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VERDIER AND STRICT THOM STRATIFICATIONS
IN O-MINIMAL STRUCTURES

TA LE Lo

0. Introduction

0.1 DEFINITION.  An o-minimal structure on the real field (R, +, -) is a family
D = (D,)nen such that for each n € N:

(1) D, is a boolean algebra of subsets of R”".

(2) If A € D,,then A x Rand R x A belong to D, ;.

(3) If A € D,41, then 7 (A) € D,, where m: R"*! — R" is the projection on
the first n coordinates.

(4) D, contains {x € R": P(x) = 0} for every polynomial P € R[X;, ..., X,].

(5) Eachsetbelonging to D, is afinite union of intervals and points. (o-minimality)

A set belonging to D is called definable (in this structure). Definable maps are
maps whose graphs belong to D.

Many results in Semialgebraic Geometry and Subanalytic Geometry hold true for
o-minimal structures on the real field. Recently, o-minimality of many interesting
structures on (R, +, -) has been established, for example, structures generated by the
exponential function [W1](see also [LR] and [DM1]), real power functions [M2],
Pfaffian functions [W2] or functions defined by multisummable powerseries [DS].
For more details on o-minimal structures we refer the readers to [D] and [DM2]
(compare with [S]).

We now outline the main results of this paper. Let D be an o-minimal structure
on (R, +,:). In Section 1, we prove that the definable sets of D admit Verdier
Stratification. We also show that the Verdier condition (w) implies the Whitney
condition (b) in D. Note that the theorems were proved for subanalytic sets in [V]
and [LSW] (see also [DW]), the former based on Hironaka’s Desingularization, and
the latter on Puiseux’s Theorem. But, in general, these tools cannot be applied to sets
belonging to o-minimal structures (e.g., to the set {(x, y) € R%: y = exp(—1/x), x >
0} in the structure generated by the exponential function). Section 2 is devoted to the
study of stratifications of definable functions. In general, definable functions cannot
be stratified to satisfy the strict Thom condition (wy). However, if D is polynomially
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bounded, then its definable functions admit (wy)-stratification. Our proof of this
assertion is based on piecewise uniform asymptotics for definable functions from
[M2], instead of Pawlucki’s version of Puiseux’s theorem with parameters, which is
used in [KP] to prove the assertion for subanalytic functions.

Notations and conventions. Throughout this paper, let D denote some fixed,
but arbitrary, o-minimal structure on (R, +, -). Definable means definable in D. If
R x R 3 (y,t) = f(y,t) € R™ is a differentiable function, then D, f denotes
the derivative of f with respect to the first variables y. As usual, d(-, -), || - || denote
the Euclidean distance and norm respectively. We will often use Cell Decomposition
[DM2, Th. 4.2], and Definable Choice [DM2, Th. 4.5] in our arguments without
citations. Submanifolds will always be embedded submanifolds.

Acknowledgements. 1 wish to thank the Fields Institute and the University of
Toronto, where this paper was written, for hospitality and support. I also thank Chris
Miller for many helpful suggestions.

1. Verdier stratifications

1.1. Verdier condition. LetT, I be C! submanifolds of R” such thatT" C T \I".
Let yo be a point of I'. We say that the pair (I', I'") satisfies the Verdier condition at
o if the following holds:

(w) There exist a constant C > 0 and a neighborhood U of yy in R” such that
(I, T,T") < Cllx—y|| foralxeI'NU,yel'NU,
where T,T" denotes the tangent space of I" at y, and

8(T, ThY= sup dv, T

veT, |lv]|=1

is the distance of vector subspaces of R”.
Note that (w) is invariant under C2-diffeomorphisms.

1.2 DEFINITION. Let p be a positive integer. A definable C? stratification of R"
is a partition S of R” into finitely many subsets, called strata, such that:

(S1) Each stratum is a c_onnected C? submanifold of R” and also a definable set.
(S2) Forevery I' € S, T" \ T is a union of strata.

We say that S is compatible with a class A of subsets of R” if each A € A is a finite
union of some strata in S.
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A definable C? Verdier stratification is a definable C? stratification S such that
forall I, T' € S,if ' € IV \ I/, then (T, I'') satisfies the condition (w) at each point
of I.

1.3 THEOREM (VERDIER STRATIFICATION). Let p be a positive integer. Then
given definable sets Ay, ..., Ay in R", there exists a definable CP Verdier stratifi-
cation of R" compatible with {A, ..., Ai}.

We first make an observation similar to that of [LSW]. Let (P) be a local property
of pairs (', ') at points y in I", where T, [’ are subsets of R", and where “local”
means that if U is an open neighborhood of y, then (I', I'') has property (P) at
y if and only if (' N U, T’ N U) has property (P) at y. Let P(I',T') = {y €
[: (I, I) satisfies (P) at y}.

1.4 PROPOSITION.  Suppose that for every pair (T, I'’) of definable C? subman-
ifolds of R" with ' C T'"\ IV and T # @, the set P(T,T") is definable and

dim(T'\ P(I',T")) < dim[. Then given definable sets Ay, ..., Ay contained in
R", there exists a definable CP stratification S of R" compatible with {Ay, . .., Ay}
such that

(P) P(U,T) =T forallT,T"' e SwithT Cc T/ \T".
Proof. Similar to the proof of [LSW, Prop. 2]. O

By the proposition, Theorem 1.3 is a consequence of the following.

1.5 PROPOSITION.  Let I, I'' be definable CP-submanifolds of R". Suppose that
FCcI'\TIandT # @. Then W = {y € I": (T, ['') satisfies (W) at y} is definable,
and dim(I" \ W) < dimT.

To prove Proposition 1.5 we prepare some lemmas.

1.6 LEMMA. Under the notation of Proposition 1.5, W is a definable set.

Proof. Note that the Grassmannian G, (R") of k-dimensional linear subspaces
of R" is semialgebraic, and hence definable; § and the tangentmap: I' > x — T,I" €
Ggimr (R") are also definable. Therefore,

W={yo: y»el,3C>0,]t>0,Vxel' Vyerl
(x = yoll <, lly = yoll <t = 8(T,T', T,T") < Cllx — y|)}

is a definable set. [
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1.7 LEMMA (WING LEMMA). Let V C R be a nonempty open definable set, and
S C R x R! be a definable set. Suppose V. .C S\ S. Then there exist a nonempty
open subset U of V, a > 0, and a definable map p: U x (0,a) —> S, of class C?,
such that p(y, t) = (v, p(y, 1)) and ||p(y, )| = ¢, forally € U,t € (0, ).

Proof. Similar to the proof of [L1, Lemma 2.7] O

To control the tangent spaces we need the following lemma.

1.8 LEMMA. Let U C R* be a nonempty open definable set, and M: U x
(0,a0) —> R be a C! definable map. Suppose there exists K > 0 such that
IM(y,t)|| < K,forally € U andt € (0, ). Then there exists a definable set F,
closedin U withdim F < dim U, and continuous definable functions C, t: U\F —
R,, such that

IDiM(y,)| <C(y), forally e U\ Fandt € (0, T(y)).

Proof. It suffices to prove this for I = 1. Suppose the assertion of the lemma is
false. Since {y € U: lim,_o+ || D1 M(y, t)|| = 400} is definable, there is an open
subset B of U, such that

lirg+ IDiM(y,t)|| = +oo, forall yin B.
t—

By monotonicity [DM2, Th. 4.1], for each y € B, there is s > 0 such that t —
[ID1M(y, t)]| is strictly decreasing on (0, 5). Let

T(y) = sup{s: ||D1M((y, -)|| is strictly decreasing on (0, s)}.

Note that 7 is a definable function, and, by Cell Decomposition, 7 is continuous
on an open subset B’ of B, and t > o on B’, for some &' > 0. Let ¥ (t) =
inf{|DiM(y,0)|l: y € B, 0 < t < «'}). Shrinking B’, we can assume that
lim,_, ¢+ ¥ (#) = +00. Then, for each y € B’, we have

IDIM(y, )|l > (), forallt e (0,a").

This implies |[M(y,t) — M(Y',t)| > ¥ (@)|ly — y'|l, forall y,y' € B, and ¢t < ¢'.
Therefore, ¥ (¢) < % ,forallt € (0, ), a contradiction. 0O

1.9 Proof of Proposition 1.5. The first part of the proposition was proved in
Lemma 1.6. To prove the second part we suppose, contrary to the assertion, that
dim(I"\ W) =dimI" = k.

Since (w) is a local property and invariant under C? local diffeomorphisms, we
can suppose I is an open subset of R* C R¥ x R"~*. In this case T,I" = R, for all
y € I'. Then by the assumption, applying Lemma 1.7, we get an open subset U of
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I, a C? definable map p: U x (0,) —> I'’ such that 5(y,t) = (v, p(y,t)) and
llo(y, t)|| = t, and, moreover, foreach y € U,
S(Rk’ T(y»p(y,t))rv)
lo(y, DI

On the other hand, applying Lemma 1.8 to M (y,t) := -p—%i'—'l and shrinking U and «,
we have

— 400 whent — 07,

IDip(y, )| < Ct, forally e U,t € (0, ),
with some C > 0. Note that T(,, ,(,,mI” D graphD;p(y, t). Therefore,
SR, Ty p(y.nT™) - I D1p(y, D)
oy, ) e, Dl
This is a contradiction. O

<C foryeU,0<t<a.

Note that Whitney’s condition (b) (defined in [Wh]) does not imply condition
(w), even for algebraic sets (see [BT]). And, in general, we do not have (w) =
) (eg, T = (0,00, " = {(x,y) € R% x = rcosr,y = rsinr,r > 0}, or
I = {(x,y) € R y = xsin(1/x), x > 0}). In o-minimal structures such spiral
phenomena or oscillation cannot occur. The following is a version of Kuo-Verdier’s
Theorem (see [K] and [V]).

1.10 PROPOSITION.  Let T', [" C R" be definable C?-submanifolds (p > 2), with
[ c TV\T. If (T, ') satisfies the condition (w) at y € T, then it satisfies the Whitney
condition (b) at y.

Proof. Our proof is an adaptation of [V, Theorem 1.5] and based on the fol-
lowing observation: If f: (0,a¢) —> R is definable with f(¢) # O, for all ¢, and
lim,_, o+ f(¢) = O, then, by Cell Decomposition and monotonicity [DM2. Th.4.1],
there is 0 < o’ < a, such that f is of class C! and strictly monotone on (0, &').
By the Mean Value Theorem and Definable Choice, there exists a definable func-
tion 0: (0,a’) — (0,a’) with 0 < 6(¢t) < ¢, such that () = f'(6(t))t. Since
|f (@) > |f(6())], by monotonicity, lim,_, o+ ‘fﬁ(tT)) =0.

Now we prove the proposition. By a C? change of local coordinates, we can
suppose that I" is an open subset of R* ¢ R* x R (! = n —k), and y = 0. Let
n: RF x R' — R’ be the orthogonal projection. Since (I, ") satisfies (w) at 0,
there exists C > 0 and a neighborhood U of 0 in R", such that

*) 8(I,I, I,T") < Cllx —yll, forallx eI"'NU,ye'NU.

If thg condition (b) is not satisfied at O for (I, I'’), then there exists € > 0, such that
0€e S\ S, where

S={xel: sRu(x), T,I") > 2.
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Since S N {x: ||x|| <t} # @, for all ¢+ > 0, by Curve selection [DM2, Th.4.6], there
exists a definable curve ¢: (0, ) —> S, such that ||@(¢)|| < ¢, for all ¢. By the above
observation, we can assume ¢ is of class C!. Write () = (a(t), b(t)) € R* x R.
Then ||b'(¢)]| is bounded. Since ¢((0, «)) C I'’, a # 0. Shrinking o, we can assume
a’'(t) # 0, forall ¢. Since lim,_, ¢+ a’(¢) exists, we have §(Ra’(t), Ra(t)) — 0, when
t — 0. Therefore

(*%) 8(Rd' (1), T,hT'") > €, for all  sufficiently small.

On the other hand, we have

, NS Ty NS N ,
S(Ra'(t), TypyI') = ||a/(t)||8(a @), T,y I') = ||a’(t)||8(b ®), T,nI™)
15 ®l

=<

SR (1), TynT).
@)’ RO ool

From (x) and (%), we have € < Clla(t)ll.'.'fi%;l}~ By the observation, the right-hand

side of the inequality tends to O (when t — 0), which is a contradiction. [

Note that Theorem 1.3 and Proposition 1.10 together yield an alternative proof
of the Whitney Stratification Theorem for o-minimal structures on the real field
in [DM2].

2. (wy)-stratifications

Thoughout this section, let X C R”" be a definable set and f: X —> Rbe a
continuous definable function. Let p be a positive integer.

2.1 DEFINITION. A definable C? stratification of f is a definable C? stratification
S of R" compatible with X, such that for every stratum I' € S with ' C X, the
restriction f|r is C? and of constant rank.

For each x € I', T,  denotes the tangent space of the level of f|r at x, i.e.
T.s=ker D(fING).

Let [, IV € Swith " C I'"\ I'". We say that the pair (I', I'") satisfies the Thom
condition (ar) at yo € T if and only if the following holds:

(ay) For every sequence (x;) in I'', converging to yo, we have
8(Ty,, ry Ty, ;) — 0.

We say that (I, I'') satisfies the strict Thom condition (wy) at yy if:
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(wy) There exist a constant C > 0 and a neighborhood U of yy in R", such that
8(Ty, ¢, Tif) <Cllx —y|l forallx eI'NU,ye T NU.
Note that the conditions are C2-invariant.

The existence of stratifications satisfying (wy) (and hence (ay)) for subanalytic
functions was proved in [KP] (see also [B] and [KR]). For functions definable in
o-minimal structures on the real field we have:

2.2 THEOREM. There exists a definable C? stratification of f satisfying the Thom
condition (ay) at every point of the strata.

Proof. See[L2]. 0O

2.3 Remark. In general, definable functions cannot be stratified to satisfy the
condition (wy). The following example is given by Kurdyka.

Let f: (a,b) x [0, +00) —> R be defined by f(x,y) = y* (0 < a < b). Let
I' =(a,b) x 0,and I'" = (a, b) x (0, +00). Then the fiber of f| over ¢ € R,

X, y\x ——exp —_—— X € (a b = —_——
{( ’ ( ) ( "‘)). ( ' ) }’ lnc.

Then % (;‘) = L — 400, whent — 0%, forall x € (a, b), i.e., %%ﬂ ‘cannot
be locally bounded along I'.
The remainder of this section is devoted to the proof of the existence of (wy)-

stratification of functions definable in polynomially bounded o-minimal structures.

2.4 DEFINITION. A structure D on the real field (R, +, -) is polynomially bounded
if for every function f: R — R definable in D, there exists N € N such that

|f(®)] <tV for all sufficiently large ¢.

For example, the structure of global subanalytic sets, the structure generated by real .
power functions [M2], or by functions given by multisummable powerseries [DS] are
polynomially bounded.

2.5 THEOREM. Suppose that D is polynomially bounded. Then there exists a
definable C? stratification of f satisfying the condition (W) at each point of the
strata.
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Note. The converse of the theorem is also true: If D is not polynomially bounded,
then it must contain the exponential function, by [M1]. So the function given in
Remark 2.3 is definable in D and cannot be (w/)-stratified.

2.6 PROPOSITION. There exists a definable C? stratification of f.

Proof (cf. [DM2, Th. 4.8]).  First note that if f: ' — R’ isa C! definable map
on a C'-submanifold I" of R”, then the set

P={yel:3t>0,Vx e'(|]x —y|| <t = rank f(x) =rank f(y)) }

is definable and dim(I" \ P) < dimT.
Therefore, applying Proposition 1.4, we have a C? stratification of f. O

By the previous proposition and Proposition 1.4, Theorem 2.5 is implied by the
following.

2.7 PROPOSITION.  Suppose that D is polynomially bounded. Let T, '’ be defin-
able CP submanifolds of R". Suppose T C T'\T'",T # @, and f: TUT' — Ris
a continuous definable function such that f|r and f|r have constant rank. Then

(i) Wy = {x € I': (wy) is satisfied at x} is definable, and

(i) dim(I" \ Wf) < dimT.

Proof. The proof is much the same as that for the condition (ay) in [L2].
(i) Since x — D(f|r) is a definable map (see [DM2]), the kernel bundle of f|r
is definable. Therefore,

Wy = {yo: yoeI',3C >0, >0, Vxe",Vy el

lx = yoll <2, lly = yoll <t = &(ker D(fIr)(y), ker D(fr)(x)
=Clx—=yl}

is definable.
(ii) To prove the second assertion there are three cases to consider.
Case 1. rank f|r = rank f|~ = 0. In this case

Wi ={y e I': (I, T") satisfies Verdier condition (w) at y}.

The assertion follows from Theorem 1.3.

Case 2. rank f|r = 0 and rank f|r = 1. Suppose the contrary: dim(I" \ Wy) <
dimT. Since (wy) is C? invariant, by Cell Decomposition, we can assume that I" is
an open subset of R* C R* x R** and f|r > 0, f|r =0. So T, ; = R, forall
yeTl. Let

A={(,s01: (y,5)eTUI",t>0, f(y,s)=t}.
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Then A is a definable set. By Definable Choice and the assumption, there exists an
open subset U of I', @ > 0, and a definable map 6: U x [0, @) —> R"~*, such that
@isC?onU x (0,a),0|r =0,and f(y,6(y,t)) =t,and, moreover, forall y € U,
we have

(D16 (y, 1)l - S(RX, Tiy.60y.1.f)
ey, ol — 16y, )i

On the other hand, by [M2, Prop. 5.2], there exist a nonempty open subset B of U
and r > 0, such that

)

— 400, whent — 0%,

(Fx*) 0(y,t) =c(y)t" + (y,t)t" ,y € B,t > 0 sufficiently small,

where ¢ is C” on B, ¢ # 0, r; > r, and ¢ is C” with lim,_ ¢+ ¢(y,t) = 0, for all
y € B. Moreover, by Lemma 1.8, we can suppose that D¢ is bounded. Substituting
(xx) to the left-hand side of (x) we get a contradiction.

Case 3. rank f|r = rank f|r = 1. If dim(I" \ Wy) = dimT, then the condition
(wy) is false for (', T'’) over a nonempty open subset B of I'. It is easy to see
that there is ¢ € R such that (wy) is false for the pair (I' N f =“1(c), T’) over a
nonempty open subset of BN f~!(c), and hence open in I'N £ ~!(c). This contradicts
Case2. 0O

2.8 Remark. If the structure admits analytic cell decomposition, then the theo-
rems hold true with “analytic” in place of “C””. Our results can be translated to the
setting of analytic-geometric categories in the sense of [DM2].
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