite rectangle A B, if U (A B) n S 4: , then at least one element of U
is X-erasable in A B.
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Proof Suppose X is not extreme. By Theorem 2.1 there exists a X-loop

L {(xi, Yi)" 1 <_i <_ 2n}.

By Remark 1 the minimal rectangle containing L is not ),-erasable.
Now suppose A B is a finite rectangle which is not X-erasable. We first

delete all the X-erasable rows of A B, then all the X-erasable columns of the
remaining rectangle, and repeat until we have a (non-empty) rectangle C D
no row or column of which is X-erasable. Let U (C D)( S. Suppose
(xx, Yl) U. From the hypothesis that no row or column of C D is
X-erasable we can successively find (x2, Y2), (x3, Y3),..- in U such that Y2i
Y2i-1, X2i/1---X2i, X2i X2i-1, and Y2i+1 := Y2i, > 1. Since A and B are
finite we will eventually have x x or y y. for some I < < j 3. By the
lemma there is a ),-loop and, by Theorem 2.1, X is not extreme, t2

Example 1. Let X and Y be the positive integers. Consider the support S
of a measure X on X Y consisting of the points (1, 1), (1, 2), and for > 2
the points (i, 1) and (i, + 1). Then it is easily checked that no element of
S is X-erasable in X Y, but every finite rectangle is. Thus X M(/,, v) is
extreme does not imply that every infinite rectangle is X-erasable. t2

Theorem 2.3 provides a swift proof of the Birkhoff-von Neumann theorem.
Recall an n n doubly stochastic matrix is an n n matrix of non-negative
numbers with row and column sums equal to one. An n n permutation
matrix is an n n doubly stochastic matrix each row and column of which
contains exactly one 1 and the rest 0.

COROLLARY 2.3 (Birkhoff-von Neumann). The n n permutation matrices
are the only extremes in the n n doubly stochastic matrices.

Proof Defining X Y {1,2,..., n} and /, and v to be the counting
measures we can identify the n n doubly stochastic matrices with M(#, v).
If P is an n n doubly stochastic matrix we write Xe for the corresponding
measure in M(/,, v).

If P is an n n permutation matrix then clearly X Y is ),,,-erasable and
hence P is extreme by Theorem 2.3.

If P is an extreme n n doubly stochastic matrix then X Y is X-erasable
and hence P is extreme by Theorem 2.3. Since the marginals of X p are
counting measures the first row or column X,-erased must contain a point
(i, j) with Xp(i, j) 1. Then all other elements of the ith column and the jth
row of P must be 0. Continuing the argument we see that every point of the
support of X that is X e-erased has e measure one, and since every row and
column has Xp measure one, P must be an n n permutation matrix. D



254 H.G. MUKERJEE

The next theorem is a generalization of Proposition 2 of Lindenstrauss [4].

THEOREM 2.4. Suppose M(/,, v) with support S. Then 2 is extreme if
and only if every finite m n rectangle has less than m + n elements of S.

Remark 3. The proof of Theorem 2.4 in contrast to the proof of Proposi-
tion 2 of Lindenstrauss [4] possibly best illustrates the difference between
measure-theoretic and combinatorial proofs of characterization of the support
of extreme measures, rq

Proof of Theorem 2.4. If , is not extreme then by Theorem 2.1 and
Remark 1 there exists a )-loop {(x, y): 1 < < 2n } contained in an n n
rectangle every row and column of which contains at least two dements of S.
Thus the number of elements of S in this rectangle > 2n.

If 2 is extreme and A B is an m n finite rectangle than A B is
A-erasable by Theorem 2.3. During h-erasure of A B, every time a row or
column of A B (or a subset) is deleted, at most one element of S is h-erased.
Since at most m 1 rows or n 1 columns can be ,-erased without A-erasing
A B completely and since after h-erasing m 1 rows and n 1 columns at
most one element of A B will be remaining, the total number of rows and
columns h-erased in )k-erasing A B is less than or equal to m + n 1.
Hence the number of elements of S )-erased is less than m + n. rq

With Example 1 and Theorem 2.3 in mind we are now in a position to
completely describe the support of an extreme in M(/,, v) in terms of an
"orthogonal decomposition".

THEOREM 2.5. Suppose ) M(/,, v) is extreme with support S. Then S
E >_ oSn, where"
(1) SO is A-erasable and SO [(A0 Y) tO (X B0) N S for some Ao c X
and Bo Y;
(2) if S, :# 0 for some n > 1 then

(i) S, is of the form F,i>_l(C,,i R,,i) ( S, where
( a) Cn, is a singleton,
( fl ) R,,2i R,,2i_ 1’ Cn,2i+ Cn,2i,

Cn,2i f’) Cn,2i- R n,2i + ("1 R,2i O, > 1,

and

C,, Cn,j Rn, R",j O for l < < j 3,

(3/) C., R., is A-full fori > 1, and
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() for odd(even) every row(column) of Cn, R n, has exactly one
element of S and hence Cn, R n, is t-erasable by deleting rows(columns) only,
and

(ii) S is of the form (A Bn) t3 S, where A and B are both infinite,
A B is X-full, and no element of S is X-erasable in A
(3) AnA,,=BnflB=OforO<n<m.

In particular, if X or Y is finite then S is A-erasable.

Proof Write X (x1, x2,... } and Y (yl, Y2,"" }" Now ,-erase as much
of X Y as possible by successive row and column deletions. Let SO be the
elements of S ,-erased and let Ao(Bo) be the columns(rows) h-erased. Then

So [(Ao r)u(x So)l n s.

Now suppose S SO 4= 0. From the definition of ,-erasure

S-S0C (X-Ao) X(Y-Bo)--XIx YI

which is X-full. Let C,x { xk } where k is the smallest j for which

(xj, y ) ( X Yx) fI S for somey Y1.

Let R1,1
R1,2i-1

(Y YI" (Xk, Y) S}. Now for >_ 1 define recursively R1,2i

C1,2i (x S C1,2i_l" (X y) S for some y R1,2i),

C1,2i+ C1,2i, and

R1,2i+ ( Y Y1 Rx,Ei’(x, Y) S for some x C1,2/+1 }.

Define S ,i>_(C,i Rl, i) I"1 S. Then for n 1 in part (2)(i) we note that
C1,1 is a singleton, which satisfies (a), the first string of equalities in (fl) is
satisfied by the construction of the { C1, R,i }, and the rest of (fl) and (i)
will be satisfied by the extremality of X, Theorem 2.1, and the lemma, if we
can prove (3’). Note that C1, R1, is h-full. Now suppose C1, j R1, j is not
X-full for the first time for some j > 1. Then

(C1, k R1, k" 1 < k <_ j- 1 }

is X-full and must not satisfy either (i) or (ii) of the lemma. Hence some
element of S in CI,j_ R,j_ is h-erasable in X Y (after SO has been
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X-erased) contradicting

(Cl,i_ x Rl,i_l) 0 S C S SO.

Thus C1, X R1, is ,-full for all >_ 1. This proves (2)(i) for n 1. Now let
A Y’.i>_.C1,2i_l and B Ei>IRL2i Then it is clear that A and B1 are
both infinite, A B is X-full, S (A B) 3 S, and no element of S is
h-erasable in a B. This proves (2)(ii) for n 1.

If S SO $1 : 0 then

S S0 S c [(g- h0 hi) U(Y- n0 nl) N S,

since from the construction above

[a x(Y- n0 nl) n S [(g- a0 hi) X 81] i S 0.

Thus we can construct S2, A2, B2, and (C2, R 2, i) in the same manner as
above from (S- A0 A1) (Y- B0 B1). This process can be continued
indefinitely or until S is exhausted, each time defining Cn, (xk } where k is
the smallest index j for which

(xj, y) X- r- U n s for some y Y- U Bi.
i=0 i=0 i=0

This guarantees all elements of S in every column of X Y1 belongs to S,
for some n > 1. Thus S On 0S and, from the construction of the ( A } and
(B }, A,, A,,, B,, 0 B 0 for 0 _< n < m, so that S .,,,

>_ oS,,.
The final remark follows from the fact that when X or Y is finite S,, 0 for

all n > 1. t3

The next characterization of the extremes in M(g, r) is due to Denny [1]
although our proof is entirely different. Suppose f: E --, Y and g: F --, X are
two functions for some E c X and F c Y.

DEFINITION 6. We say the pair (f, g) defined above is periodic if (g f)"(x)
is defined and is equal to x for some x E and a positive integer n. Otherwise
we say (f, g) is aperiodic.
We denote the graphs of f and g by G(f)= ((x,f(x)): x E} and

G(g) ((g(y), y): y F}, respectively.

THEOREM 2.6 (Denny). Suppose h M(g, v) with support S. Then h is
extreme if and only if there exists an aperiodic pair offunctions ( f, g) such that
S G(f)+ G(g). E]
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Remark 4. Denny [1] proved the ’only if’ part of the theorem by first
proving it for all finite subsets of X Y and then using an extension
argument. This can be done easily using Theorem 2.3. However, we give an
actual construction of an aperiodic (f, g) using the decomposition of S as
given by Theorem 2.5. [3

Proof of Theorem 2.6. Suppose 3 is not extreme. Then there exists a )-loop
((xi, yi): 1 < < 2n } by Theorem 2.1. Suppose there exists an aperiodic pair
of functions (f, g) such that S G(f) + G(g). Now suppose x x2n and
(Xl, Yl) G(f). Since f and g are functions,

(X2n, Y2n) (Xl, Y2n) -" G(g), (X2n_l, Y2n-1) G(f ), (x2,

(X2, Yl) G(g).

But then (g f)(xl) x2, (g f)2(Xl) X4,... (g f)n(xl) Xn Xl,
contradicting the hypothesis (f, g) is aperiodic. Contradictions can be derived
similarly if (x, Yl) G(g) or Yl Y.n in the X-loop.
Now suppose X is extreme. We use the decomposition of S given by

Theorem 2.5 and the terminology used therein.
Consider the X-erasure of (Ao Y) U (X Bo). Let

Eo ( x A0" for some y Y, (x, y) SO was )-erased by a column deletion

and

Fo { y Bo" for some x X, (x, y) SO was )-erased by a row deletion}.

For n > 1 let En=An- Cn, and Fn=Bn. Let E=2n>_oEn and F=
En>_oFn. Since { En} and { Fn} are pairwise disjoint collections of sets we
define f and g by defining fn fl e, and gn g v, for n > 0.
For x Eo (y Fo) let fo(x)=y (go(Y)= x) such that (x, y) So was

X-erased by a column(row) deletion for some y(x). Such a column or row can
be ,-erased at most once and at most one element of So (as a matter of fact,
exactly one element of So if x Eo or y Fo) can be X-erased in the process.
Thus fo and go are well defined. From the definitions of S0, Eo and F0 we
have

G(fo) (Eo Y) tq S, G(go) (X X Fo) N S

and

So  (fo) +

If Sn4:0 for some n>l then Cn,Rn, is )-full for i> 1 and is
)-erasable by column(row) deletions only, if is even(odd). Since (Cn,2i } and
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(Rn,2i-1 } are pairwise disjoint collections of sets we define f. and g.
obvious way so that

in the

o(L) n s
and

From the properties of { Cn, X R,,; } mentioned above fn and gn are well
defined and S G(f,)+ G(gn). Thus S E,>_0G(f,)+ E,>_oG(gn)=
G(f ) + G(g).
Now suppose x E, for some n > 1. Then x C,, for some > 1 and

f(x) R n,2i. Since R,,,2 R n, j 4 0 implies j 2i or 2i 1, R n,2i f’) F 0
for rn 4= n, and since a row of R,,2 contains exactly one element of S,
(g f)(x) C,,__a. Continuing this argument we see that (g f)(x) C,,,
a singleton which is not a subset of E,, and (g f)S(x) =/= x for any 1 < j < i.
Now suppose x E0. Consider the )-erasure of (A 0 x Y) (X x B0).
If f(x ) Y Fo then (g f )(x ) is not defined. If f x Fo then
((g f)(x),f(x)) must have been -erased after (x,f(x)). Continuing this
argument we see that if (g f)(x)= x for some > I then must be even
and

((g f),( i-1(

and was X-erased after (x, f(x))--((g f)i(x), f(x)). But this is impossible
since the column x of X Y was deleted when (x, f(x)) was -erased. This
proves that (f, g) is an aperiodic pair. E3

The next theorem is a strengthened version of the Douglas-Lindenstrauss
theorem for the discrete case.

THEOREM 2.7. Suppose M(/x, v) with support S. Then is extreme if
and only iffor every real function h on X Y there exist real functions p on X
and q on Y such that h =p + q a.e. [X].

Proof Suppose X is not extreme. By theorem 2.1 there exists a -loop

( (xi, Yi)" l < < 2n).

Let h E"i=lI((x2,,y2,)}. From the definition of X-loops if p and q are any two
real functions on X and Y, respectively, then

[p(x2,_,) + [P(X2i) + q(Y2i)]"
i=1 i=1
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But Y’.in=lh(X2i_l, Y_i-x) 0 and Ein=lh(X2i, Y:i) n. Thus h 4: p + q a.e. [,]
for any pair (p, q).
Now suppose ) is extreme and h is a real function on X Y. We use an

"orthogonal decomposition" of S similar to (but not necessarily the same as)
the decomposition in Theorem 2.5. Well order X in some arbitrary but fixed
manner. Let C1,1 (x), where x is the smallest x for which (x, y) S for
some y Y, let Rx, { y Y: (x, y) S }, and for > 1 define recursively

and

n,2i

Rn,2i+

{x X- C,2i_x" (x, y) S for some y R,,2,_ x},
{Y Rn,2i-x" (x, y) S for some x C,,,2,},
{y Y- Rn,:i’(x, y) S for some x Cn,2i},

(x Cn,2i’(X, y) S for some y Rn,2i+l ).

From the construction C1, R1, is X-full for 1 < < N and empty for
> N for some 2 < N _< o, and the lemma applies to (Cx, Rx,: 1 < <

Nx). Since X is extreme, by Theorem 2.1 and the lemma, (Cx,2) and
(R1,2i_l) are pairwise disjoint collections of sets and every row(column) of

Cx, R1, contains exactly one element of S for odd(even). Let

A C1,1 -[- _,i>_1C1,2i, B _.,i>_lR1,2i_l and S (A B1) S.

Then S Ei>__l(Cl, Rl, i) ("1S and S S [(X- Ax) (Y- B1) O S.
Now for n > 2 successively construct Sn, An, and B from (X- A1) (Y-
Bx) in the same manner as above, each time using Cn, (x’), where x’ is the

.,i=lBi, sosmallest x in X ET=IAi for which (x y) S for some y Y n-1

that

S (A X Bn) n S Z (C.,, x R.,,) n S,
i>_l

( Cn, X R n, ) has the properties of { C1, X R1, ) described above, S E, >_ lan,
and {An) and {Bn} are pairwise disjoint collections of sets. Then it is
sufficient to define p and q by their restrictions
respectively, n > 1, and defining p and q to be zero otherwise.

Fix n > 1. Let pn(x)= 0 and qn(Y)= h(x, y) for y Rn, 1. Now for
x Cn, let pn(x) h(x, y) qn(Y), where (x, y) is the unique element of S
in Cn,; Rn,g, and for y Rn,2+x let qn(y) h(x,y)-pn(x ), where
(x, y) is the unique element of S in Cn,+ Rn,2i+ x" Now it is easy to check
that

COROLLARY 2.7 (Douglas-Lindenstrauss). X M(, v) is extreme if and
only if W ( p + q: p LI(/ ), q Lx(v)) is norm-dense in L(X).
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Proof Suppose , is not extreme and h Ll(;k ). If there exist Pn LI(p,)
and qn Ll(v) such that pn + qn ---’ h in II II1, the norm in Ll()k), then a
subsequence pn, + q,, h a.e. [;k]. But this is impossible for the h defined in
the first part of the proof of Theorem 2.7. Hence W is not norm-dense in
Ll(k).
Now suppose is extreme and h Lx(k ). Let A, Bk be finite rectangles

such that A, B, ’ X Y. As in Theorem 2.7 we can construct real functions
p, p,I,, and q q,Is, on X and Y, respectively, such that

Pk + qk hI,B a.e. [X].

Then clearly pk Ll(/X ) and qk Ll(V), k >_ 1, and IlhI,s,
Thus W is norm-dense in L1(,).

The problem of going from Theorem 2.7 to Corollary 2.7 is the fact that
h LI() and h =p + q a.e. IX] do not guarantee that p Lx(/) and
q Ll(v) as the following example shows.

Example 2. Let X and Y be the positive integers. Suppose

)k(i- 1, i)= 1/i 2, )t(i,i- 1)= 1/i 3, i>2,

and h(i, j)= 0 otherwise. Then , is extreme by Theorem 2.3. Define h on
X Y by h(i 1, i) 1, h(i, 1) i, > 2, and h(i, j) 0 otherwise.
Then h LI(, ). However, (1)= 1/22, v(1)= 1/23, and for > 2 we have
tx(i) 1/(i + 1) 2 + 1/i and v(i)= 1/i 2 + 1/(i + 1) 3. Thus for no choice
of real functions p and q on X and Y, respectively, such that h =p + q a.e.
[X] will we have both p LI() and q
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