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1. Introduction

The theory of numerical ranges in unital Banach algebras has been exten-
sively developed in recent years. Its most remarkable results can be found in [6]
and [7]. Numerical range techniques have been successfully applied to nonas-
sociative normed algebras (for example, see [5], [15], [11], [19], [20)).

Since the concept of numerical range of an element of an (even nonassocia-
tive) unital Banach algebra does not depend on the product of the algebra but
only on the underlying Banach space and on the unit, one is tempted to
consider numerical ranges in an arbitrary Banach space X in which a norm-one
element u has been selected. (We shall say that the pair (X, u) or simply X is a
numerical range space). As in unital Banach algebras we can consider the state
space

D(X)={fe X |fl =f(u)=1}
and the numerical range of an element x in X, namely

V(x) = {/(x): fe D(X)}.

This idea appears implicitly in the classical paper by Bohnenblust and Karlin
[4] and has been shown to be useful in obtaining relevant results on numerical
ranges in certain Banach algebras (for example, see [8]).

In this paper we begin a methodical consideration of numerical range spaces.
A number of results on numerical ranges in unital Banach algebras can be not
only extended to our general context but even improved in their original
context. This is the case for example with our Corollary 2.9 which improves
Theorem 2.4 of [17] and whose proof uses essentially numerical ranges in
Banach spaces which need not be Banach algebras.

The leitmotiv in our work is the problem considered by R.R. Smith in [17]
and [18] in the context of unital complex Banach algebras. This problem can
be posed as follows. Given an element F in the second dual 4” of a unital
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610 J. MARTINEZ-MORENO ET AL

complex Banach algebra A4, is it possible to find a net {a, } of elements in 4
such that

F=w* —1lim{a,} and V(a,)C V(F)

for all A? The answer to this problem is affirmative whenever V(F) has
nonempty interior [18, Theorem 3.1]. In Section 2 we extend this result to
arbitrary real or complex numerical range spaces. Arguments different from
those in [18] have to be used for this. (The proof in [18] uses the fact that the
numerical radius is an equivalent norm and this may fail even for unital real
Banach algebras.)

If A, F are as before and V'(F) is a single point the answer to the problem is
clearly affirmative. But if V(F) is a segment but not a single point the answer
is in general negative (see [17, Example 2.3]). Under an additional condition on
A Smith [17, Theorem 2.4] shows that the set of hermitian elements in A is
w*-dense in the set of hermitian elements in A”/, giving a partial answer to the
problem in the case that V(F) has empty interior. In Section 3 we give a
complete affirmative answer to the problem for complex numerical range
spaces satisfying Smith’s condition when F(F) is a segment but not a point.
The residual case in arbitrary numerical range spaces where V(F) is a point is
also considered. The main tool used in this section is a discussion in the
general context of numerical range spaces of the well-known theorem by
Moore and Sinclair (see [7, Theorem 31.1]) on the linear span of the state
space. We show that the above mentioned condition of Smith holds if and only
if the real linear span of the state space is w*-closed.

Section 4 is devoted to several applications. First we give a dual characteri-
zation of unital noncommutative JB*-algebras. They are the unital complete
normed complex nonassociative algebras A satisfying H(A’) N iH(A’) = {0}
where H(A’) denotes the real linear span of the state space of A. As a second
application we show that every complex-valued bounded affine function f on a
compact convex set is a pointwise limit of a net of continuous affine functions
whose values lie in the closure of the range of f. Recall that if 4 is a unital
Banach algebra and F is an element in the second dual 4” of A, then

(*) V(F)={F(f): fe D(4)} [6, Theorem12.2].

Using Theorem 3.1 of [10], numerical range spaces (X, u) for which (*) holds
are characterized as those whose duality mapping have a “good” behaviour at
u. The paper concludes with the consideration of these special numerical range
spaces. We apply the results of Sections 2 and 3 to these spaces and extend to
them the assertion of [18, Corollary 3.3]. For the proof of this result we show
previously that the numerical index of a numerical range space agrees with the
one of its bidual. This last fact seems to be new even for unital Banach
algebras.
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2. Numerical ranges with nonempty interior

A numerical range space will be a pair (X, ) where X is a Banach space
over the scalar field K (R or C) and u is a fixed element in the unit sphere
S(X) of X. We shall usually keep the element u in mind and simply say that
X is a numerical range space. The state space D(X) of X is then defined as the
nonempty convex and w*-compact subset of X’ (the dual space of X) given
by
(2.1) D(X) = {feS(X"): f(u) = 1)

For x in X we define the numerical range V( X, x) of x by

(2.2) V(X,x) = {/(x): fe D(X)}

If X is clear from the context we shall write V'(x) instead of V( X, x). V(x)is
a nonempty compact convex subset of K, and simple properties as

(2.3) Vix+y)c V(x)+V(y) (x,y€X)

(2.4) V(ax + Bu) =aV(x)+ B (x € X; a,B €K)

are easily verified. If Y is a Banach space containing X as a subspace, then Y
will be considered as a new numerical range space with the same distinguished
element u. D(X) is the set of restrictions to X of the elements in D(Y) so
(2.5) V(Y,x)=V(X,x) forall xin X.

X will be always considered as a closed subspace of its second dual X’ so we

can take Y = X”. However another numerical range can be considered for
elements F in X", namely V,(F) defined by

(2.6) Vi(F)= {F(f): fe D(X)} (Fe Xx")
Every element in D(X) can be considered as an element in D(X"’) so we have
(2.7) V(F)c V(X”,F) (FeX")
and from (2.5) we deduce
(2.8) V(X,x)=V/(x)=V(X",x) (x€X)
Our first lemma is a general result on duality. To state it we need some

additional notation. If M, N are vector spaces in duality we denote o(M, N)
the weak topology on M and if S is a subset of M the polar S° of S in N is
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defined by
S°={yeN:Re(x,y)<1forallx € §}
The polar of a subset of N is defined analogously. It is known that the bipolar

(8°)° = 8°° of S is the weakly closed convex cover of $ U {0}. This fact will
be used without comment in the sequel.

2.1 LEMMA. Let M, N be vector spaces over K in duality, S a convex
o(M, N)-compact subset of M, Q& a convex compact subset of K containing 0 as
an interior point and T any topology on M compatible with its linear structure and
stronger than o(M, N). Then the v-closure and the o(M, N )-closure of co(2S)
agree (co is the convex cover).

Proof. Let 8 be a fixed positive real number. Since 0 is interior to £ we can
find z,, z,,..., z, € K such that the set

Qs =co{zy,...,2,}
satisfies @ € Q5 C (1 + 8)Q, hence
co(Q2S) € co(2s8) € (1 + 8)co(R2S).

Since co(2,S) = co(U’_,2,S), co(2;S) is o(M, N)-compact so o(M, N)-
closed and 7-closed, and from the above inclusion we obtain

o(M,N) — cl(co(2S)) € co(2,S) € (1 + &)(7-cl(co(2S))).
Now let § — 0 to obtain
o(M,N) — cl(co(2S)) c 7-cl(co(2S))

and the reverse inclusion follows from the assumption that 7 is stronger than
o(M,N).

2.2 LEMMA. Let X be a numerical range space and let Q be a convex
compact subset of K containing 0 as an interior point. Then in the canonical
duality (X', X),

{x e X: V(x)cQ}° = r-cl(co(2°D( X)))

where T is any topology on X' compatible with its linear structure and stronger
than the w*-topology and

Q°={weK:Re(wz) <1forallzeQ}
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Proof. Clearly (2°D(X))° = {x€ X: V(x)C @} and 0 is an interior
point in 2°. Therefore

{xe X: V(x)cQ}° = (2°D(X))°° = w*<cl(co(Q°D(X)))
and the result follows by Lemma 2.1.

2.3 THEOREM. Let X be a numerical range space and S} a convex closed
subset of K with nonempty interior. Then

w*cl{x € X: V(x)cQ}={Fe X" V(F)cQ}

Proof. Since {F € X”: V/(F)C Q} is w*-closed in X", by (2.8) we have
w*cl{x € X: V(x) c Q) c {Fe X": V/(F)c Q}.

In view of (2.4) we can assume that £ contains 0 as an interior point. First we
assume also that @ is compact. Then by Lemma 2.2 if 7 denotes the norm
topology on X’ we have

{x € X: V(x) C 2}° = r=cl(co(R°D( X)))
w*-cl{ x € X: V(x) € @} = [rcl(co(R°D( X)))]°
= (2°D(X))°
={Fe X" V(F)cQ}.

If Q is not compact let G € X”” be such that V;(G) C & and let A be a closed
disk contained in © with center at 0 and positive radius. Then

Q, = co(AUV,(G) ) c @

is a compact convex set containing 0 as an interior point so by the first part of
the proof

Gew*cd{xe X: V(x)C @} cw*c{xe X: V(x)cQ}

2.4 COROLLARY. Let X be a numerical range space and @ a convex closed
subset of K with nonempty interior. For all F in X" with V(F) C Q we can find
a net {xy}ep in X such that

(1) V(x,) < Q forall \ € A,

(i) {x\} — F in the w*-topology.
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Proof. By (2.7), V,(F) C Q. Now apply the above theorem.

If in the above corollary V(F) has nonempty interior then £ may be chosen

to be V(F). For the case of empty interior Theorem 2.3 gives the following
approximation.

2.5 COROLLARY. Let X be a numerical range space, Q& a convex closed subset
of K and let A denote the closed unit ball of K. Then

(FeX": V(F)cQ}=Nwrd{xeX:V(x)CQ+85A}.
>0

Proof. The condition V,(F) C @ is equivalent to V,(F) C £ + 8A for all
8 > 0 so the result follows from Theorem 2.3.

2.6 Remark. In the particular case of unital complex Banach algebras
Corollary 2.4 has been obtained by R. R. Smith with different techniques [18,
Theorem 3.1]. See also [18, Remark 3.2] in connection with our Corollary 2.5.

3. The empty interior case

As stated in [18, Example 2.3}, Theorem 2.3 may fail if £ has empty interior.
In this section we will consider natural conditions on X which imply the
conclusion of Theorem 2.3 when £ has empty interior.

Let (X, u) be a real numerical range space and suppose that V’(x) has empty
interior, that is V(x) = {A}. Then by (2.4), V(x — Au) = {0}. We define the
radical of a (real or complex) numerical range space X by

(3.1) Rad(X) = {x € X: V(x) = {0}).

The radical is clearly a closed subspace of X. Now consider a complex
numerical range space (X, u) and let x € X be such that V(x) has empty
interior. Then V(x) is a segment or possibly a single point. Using (2.4) again
we can write x = ay + Bu with a, 8 € C and V(y) C R. We define the set of
hermitian elements in X, H(X) by

(3.2) H(X)={x€ X: V(x)CR}

It is clear that (for complex X),

(3.3) Rad(X) = H(X)NiH(X)

If (X, u) is a real or complex numerical range space it is clear that

d(u,Rad( X)) = 1
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so (X/Rad(X),u + Rad( X)) is a new numerical range space. We have clearly
D(X) c Rad(X)° so with the usual identification between ( X/Rad( X))’ and
Rad( X)° in mind we can write

(3.4) D(X/Rad( X)) = D(X)

and from this we obtain

(3.5) V(x + Rad( X)) = V(x) (x€ X)
and
(3.6) Rad( X/Rad( X)) = {0}.

For x in X we define the numerical radius v(x) of x by
(3.7) v(x) = Max{|A|: A € V(x)}.

It is clear from (2.3) and (2.4) that v(-) is a seminorm on X whose annihilator
subspace is Rad( X). We define the numerical index n( X) of X by

(3.8) n(X)=Inf{v(x): x € S(X)}
or equivalently
(3.9) n(X)=Max{a>0: a||x|| <v(x)forall x € X}.

Since v(x) < ||x|| for all x in X we have that 0 < n(X) < 1and n(X) > 0 if
and only if v(-) is an equivalent norm on X. The assertion n(X) > 0 for a
numerical range space X must be understood as a desirable property of X. For
example if 4 is a unital complex Banach algebra it is known that n(A4) > 1/e
(see [6, Theorem 4.1]). This fact is essential in the proof of some known results
on numerical ranges in complex Banach algebras. One of these results is the
Moore-Sinclair theorem (see [7, Theorem 31.1]) asserting that if 4 is a complex
Banach algebra, then A4’ is the linear span of D(A4). The next theorem will
allow us to discuss the Moore-Sinclair theorem for arbitrary numerical range
spaces. As a particular case we obtain an extension of the Moore-Sinclair
theorem to nonassociative algebras.

3.1 THEOREM. Let X be a numerical range space. Then
{fex:|f(x)|<v(x) forallx € X} = 7-cl|co|D(X))

(|co| is the absolutely convex hull) where T is any topology on X’ compatible with
its linear structure and stronger than the w*-topology.
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Proof. If A denotes the closed unit ball of K we have clearly that in the
duality (X, X),

{(xex:V(x)cA}e={feXx:|f(x)|<v(x)forall x € X}

Now apply Lemma 2.2 and note that co(AD(X)) = |co|D(X).
In what follows Lin D( X) will denote the linear span of D(X).

3.2 THEOREM. Let X be a numerical range space. The following statements
are equivalent:

i n(X)>0,

(i) LinD(X)= X"
Moreover if (1) or (ii) hold, then:

(@) If Xis real, for all fin X’ there are ay,0, = 0 and f,, f, € D(X) such
that

I/l

f=afi—a,f, and a1+a2sn(X).

(b) If X is complex, for all f in X' there are a,,a,,a;,a, >0 and
fl’f27f37f4 S D(X) such that
f=ofi —ayfy +i(ayfs - ayfy)

and

V2|l

a1+a2+a3+a4sn(X).

Proof. First we show that (i) implies (a) or (b) so in particular (i) = (ii). In
view of (i), v and || - || are equivalent norms on X so they give the same
continuous linear functionals and the dual norms v’ of v and || - || of || - || are
equivalent norms on X’. In fact we have

n(X)v(f) < Il sv(f) (fex).
Fix f in X’ (f # 0). Then by Theorem 3.1 we have

f
v'(f)

Now if X is real |co|D(X) = co(D(X) U — D(X)) is w*-closed so we can
write

€ w*-cl(|co|D( X)).

f
v'(f)

= Blfl - Bzfz
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with 8,8, >0, B, + B, =1, f1, /, € D(X), and (a) follows with
a; =B’ (f) and a, = Bv'(f)

If X is complex write Q, = V2 co{l, —1,i, —i} and note that co(£2,D( X))
is w*-closed and contains |co|D(X). We can write

_,L” = V2(Bify = Bofo + iBsfs — iBufs)
v(f)

with B, 85, 83,8, 20, By + B, + By + By =1 and f, /5, f3, fs € D(X). Now
(b) follows with o, = BV2 v'(f) (i = 1,2,3,4).
It remains to prove that (ii) = (i). From (i) we deduce that v is a norm on

X and that v and || - || give the same continuous linear functionals. The
identity mapping from X’ with the dual norm of || - || onto X’ with the norm
v’ has closed graph so || - || and v’ are equivalent norms on X’. Hence v and

|| - || are equivalent norms on X; that is, (i) holds.

3.3 Remark. An alternative proof of (i) = (il) can be obtained from [2,
Theorem 1].

Let A be a unital complete normed complex nonassociative algebra, denote
by BL(A4) the unital Banach algebra of bounded linear operators on A and for
a in A define L, (b) = ab (b € A). Then a — L, is a unit-preserving isometric
linear mapping from A into BL(A4) so

n(A4) = n(BL(A4)) > 1/e.

3.4 COROLLARY. Let A be a unital complete normed complex nonassociative
algebra. Then Lin D(A) = A’ and every element in A’ can be written as in
Theorem 3.2(b).

3.5 COROLLARY. Let X be a numerical range space. The following state-
ments are equivalent.
(i) Lin D(X) is norm-closed in X".
(ii)) Lin D(X) is w*-closed.
(iii)) Lin D(X) = Rad(X)° in the duality (X', X).
(iv) n(X/Rad(X)) > 0.

Proof. (i) « (ii). Follows from [9, Corollary V.9.5].
(i)  (iii). Since Lin D(X)° = Rad(X) the bipolar theorem gives

w*-cl(Lin D( X)) = Rad( X)°.
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(iii) & (iv). Taking into account (3.4) and the usual identification
(X/Rad( X))’ = Rad(X)?, (iii) can be reformulated as

Lin D( X/Rad( X)) = ( X/Rad( X))’
So it is enough to apply Theorem 3.2 to the numerical range space X /Rad(X).
The above corollary will be specially relevant when applied to the real space
underlying a complex numerical range space. Let (X, u) be a complex numeri-

cal range space and denote by X, the real Banach space underlying X. For the
numerical range space (X,, u) clearly we have

(3.10) D(X,) = {Ref: fe D(X)}
(3.11) V(X,x)=ReV(X,x) (xeX)
and

(3.12) Rad(X,) = iH(X)

In particular we have iu € Rad(X,) and n(X,)=0. We define the real
numerical index n,(X) of X by

(3.13) n,(X)=n(X,/Rad(X,)).

Note that in view of (3.6) we can have n,(X) > 0 and this assertion becomes
an additional desirable property of the complex numerical range space X. The
reader can easily deduce from (3.11), (3.12) and (3.5) applied to X, that the
assertion n,(X) > 0 is equivalent to the existence of a positive real number «
such that for all x in X

(3.14) d(x, H(X)) < aMax{|ImA|: A € V(X,x)}

In fact the least constant « which can appear in (3.14) is 1 /n,( X). It is shown
in [17] that if 4 is a unital complex Banach algebra with n,(A4) > 0, then
H(A”) = w*-cl(H(A)).

3.6 THEOREM. Let X be a complex numerical range space and let Lin, D( X)
denote the real linear span of D( X). The following statements are equivalent.
(1) Lin,D(X) is norm-closed in X’.
(i) Lin,D(X) is w*-closed in X".
(i) Lin,D(X)= {f€ X" f(H(X))C R}.
@iv) n(X)>0.
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Proof. The mapping f — Ref from (X’),onto (X,)’ is a linear homeomor-
phism for both the norm and w*-topologies and by (3.10) it maps D( X) onto
D(X,). With this in mind the proof reduces to applying Corollary 3.5 to the
real numerical range space X,.

3.7 Remark. Even in the particular case of unital complex Banach algebras
the above theorem improves the results in [6, Theorem 31.12]. The improve-
ment comes from the fact that the assertion n,(X) > 0 is equivalent to the
others. Note that if 4 is a unital complex Banach algebra, 4,/Rad(4,) needs
not be a real Banach algebra but it is a real numerical range space. It was only
the unnecessary restriction of numerical ranges to the context of Banach
algebras which prevented the consideration of the numerical index of
A,/Rad(A4,) namely n,(A) and the application of the Moore-Sinclair theorem
to A,/Rad(4,) as we have done. The above theorem will play a central role in
the proof of the main result in this section.

3.8 LEMMA. Let X be a complex numerical range space.
(a) In the duality (X', X),

[co(D(X) U — D(X))+iLin, D(X)]° = {x € X: V(x)c[-1,1]}
(b) In the duality (X", X'),

[co(D(X) U = D(X)) +iLin,D(X)]°={Fe X": V/(F)c[-1,1]}
Proof. Straightforward.

3.9 THEOREM. Let X be a complex numerical range space such that n ,(X) >

0. Let Q be a closed convex subset of K and suppose that § is not reduced to a
point. Then

wrcl{x e X: V(x)c Q) ={Fe X" V/(F)cQ}.
In particular H(X"") C w*-cl(H( X)).
Proof. 1f Q has nonempty interior the result follows from Theorem 2.3 and
the assumption »,(X) > 0 is superfluous in this case.
Since { F € X": V(F)c Q} is w*-closed in X’ we have
wr-cl{x € X: V(x)c Q) c {Fe X": V/(F)cQ}.
We turn to the reverse inclusion and we can assume that £ has empty interior

so that @ is contained in a straight line. Since £ is not a point we can find
a, B € C,a + B, such that the segment [a, 8] is contained in . Let G € X"
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be such that V;(G) € Q. There are y,A € C, y # A, such that

co(V,(G) U[a, B]) = [v,A] c Q.

If we prove that
(3.15) wrcl{x e X: V(x) c [v,A\]} = {Fe X": V,(F) c [v,\]}

we will have G € w*-cl{x € X: V(x) C @} and the proof will be finished.

To prove (3.15) note that in view of (2.4) we can suppose y = —1, A = 1.
From the assumption n,(X) > 0 we have by Theorem 3.6 that Lin, D(X) is
w*-closed hence so is co(D(X)U — D(X)) + iLin,D(X). Now by Lemma
3.8(a) we have that in the duality (X, X),

{xeX:V(x)c[-1,1]}° = co(D(X) U — D(X)) + iLin,D(X)
and by Lemma 3.8(b), in the duality (X", X),
wrcl{x € X: V(x)c[-1,1]} = {x € X: V(x) c [-1,1]}°°
={Fex"V(F)c[-1,1]}.
The following corollary improves Theorem 2.4 of [17].

3.10 COROLLARY. Let A be a unital complex Banach algebra with n ,(A) > 0.
For all F in A” there is a net {a,},c » of elements in A satisfying:

(1) V(a,) C V(F) forall X in A;

(i) {ay}rea converges to F in the w*-topology of A”.

3.11 Remark. The assumption #n,(A4) > 0 can not be dropped in the above
corollary as shown in [17, Example 2.3]. Note also that if V(F) is a single
point, then F is a scalar multiple of the unit and the result is obvious in this
case. For a general numerical range space the case V(F) = {a} also follows
easily from our results.

3.12 THEOREM. Let X be a numerical range space with n( X/Rad( X)) > 0.
For all a € K,

w*cl{x € X: V(x) = {a}} = {Fe X": V,(F) = {a}}.
In particular Rad( X"”") C w*-cl(Rad( X)).

Proof. By (2.4) we can suppose a = 0. Then by Corollary 3.5 we have that
in the duality (X", X),

w*-cl(Rad( X)) = Rad(X)°° = Lin D(X)° = {Fe X": V,(F) = {0} }.
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Theorems 2.3, 3.9 and 3.12 can be summarized as follows.

3.13 COROLLARY. Let X be a numerical range space such that
n(X/Rad( X)) > 0.

If X is complex assume further that n,(X) > 0. Let Q be a closed convex subset
of K. Then

wcl{x € X: V(x)c @} = {Fe X": V/(F) c Q}.

In particular, for all F in X" there is a net {x, }, < » of elements in X such that:
1) V(x)) C V(F) forall N in A,
(i) {x,})ea converges to F in the w*-topology of X”'.

4. Applications

(A) Dual characterization of noncommutative JB*-algebras.

The following geometric characterizations of unital C*-algebras are well
known. Let A4 be a unital complex Banach algebra. The Vidav-Palmer theorem
(see [6, Chapter 2]) states that A4 is a C *-algebra if and only if

(4.1) A =H(A) +iH(A).

Moore’s theorem [13] uses this result to show that A is a C*-algebra if and
only if

(4.2) Lin,D(A) NiLin,D(A4) = {0}.

Next we show that the statements (4.1) and (4.2) for a complex numerical
range space with positive numerical index are equivalent. As a consequence of
this and the main result in [16], it is shown that the only unital complete
normed complex nonassociative algebras satisfying (4.2) are the unital non-
commutative JB*-algebras.

4.1 THEOREM. Let X be a complex numerical range space such that n( X) > 0.
The following statements are equivalent.

(i) Lin,D(X)NiLin,D(X)= {0}.

(i) X=H(X)+iH(X).

Proof. (i) = (ii). From the assumption n(X) > 0 it is easy to obtain that
H(X) + iH(X) is a closed subspace of X. In view of Theorem 3.2 we have

X’ = Lin,D(X) + iLin,D(X),
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and by (i) the sum is algebraic-direct. But from Theorem 3.2(b) the real linear
projection P onto i Lin,D(X) is norm-continuous,

2
n(X)

so Lin, D( X') is norm-closed. Now we can use Theorem 3.6 ((i) < (iii)) to show
thatif f € X’ and f(H(X) + iH(X)) = {0} then f and if belongto Lin, D(X)
so f = 0 by (i).

(i) = (i). If f€ Lin,D(X) NniLin,D(X) we have f(H(X))= {0} so f=
0 by (ii).

1P < Al forall fin X,

4.2 Remark. An alternative proof of the above result can be obtained from
Theorem 4.0.2 of [1].

We recall (see [14]) that a noncommutative JB*-algebra is a complete
normed complex noncommutative Jordan algebra 4 on which an algebra
involution * is defined satisfying

|U,(a*)| = llall® forall ain 4,
where U, is the bounded linear operator on A defined by
U,(b) = a(ba) +(ba)a — ba*> (b€ A)

4.3 COROLLARY. Let A be a unital complete normed complex nonassociative
algebra. The following statements are equivalent.
(1) Lin,D(A)NiLin,D(A4) = {0}.
(i) A = H(A)+ iH(A).
(iii) A is a noncommutative JB*-algebra.

Proof. As noticed in the comments preceding Corollary 3.4 we have
n(A) > 0 so the equivalence between (i) and (ii) follows from Theorem 4.1.
By the main result in [16] if A4 satisfies (ii), then the mapping

h+ik>h—ik (h ke H(A))

is an algebra involution on 4. Then by [12, Theorem 8], A4 is a noncommuta-
tive Jordan algebra. Now the equivalence between (ii) and (iii) follows from the
nonassociative Vidav-Palmer theorem [12, Theorem 11].

(B) Affine functions on compact convex sets.
Let K be a compact convex subset of a Haussdorf locally convex space.
Denote by C(K') the Banach space of complex-valued continuous functions on
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K with the uniform norm and by A(K) the closed subspace of C(K) whose
elements are affine functions. Let us consider the complex numerical range
space (A(K),I) where I(k) =1 for all £ in K. Then by (2.5) and Vidav’s
Lemma [6, Theorem 5.14] we have

(4.3) V(A(K),f) = V(C(K),f) = f(K) (feA(K)).

As a consequence we have v(f) = ||fll (f € A(K)); that is, n(A(K)) = 1.
Also from (4.3) we deduce that hermitian elements in 4(K) are the real-valued
continuous affine functions on K. From this it is not difficult to obtain that
n,(A(K)) = 1.

It is known that the bidual space 4(K)” can be identified with the Banach
space A’(K) of complex-valued bounded affine functions on K. In this
identification the w*-topology of A(K)” is translated into the topology of
pointwise convergence of functions in 4°(K).

From (4.3) and the Hahn-Banach Theorem on separation of convex sets (see
for example [3, Theorem 34.7 and Exercise 34.12]), D(A(K)) is the set of
evaluation functionals on the points of K. With this in mind it is easy to see
that if F € A°(K) = A(K)” then V,(F) = F(K).

The above considerations allow us to state the following Corollary which
improves Theorem 2.2 of [18]. To prove it one must simply apply Corollary
3.13 to the complex numerical range space (A(K), I').

4.4 COROLLARY. Let K be a compact convex subset of a Haussdorf locally
convex space and let Q be a closed convex subset of C. Then

(FeA(K): F(K)c Q} =rc{fe A(K): f(K)c Q}

where T is the topology of pointwise convergence on K. In particular if F is a
complex-valued bounded affine function on K there is a net { f\} of complex-val-

ued continuous affine functions on K such that f\(K) € F(K) and { fy(k)} —
F(k) for all k in K.

(C) Numerical indexes of bidual spaces.
Following [10], if X is a real or complex Banach space we define the duality
mapping for X to be the set-valued mapping on S(X) given by

x> D(X,x)={feS(X"): f(x)=1}.

Denote by n (resp. w) the norm (resp. weak) topology on any Banach space.
The duality mapping of X will be said to be (n, n)-upper semicontinuous (resp.
(n,w)-upper semicontinuous) at a point x in S(X) if for every n-neighbour-
hood (resp. w-neighbourhood) of zero U in X’ there is an € > 0 such that if
y € S(X) and ||x — y|| < ¢, then

D(X,y)c D(X,x)+ U.



624 J. MARTINEZ-MORENO ET AL

We are interested in numerical range spaces ( X, u) whose duality mapping is
(n,w)-upper semicontinuous at u. The following result provides a wide class of
such spaces.

4.5 PROPOSITION. Let A be a unital complete normed nonassociative real or
complex algebra and let I be the unit of A. The duality mapping of the numerical
range space (A, 1) is (n,n) (so also (n,w)) upper semicontinuous at I.

Proof. Forain S(A)and f in D(A, a) define f,: A - Kby f,(b) = f(ab)
(b € A). Clearly we have f, € D(A,I) and ||f,— fl| < |la —I||. Soif ¢ >0
and B denotes the open ball in X’ with center at zero and radius ¢ we have

D(A,a)c D(A,1)+ B forall ain S(A) with |la — I| <e.

The following result characterizes numerical range spaces whose duality
maping is (n, w)-upper semicontinuous.

4.6 THEOREM. [10, Theorem 3.1]. Let (X, u) be a real or complex numerical
range space. The following statements are equivalent.
(i) The duality mapping of X is (n,w)-upper semicontinuous at u.
(i) D(X”,u) = w*-cl(D(X, u)).
(i) V(F)=V,(F) forall Fin X".

Proof. The equivalence between (i) and (ii) appears in [10, Theorem 3.1] for
real X. The extension to the complex case is a consequence of the fact that the
mapping f — Ref is a linear homeomorphism for both the norm and weak
topologies from ( X”), onto ( X,)’ which maps D(X, x) onto D(X,, x) for all x
in S(X).

The equivalence between (ii) and (iii) for real or complex X is a straightfor-
ward consequence of the Hahn-Banach Theorem on separation of convex sets
(for example, see [3, Theorem 34.7 and Exercise 34.12]).

4.7 Remark. In view of the above theorem, if the duality mapping of the
numerical range space (X, u) is (n,w)-upper semicontinuous we can change
V,(F) to V(F) in Theorems 2.3, 3.9 and 3.12. In particular we would have

w*-cl(H(X)) = H(X")
in Theorem 3.9 and

w*-cl(Rad( X)) = Rad(X"”)

in Theorem 3.12. This applies in particular to unital complete normed nonas-
sociative algebras in view of Proposition 4.5.
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The next lemma seems to be new even for unital Banach algebras. It will be
used to improve Corollary 3.3 of [18].

4.8 LEMMA. Let X be a numerical range space. Then n(X"") = n(X).

Proof. Since X is a closed subspace of X, clearly we have n(X) > n(X").
For the converse inequality we can suppose n(X) > 0. From n(X)|| x| < v(x)
for all x in X we deduce n(X)|F| <v”(F) for all F in X” where
v”” denotes the bidual norm of v. But in view of Theorem 3.1 we have, for all F

in X”,
v"(F) = Sup{|F(f)|: v(f) <1}
= Sup{|F(f)|: f€ D(X)}
= Sup{|A|: A € V,(F)}
Sup{|A|: A€ V(F)}
v(F).

4.9 THEOREM. Let (X, u) be a complex numerical range space. Suppose that

the duality mapping of X is (n,w)-upper semicontinuous at u and that n (X) > 0.
Then n(X)=n(X").

IA

Proof. We have Rad(X;’) = w*-cl(Rad(X,)) = Rad(X,)°° (see Remark
4.7). Then

X//Rad(X/") = X//Rad(X,)°° = (X,/Rad(X,))"
Now apply Lemma 4.8 to X,/Rad(.X,).
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