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BOUNDARY FUNCTIONS FOR IDEALS
IN ANALYTIC LIMIT ALGEBRAS

ALAN HOPENWASSER

1. Introduction

Boundary functions form a useful tool in the study of ideals in various classes
of nest algebras. In the simplest case, where the nest algebra is Tn, the algebra of
n x n upper triangular matrices, it is a simple matter to associate to each ideal in Tn
an appropriate boundary function. This was generalized to weakly closed ideals in
general nest subalgebras of/3(7-/) by Erdos and Power in [EP] and to Volterra nest
subalgebras of C*-algebras by Power in [P1]. Larson and Solel extended the Erdos-
Power theory to the context of nest subalgebras of factor von Neumann algebras [LS].
Both theories apply to modules over the nest algebra, not just to ideals in the nest
algebra. Davidson, Donsig and Hudson in [DDH] study support functions for norm
closed bimodules of nest algebras; their support functions come in pairs which allow
the determination of a maximal and sometimes a minimal bimodule for a given pair

Amongst algebras which are direct limit of Tn’s, the full nest algebras introduced in
[HP] have the most in common with weakly closed nest algebras. It is not surprising,
therefore, that it is possible to define boundary functions in this context. The definition
of boundary functions for ideals given in this paper is based on the possibility of
coordinitization for these algebras. In point of fact, since everything is based on the
properties of the coordinate system, the theory is valid for a wider class of operator
algebras than full nest algebras. This class will be the trivially analytic subalgebras of
simple AF C*-algebras with an injective 0-cocycle. Although the theory of boundary
functions in this paper resembles the theory in the various papers cited in the first
paragraph, one significant difference is that the boundary functions in the cited papers
are all maps from the nest of invariant subspaces to itself while the boundary functions
in this paper are maps from the spectrum of the diagonal of the algebra to itself.
We shall assume throughout this paper that B is a simple AF C*-algebra and that

A is an analytic subalgebra of B with a trivial cocycle c which is the coboundary of an
injective 0-cocycle. These analytic subalgebras are necessarily maximal triangular.
The diagonal, D A f3 A*, of A is a canonical masa in B.

Received March 31, 1997.
1991 Mathematics Subject Classification. Primary 47D25.
Much of the research for this paper was done while the author was on a sabbatical visit to the Technion

in Haifa, Israel. The author would like to thank the Technion, and his host, Baruch Solel, for assistance in
facilitating this work.

(C) 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

257



258 ALAN HOPENWASSER

AF C*-algebras are groupoid C*-algebras; it is this groupoid and substructures of
the groupoid that provide the necessary coordinitization for the existence of boundary
functions for arbitrary ideals. We describe these coordinates very briefly; consult
[MS] for a more detailed treatment. Since D is an abelian C*-algebra, there is a
compact Hausdorff topological space X such that D - C(X). In the present context,
the spectrum X will, in fact, be a Cantor space.

The groupoid for B will be a principal groupoid based on X; i.e., an equivalence
relation on X. One way to obtain this equivalence relation is as follows: write B as a
direct limit of finite dimensional C*-algebras and choose a system of matrix units for
this system. Each matrix unit in the system acts on D by conjugation and consequently
induces a partial homeomorphism of X, the spectrum of D. The groupoid, G, is the
union of the graphs of all the matrix units of the system. Since the same result is
obtained if one uses all normalizing partial isometries in B instead of a system of
matrix units, G is independent of the choice of matrix unit system.

In this context, G is an equivalence relation on X and the groupoid operations are
as follows:

(i) (w, x) and (y, z) are composible if, and only if, x y, in which case the
product is (w, z), and

(ii) the inverse of (w, x) is (x, w).

Furthermore, G is a topological groupoid. The topology is obtained by declaring that
the graph of each matrix unit will be an open set. It turns out that each such graph
is also a compact set. Note that the groupoid topology is not the relative product
topology on G as a subset of X x X.

The space, X, may be identified with the diagonal of X x X (which is an open,
compact subset of G) via the homeomorphism x ----+ (x, x). We make this identifi-
cation hereafter. Also, note that the two coordinate projections, rl and zr2 of X x X
onto X are, when restricted to G, local homeomorphisms with respect to the topology
on G. An open set on which zr and zr2 are one-to-one is known as a G-set. Since
any neighborhood of a point in G contains a smaller neighborhood which is a G-set,
we will always assume in the sequel that neighborhoods are G-sets.

The subalgebra, A, is a canonical subalgebra, and as such is generated by the
matrix units which it contains (after a matrix unit system for B has been selected).
This makes it easy to describe the support set, P, for A (a subset of G whose existence
is guaranteed by the spectral theorem for bimodules [MS]); P is the union of the
graphs of those matrix units which lie in A. This support set has been called by a
variety of terms in the literature; we shall refer to it as the spectrum of the algebra
A (based on the fact that the relationship between A and P is strongly analogous
to the relationship between D and X). Similarly, we will sometimes refer to G as
the spectrum of B and, by extension, to the triple (X, P, G) as the spectral triple for
(D, A, B). By a theorem of Power [P2], the spectrum is a complete invariant for
isometric isomorphism of triangular subalgebras of AF C*-algebras.
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The spectrum, P, satisfies several important properties in the analytic subalgebra
case. For example, P q P- X and P t.) P- G. Also, P induces a total
order on each equivalence class from G. If y is an element of X, let orby denote the
equivalence class of x; i.e., orb,. {x (x, y) 6 G}. The assumption that B is a
simple C*-algebra is equivalent to the property that each orbit, orb., is dense in X
[R,p. 112].

Examples of spectral triples of the type under discussion are provided by the
refinement algebras. Here, X will be the space of all sequences (xn), where each term
xn is an element of a set of positive integers of the form kn }. Now X is, in fact,
the Cartesian product of countably many finite sets; the topology on X is the product
topology for this Cartesian product. The equivalence relation, G, is the following:
(x, y) G if, and only if, there is an integer N such that xn Yn for all n > N.
(This is the "tails are the same" equivalence relation.) Each pair of finite sequences,
(al aN) and (b bN), determines a basic open set for the topology in G; this
set is {(x, y) 6 G xi ai and yi bi for N}. Finally, the spectrum,
P, is given as follows" (x, y) 6 P if, and only if, there is an integer, N, such that
(x XN) -< (y YN) (in the lexicographic order) andxi yi for/ > N. The
spectral triple for any refinement algebra can be represented as described above.
We mention in passing that the spectral triple for any full nest algebra has a similar

representation. The only change that is needed is to replace the "tails the same"
equivalence relation by a possibly much more complicated equivalence relation which
can be determined from a presentation for the algebra.

Just as the subalgebra, A, of B has a support set P contained in G, so does any
ideal in A or, for that matter, any A-module, M, in B. Suppose that 2" __c A is an ideal.
Then 2- is canonical and so is generated by the matrix units which it contains. Let
a be the union of the graphs of the matrix units in 2-. The open set a is the support
set of 2-. (Since 2" is a D-bimodule, the spectral theorem for bimodules may be used
to obtain the existence of or.) The same discussion applies to an A-module, M. The
support set for an ideal or an A-module satisfies the following definition"

DEFINITION. An open subset cr of P is an ideal set if (w, x), (y, z) 6 P and
(x, y) 6 o" imply that (w, z) 6 o-. If r satisfies the same condition but is merely
contained in G, then it is an A-module set.

There is a one-to-one correspondence between ideals in A and ideal sets in P and
between A-modules in B and A-module sets in G. Consequently, in the rest of this
paper, we shall discuss ideal sets (or, once, A-module sets) only.
A 1-cocycle, c, is a continuous groupoid homomorphism from G into the real

numbers, , such that c- (0) X. (Keep in mind that X is identified with the
diagonal of G.) The cocycle property asserts that c(x, z) c(x, y) + c(y, z) for all
(x, y), (y, z) 6 G. The canonical subalgebra A is analytic in B if P c- [0, cxz).
Finally, A is trivially analytic if c can be written in the form c(x, y) b(y) b(x)
for some continuous function b: X ---+ X. As stated above, all the algebras under
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consideration are analytic subalgebras of an AF C*-algebra which possess a trivial
cocycle.

For example, suppose that (X, P, G) is the spectral triple of a refinement algebra
and has the form described above. Then let

Yn Xng(x, y) ki- -k,
n=l

The l-cocycle, ?, is the coboundary of the 0-cocycle/" X defined by

(x)= y Xn--

n=l klk2 ’kn"

It is easy to see that/ is a continuous function on X and that g(x, y) =/(y) -/(x),
for all (x, y) 6 P.
We know that P induces a total order on each equivalence class; in fact, there is a

total order on X which agrees with P on equivalence classes. This is the lexicographic
order: x -< y if, and only if, x y or there is an integer N such that (x XN) -’<

(Yl YN) in the lexicographic order. [Note that if (xl XN) < (Y YN)
and M > N, then (Xl xM) -< (Yl yM).] The lexicographic order on X has
countably many gaps; let a (n) be an enumeration of the points with an immediate
successor and let b(n) be the immediate successor of a (n). These are precisely the
points where b fails to be one-to-one. However, we can define a new and injective
0-cocycle, b, which induces a 1-cocycle, c, given by c(x, y) b(y) -b(x). Ifx 6 X,
let S(x) {n a (n) -< x}. Define b: X /t by

b(x) [,(x) + 2--g
nS(x)

Since the order topology induced by

_
on X is the same as the topology which X

carries as the spectrum of D, b is continuous. If (x, y) 6 P, then S(x) S(y)
and c-1 [0, c,) -[0, cx); thus c is a cocycle for the same analytic subalgebra as
is.

This same discussion can be carried out in the case in which (X, P, G) is the
spectral triple for a full nest algebra. The only change is that the "equal tails" equiv-
alence relation is replaced by a more complicated equivalence relation. In the full
nest algebra case it is possible that (a (n), b(n)) P, for certain values of n. When
this occurs, the formula for " given above is modified so that ?(a n), bn)) > 0; conse-
quently [(bn)) > (an)) and the corresponding term may be omitted in the formula
for b.

The point of this discussion is that for the class of algebras of primary interest, the
full nest algebras, there exists an injective 0-cocycle, b, on X whose coboundary, c,
renders the algebra trivially analytic. Whenever a trivially analytic algebra is induced
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from an injective 0-cocycle, it is possible to define boundary functions for ideals (or
A-modules). Henceforth, we assume the existence of such an injective 0-cocycle.

The 0-cocycle, b, then induces a total order on X" x y if, and only ifb(x) < b(y).
The two principal properties of this order are that it agrees on each equivalence class
with the total order induced by P and that the order topology induced by agrees
with the original topology on X. This total order on X is the feature which makes it
possible to define, for each ideal set, a boundary function 4. A simple list ofproperties
characterizes those functions from X to itself which arise as boundary functions and
there are natural partitions on the family of ideal sets and on the family of boundary
functions so that the quotients are in bijective correspondence. (The mapping from
ideal sets to boundary functions is surjective, but not injective.)

Before proceeding to the definition of boundary functions, we recapitulate the
properties of the spectral triple which are critical to the notion of a boundary function.
Keep in mind that G has a principal groupoid structure and that X is identified with
the diagonal in G, i.e. with the units of the groupoid.

1. G is a topological equivalence relation based on the compact Hausdorff space
X.

2. P is an open subset of G which satisfies the properties: P o P

_
P, P N P-l

X, and P tO P -1 G.
3. The two projection maps, 7rl and 7r2 of X X onto X are, when restricted to G,

local homeomorphisms with respect to the topology on G. In particular, they
are continuous and open mappings.

4. Each equivalence class, orby, from G is countable and dense in X.
5. There is a total order

_
on X which, on each equivalence class, orby, agrees

with the order induced by P. Furthermore, the order topology on X is the same
as the original topology on X.

6. Since X is compact, it has a minimal element and a maximal element with
respect to the order 5. Denote these elements by Pmin and Pmax.

This list of properties will suffice for the definition and properties of boundary func-
tions. While there are spectral triples which satisfy these properties which do not
come from trivially analytic subalgebras of AF C*-algebras with injective 0-cocycle,
the one’s that the author knows of are associated with algebras which lack tractable
properties and which do not appear to be of any interest. If one adds one further
property--the assumption that X has at most countably many gaps--then it is possi-
ble to prove the existence of a trivial 1-cocycle for G with injective 0-cocycle.

2. Boundary functions

With the preliminaries out of the way, we now turn attention to the definition and
properties of boundary functions. Assume that cr is an ideal set contained in P. Let
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y X. Divide orby into two disjoint subsets as follows:

A {x orby (x,y) a},
B {x 6 orbs, (x, y) a }.

It follows from the definition of ideal set that A is an initial segment of orby and B is a
terminal segment of orby (in the order induced by P). Now view A and B as subsets
of X and let v sup A and w inf B, where sup and inf are interpreted with respect
to the total order on X (which agrees with P on orby). The existence of the sup and
inf is guaranteed by the fact that X is compact in the order topology. Observe that
the open order interval with endpoints v and to is empty. Indeed, if this open interval
were not empty, then it would have to contain points of orbs, (all equivalence classes
are dense in X) and this would contradict the obvious fact that X is the union of A
and B. This leaves two possibilities: either v to or v is the immediate predecessor
of to in the order, +/-, on X.

In general, when x -< y in X and the open order interval with endpoints x and y is
empty, we will say that x has a gap above and that y has a gap below. We will also
write x pred y and y succ x.

DEFINITION. Let a be an ideal set in P. The boundary function for a is the
function 4: X X is given by the formula 4 (Y) sup{x 6 orb., (x, y) 6 a }.

Note that 4, (Y) satisfies the following:

(i) if (w, y) 6 P and w -< q, (y), then (w, y) 6 a, and
(ii) if 4(Y) -< w then (w, y) a.

It is not possible to say anything about (4, (y), y) itself; (q, (y), y) may or may not
be an element of P and, if it is an element of P, it may or may not be an element of a.

PROPOSITION 1. If el) 4) is the boundary function for an ideal a, then has
thefollowing properties.

1. (y) -< y,for all y X.
2. When dp(y) has a gap below, thefollowing hold:

a. (4)(Y), Y) P.

b. y has a gap below.

c y -< z ==* c y -< c z

d. There is a neighborhood N (a G-set) of (c(y), y) such that (s, t)
N = s -< c(t).
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3. Ify -< Z then qb (y) dp (z), for all y, z X.
4. lf y does not have a gap below, then q(y) sup{4(t) -< y}.

DEFINITION. A function " X -- X which satisfies properties 1) through 4) in
Proposition will be called a boundaryfunction.

Remark. If cr is an A-module set rather than an ideal set, a boundary function for
cr may be defined in precisely the same way as for ideal sets. Boundary functions for
A-module sets satisfy the properties in Proposition with two exceptions: condition
1) must be dropped and condition 2a) must be changed to (4 (Y), Y) 6 G. With these
two changes, the general notion of a boundary function can again be defined and
the theory described below remains valid, provided some obvious trivial changes are
made. In the (slightly) modified theory, the sets associated with boundary functions
are, of course, A-module sets rather than ideal sets. From here on, the exposition will
be limited to ideal sets.

ProofofProposition 1. Property 1) follows immediately from the fact that x y
for all (x, y)

Assume that (y) has a gap below. We must have (q (y), y) or, for the other
possibility violates the definition of q. In particular, (q (y), y) P and 2a) is
verified.

Since (b (y), y) or, there is a neighborhood N of (q (y), y) which is contained
in cr and is a G-set. We may also assume that zr(N) is contained in the order
interval [(y), Pmax] (This order interval is open, since q,(y) has a gap below;
simply intersect the original neighborhood with [ (y), Pmax] x X.) Now suppose
that y does not have a gap below. Since zr2 is an open map, zr2(N) contains an
open order inteval whose upper endpoint is y. This implies that there is a point
(a, b) N such that a, b orby and b -< y. (This uses, once again, the fact that
orbv is dense in X.) By the assumptions on N, we also have q(y) -< a. The
open order interval with endpoints q (y) and a is non-empty (since q (y) does not
have a gap above) and therefore contains a point z from orby. Now observe that
(z, y) (z, a)o (a, b)o (b, y) with (z, a) and (b, y) in P and (a, b) in tr. Thus
(z, y) or. But q(y) -< z, contradicting the definition of . This proves that y
must have a gap below and condition 2b) is verified.

In order to verify condition 2c), assume that y -< z. Since both q (y) and y have
gaps below and (q (y), y) or, there is a neighborhood N (a G-set) of (q(y), y)
which is contained in [ (y), Pmax] [Y, Pmax]. In particular, we can find a point
(a,b) N such thata, b orbz andq(y) -< a andy -< b -< z. (The pos-
sibility (y) a is eliminated by the assumption that N is a G-set.) Thus we
have (a,z) (a,b) (b,z) with (a,b) cr and (b,z) P. This shows that
(a, z) cr and hence that a +/- q (z). Since q (y) -< a, we have q (y) -< q (z), as
desired.
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Property 2d) follows from property 2a): since (4,(Y), Y) 6 a, there is a neigh-
borhood N of (qc (y), y) which is contained in a. If (s, t) N, then (s, t) a and
hence s -< (t).

Assume that property 3) does not hold; i.e., assume that there are points y, z 6 X
such that y -< z and q (z) -< 4(Y). By property 2c), 4(Y) does not have a gap
below. Choose an element a orby such that q, (z) -< a -< q (y). By. the definition
of, (a, y) a. So, there is a neighborhood N of (a, y) such that N C a and such
that (s, t) N implies (z) -< s -< q (y) and -< z. Choose an element (s, t) N
with s, orbz. We then have (s, z) (s, t) o (t, z) with (s, t) a and (t, z) P;
hence (s, z) a. But now we have both , (z) -< s and s -< q, (z), a contradition.
So 3) holds.

Assume that y has no gap below (and hence that q (y) also has no gap below).
Property 3) shows that -< y === q(t) +/- q(y); thus sup[b(t) -< y}

_
q(y).

In order to prove equality, we need to assume that w -< 4 (Y) and show that there
is 6 X such that -< y and w -< q(t). Since q (y) has no gap below, there is
x 6 orby such that w -< x -< q (y). By the definition of q, (x, y) a. Let N be
a neighborhood of (x, y) which is contained in a. Since y has no gap below, there
is a point .(s, t) N such thatt -< yandw -< s. Since(s,t) 6 a, wehavealso
s -< ,(t); thus w -< q(t) and 4) is verified. V]

The mapping cr --+ 4 from ideal sets to boundary functions is surjective (as we
shall see later) but is not injective. To find a simple example of two ideals with the
same boundary function, assume that (a, b) P, that a :/: b and that a does not have
a gap below. Define

ra, b {(X, y) 6 P either x -< a or b -< y},

75a,b O’a, b I,.J (a, b) }.

We need to make one other assumption: that ra,b is an open subset of P. In the case
of refinement algebras, this assumption holds for all points (a, b) 6 P. For general
full nest algebrs, there may be points in P for which it fails. If ra,b is open then it is
an ideal set; aa,b is always an ideal set.

Define a function p: X X as follows:

y, ifya,
p(y)= a, ifa-<yb,

y, ifb -< y.

It is a simple matter to check that p is the boundary function for both ideals, aa,b and
a,b.

Next, we consider how to associate ideals to boundary functions. So, assume that
q: X X satisfies the four conditions in the definition of a boundary function.
We define three subsets of P as follows:

a(q) {(x, y) P Ix -< b(y)},
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r/(q) [(x, y) P Ix 4(y)},

a[q] {(x, y) P there is a neighborhood N of (x, y) with N

_
r/(40}.

PROPOSITION 2. The set cr (dp) is an ideal set in P.

Proof First, we show that a(q) is open. Let (x, y) a(q). We must find a
neighborhood, N, of (x, y) such that N c__ a(q).

First, assume that y has a gap below. The two order intervals [Pmin, b(y)) and
[Y, Pmax] are open subsets of X and (x, y) [Pmin, b(y)) [y, Pmax]. Consequently,
there is a neighborhood, N, of (x, y) such that Zrl (N)

___
[Pmin, b(y)) and zr2(N)

_
[Y, Pmax]. If (w, z) N, we have w -< q(y) and y z. By property 3), 4(Y) q(z).
Thus, w -< 4(z) and (w, z) a(4). This shows that N

_
Now we consider the case when y has no gap below. Property 2b) implies that

4(Y) has no gap below. Consequently, there is s X such that x -< s -< q(y). By
property 4), there is -< y such that s -< q(t). Now, the order intervals, [Pmin, S) and
(t, Pmax] are open in X and (x, y) [Pmin, S) (t, Pmax]. Consequently, there is a
neighborhood, N, of (x, y) such that rrl (N) c_ [Pmin, S) and rr2(N) c_ (t, Pmax]. Let
(w, z) N. Then to -< s and -< z. By property 3), 4(t)

___
4(z). But to -< s -< 4(t),

so to -< 4(z). Thus (w, z) s a(q) and N C a(40. This shows that a(4) is an open
subset of P.

It remains to show that cr(q) satisfies the ideal property. Assume (a, x) P,
(x, y) cr (4), and (y, b) P. Property 3) implies that q(y) -< 4(b). Thus, we have
a

_
x -< b(y) -< q(b); hence (a, b) a(4)) and cr (4)) is an ideal set.

PROPOSITION 3. The set r[b] is an ideal set in P.

Proof. Let (x, y) 6 cr[q]. Then there is a neighborhood, N, of (x, y) such tht
N

__
r/(4). Clearly, any point in N is in cr[4]; thus N C a[] and r[4] is an open

subset of P.
To see that r[4] satisfies the ideal property, let (a, x) P, (x, y) 6 a[4], and

(y, b) 6 P. All neighborhoods in the following argument are to be open G-sets which
are subsets of P. Let N2 be a neighborhood of (x, y) such that N2 C r/(4). Let N1 be
a neighborhood of (a, x) and N3, a neighborhood of (y, b). Let N NI o N2 o N3.
Then N is a neighborhood of (a, b). If (s, t) 6 N, then there exist s’, t’ 6 X such
that (s, s’) 6 N, (s’, t’) 6 N2, and (t’, t) 6 N3. Then, using N1
N3 c_ P, and property 3) applied to t’ __5 t, we have s -< s’ __5 4(t’)

___
4(t). Thus

(s, t) 6 r/(4); since (s, t) is arbitrary in N, N c_ r/(q). This proves that (a, b) 6 a[4],
so a[q] satisfies the ideal property.

We shall see shortly that the boundary function for the ideal a[4] is q, thus
verifying that the mapping from ideals to boundary functions is surjective. The ideal
a(4) need not have q as its boundary function. An examination of some examples
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indicates that the boundary function for a (4) is closely related to 4 and suggests the
following definition.

DEFINITION.
formula

Let 4 be a boundary function. Define another function 4- by the

4- (Y) pred 4) (Y),
if 4(y) has no gap below,
if q (y) has a gap below.

Remark. When q is a boundary function, so is q-. Property 1) is obvious, since

4- (Y) 4(Y), for all y. There is nothing to prove for property 2), since 4- (Y) never
has a gap below. For property 3), assume that y -< z. If 4(z) does not have a gap
below, then q-(y) -< 4(Y) "< 4(z) 4-(z). If 4(z) does have a gap below and
q(y) -< 4(z), then 4-(y) -< 4(Y)

_
4-(z). Finally, if 4(z) has a gap below and

4(y) 4(z), then clearly q-(y) 4-(z).
This leaves 4) to be verified. When y has no gap below, neither does 4(Y), by

property 2b). We then have

4-(Y) 4(Y)= sup{q(t) -< y}

sup{4(t) -< y and 4(t) has no gap below}

sup{q-(t) -< y}.

Since 4- (Y) never has a gap below, we have (4-)- 4-; thus there is never any
need to iterate the "minus" operation.

PROPOSITION 4. Let dp be a boundaryfunction. Let a be any ideal set such that
a() C_ a C_ a[q]. Then the boundaryfunction q/ for a satisfies c-

Proof. Let y 6 X. First, we show that p(y) 5 q(y). We distinguish two cases.
First, assume that (y) has a gap below. Then, by property 2a), ((y), y) 6 a.
Since a

_
a[4], we have (p(y), y) 6 a[4] and hence p(y)

_
4(Y).

Now assume that (y) has no gap below. Suppose that 4(y) -< (y). Since
orbits are dense, there is 6 orb., such that 4(Y) -< -< p(y). From the definition
of boundary functions for an ideal, we have (t, y) 6 a

_
a[4]. But this implies that

4(Y), a contradiction. Thus p(y) +/- 4(Y) in this case also.
Next we prove that 4-(y) 5 p(y). Assume, to the contrary, that p(y) -< 4-(Y).

Since orbits are dense and 4-(Y) has no gap below, there is 6 orby such that
p(y) -< -< q-(y). In particular, -< 4)(Y), so (t, y) a(q). But a(4) C a, so
(t, y) 6 a. The combination p(y) -< and (t, y) 6 cr contradicts the fact that is
the boundary function for a. Thus b-(y) -< p(y). 12]

PROPOSITION 5. Assume that a is an ideal set and that c is the boundaryfunction
for a. Then a(c) c_ a c_ a[b].
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Proof Let (x, y) 6 o.(q). Then (x, y) 6 P and x -< q(y). From the definition
of boundary function, (x, y) 6 o.. Thus o.(4’)

_
o..

Now suppose that (x, y) 6 o.. The definition of boundary function precludes the
possibility that q(y) -< x; thus x

___
4(Y). This shows that o.

___
r/(4). Since o. is

open, there is a neighborhood, N, of (x, y) such that N

___
o.. In particular, N

and so (x, y) o.[q]. Thus o. c_ o.[q].

The next proposition shows that the mapping from ideals to the class of boundary
functions is surjective.

PROPOSITION 6. Let be a boundaryfunction. Then the boundaryfunction for
the ideal o.[b] is and the boundaryfunctionfor the ideal o.(qb) is

Proof Let p denote the boundary function for the ideal o.[4]. Proposition 4
implies that q- Z p q. If 4(y) has no gap below, (y) 4(y), so we need only
consider the case in which 4(y) has a gap below. Property 2d) in the definition of
boundary functions implies that (4(Y), Y) 6 o.[4]. Since p is the boundary function
for o.[4], we have q(y)

___
p(y). Thus (y) 4(Y). This shows that the boundary

function for o. [] is q.
Now, let p denote the boundary function for o.(q). Again, we have that q-

_
p q. Since q-(y) b(y) when b(y) has no gap below, we need only show that
p(y) q-(y) whenever q(y) has a gap below. We know from the properties of
boundary functions that (b (y), y) P. From the definition ofo. (q) we also know that
((y), y) o.(q). It now follows that (y) predq(y), i.e. that p(y) q-(y).
This shows that the boundary function of a (q) is q-. 12]

While the mapping from ideal sets to boundary functions is not injective, it is
possible to say something about the family of ideals whose boundary function is a
particular function 4. Of course, all of these ideals must lie between o. (4) and o.[4].
The next result says that o. will have 4 for its boundary function provided that o.
contains an appropriate subset of the graph of q.

Let B denote the portion of the graph of 4 which is contained in o.[4]; i.e.,

BO {(4(Y), Y) IY X} n o.[4].

Let

Le {(q(y), y) 6 B q(Y) has a gap below}.

We then have:

PROPOSITION 7. Let c be a boundaryfunction. An ideal set o. will have qb for its
boundaryfunction if, and only if, o.(dp) t3 L4 c_ o. c_ o’[4)].
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Proof. If is the boundary function for r, then the inclusion L
_
r follows

immediately from the way in which boundary functions are associated with ideal sets.
(This was pointed out in the proof of part 2a) in Proposition 1.) For the converse,
assume that cr(4) U L

___
o"

_
cr[4]. Then we know that 4- +/- 4, 4. We need

only check those points y for which -(y) - 4(y). For such y, (4(Y), Y) L;
hence (q(y), y) o’. Therefore, q(y) 4(Y) and 4 as desired.

Remark. Note that the set cr(q) t_J L need not be open in P. In particular,
cr () UL will not, in general, be an ideal set. As a consequence, there need not exist
a minimal ideal set which has 4 as its boundary function. It is not difficult to produce
specific examples of this phenomenon.

We obtained - from basically by replacing (y) by its immediate predecessor
whenever q(y) has a gap below. This suggests defining a function+ in an analogous
way, replacing (y) by its immediate successor whenever (y) has a gap above. This
turns out to be too simplistic, however; doing so will not produce a boundary function.
For example, if 4(Y) has a gap above and y does not have a gap below, then any
function for which 7t(y) succ (y) would fail property 2b) from the definition
of boundary function. Similar obstacles are presented by properties 2a) and 2d). The
following definition tells just where we should redefine 4 (Y) to obtain +.

DEFINITION.
hold:

Let y 6 X. Say that y is apoint ofmodification for 4) if the following

(i) y has a gap below;
(ii) 4(y) has a gap above;
(iii) there is a neighborhood, N, (a G-set)of (succ q(y), y) such that N c_ P and,

for all (s, t) N, s +/- (t) when 4(t) has no gap above and s % succ 4(t)
when (t) does have a gap above.

Remark. If y is a point of modification for , then the neighborhood N in condi-
tion (iii) may be selected so that it satisfies the additional property that if (s, t) 6 N
then succ q(y) s and y -< t. To do so, simply intersect a neighborhood satisfying
condition (iii) with [succ 4(Y), Pmax] [Y, Pmax].

We now define a boundary function+ which is larger than and is closely related
to .

DEFINITION. If is a boundary function, define a function +" X X by

succ q (y),+(y)
(y),

if y is a point of modification for ,
otherwise.
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LEMMA 8. Let qb be a boundaryfunction. Suppose that 49 (y) -< dp+ (y) and y -< z.
Then ck+ (y) -< ok(z).

Proof. Choose a neighborhood, N, of (q+ (y), y) which satisfies both the condi-
tions in the definition of point of modification and the remark immediately following
the definition. Since y does not have a gap above (it has a gap below), there is
6 X such that 6 7r2(N), y -< -< z, and has no gap below. Let s be such that

(s, t) 6 N. Since is not a point of modification, we have 4+ (y)

_
s 4(t). But

(q+ (y), y) 6 N, y :fi t, and N is a G-set; so 4+ (y) -< b(t). Now -< z implies that
q(t) __% 4(z); hence, 4+(y) -< q(z). I-1

Proposition 9. Ifqb is a boundaryfunction then so is c+.

Proof We must show that if q satisfies the 4 properties in the definition of
boundary function (see Proposition 1), then so does q+.

Property 1) is automatic, except at points of modification. If y is a point of
modification, then y has a gap below and q(y) has a gap above. In particular,
4(Y) - Y; so 4(Y) -< Y. Since 4+(y) succ 4(y), we have q+(y) 5 y.

To verify 2), assume that 4+ (y) has a gap below. If y is not a point of modification
for 4, then the four conditions in property 2) hold trivially for 4+. So assume that
y is a point of modification. The first condition, (4+ (y), y) 6 P, follows from
condition (iii) in the definition of point of modification. Condition 2b), that y has a
gap below, is immediate. If y -< z then, by Lemma 8, 4+(y) -< 4(z) -< q+(z); so
condition 2c) holds. Condition 2d), like condition 2a), follows from property iii) in
the definition of point of modification.

For the verification of property 3), when y is not a point of modification, then
4+(y) q(y) -< 4(z) 5 4+(z). If y is a point of modification, Lemma 8 implies
condition 3).

Condition 4) is vacuous at points of modification and trivial elsewhere, since -< y
implies q(t)

LEMMA 10. Let qb be a boundaryfunction. Then (dp+) q- and (c-)+ +.
Proof. If 4+(y) q(y), then (q+)-(y) q-(y) is automatic. Otherwise,

4+(y) is the immediate successor of 4(Y), in which case both (q+)- (y) and 4-(Y)
are equal to 4 (Y).
We certainly have (4-)+(y) 4+(y) when 4)-(Y) 4(Y), so assume that

4-(Y) is unequal to 4(Y) and hence is the immediate predecessor of q(y). Since

4+ (y) b (y), we only need to show that y is a point of modification for 4-. We have
that q-(y) has a gap above by assumption and that y has a gap below by property
2b) for the boundary function 4. The third condition in the definition of point of
modification applied to 4)- follows from the fact that 4 satisfies condition 2d) in the
definition of boundary function. D
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PROPOSITION 1.
equivalent:

Let and be two boundaryfunctions. The thefollowing are

A. b- -,
B. p+ +,
c.--<<__+.

Proof The equivalence of conditions A and B follows directly from Lemma 10.
If A and B hold, then b- p- <__ 7t __% + qb+, so condition C holds. Now,
assume that C is valid. For each y 6 X, either b-(y) b+(y) or b-(y) is the
immediate predecessor of p+ (y). Consequently, either (y) -(y) or p(y) is the
immediate successor of -(y). In either case, 7t-(y) 4-(Y). Thus A holds, r"l

Let/3 denote the family of all boundary functions on X. Define an equivalence
relation on/3 as follows: p if, and only if, b- p-. Proposition 11 implies
that the equivalence classes have the following form: [b] { - < -< b+ }.

Let S denote the family of all ideal sets in P. Define an equivalence relation on
$- cr r if, and only if - b-. Equivalence classes can be identified easily:
[or] {r r(P-)

_
r r[4+]}.

While the mapping S /3 given by cr --+ b, is not surjective, it does induce
a natural bijection of S/. onto/3/; viz. [r] ---+ [b,].

3. Examples

Just prior to Proposition 2 we gave an example oftwo ideal sets (er,,,, and r,,,b) which
have the same boundary function. We add here a few more very simple examples
which illustrate the properties of boundary functions.

The boundary function for the trivial ideal set, 0, (which corresponds to the trivial
ideal 2" (0)) is the function b (y) Pmin, for all y X. The boundary function for
the ideal set cr P, (which corresponds to the improper ideal 2 A) is the identity
function on X.

Let a 6 X and let er P \ (a, a) }. Then o- is an ideal set which corresponds to a
maximal ideal in A. If a has an immediate predecessor, then the boundary function
p for r is given by

]preda, if y a,
b(y) / y, otherwise.

If a has no immediate predecessor, then the boundary function for cr is the identity
function. Thus, when a has no gap below, P and P \ (a, a) are another pair of ideal
sets with the same boundary function.

The final example is a variation on the example preceeding Proposition 2. For this
example we must assume that A is a refinement algebra and that (a, b) is a point in
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P such that a (and hence b) does not have a gap below. Let

r {(x, y) Cra,b IX =/: Y}
r’ {(x, y) ra,b x :/: y}

Then or’ and r’ have the same boundary function, p, given by

y,
p (y) pred y,

a,

if y has no gap below and either y -< a or b --< y,
if y has a gap below and y -< a or b -< y,
f a -< y -< b.

Observe that p- p in this case. In fact, we have cr[cp] cr (p) tO {(a, b)}.

4. Meet and join irreducible boundary functions

In [DHHLS] the meet irreducible ideal sets are explicitly described for algebras
with spectral triple (X, P, G) for which there is a total order on X compatible with
P. The description runs as follows: for each pair of points a, b 6 X, let

O’a, b {(X, y) P Ix -< a or b -< y}

"ga,b a,b tO {(a, b)}.

While Cra.b is always an ideal set in P, in order for ra., to be an ideal set we must
assume that (a, b) 6 P and that ra,, is an open subset of P. Whenever we use
we will assume that these two conditions are satisfied. A complete list of all the meet
irreducible ideal sets in P is then given as follows:

1. cr,,,a if (a, b) 6 P.
2. Cra.b if (a, b) P and there is either no gap above for a or no gap below for b.
3. ra,, if (a, b) 6 P, there is either no gap above for a or no gap below for b, and

ra,a is open.

Later, we will give a description of all the join irreducible ideal sets. We shall also
see that the boundary function for an ideal set is meet irreducible or join irreducible
(in an appropriate sense) whenever the ideal set is meet or join irreducible.

in order to talk about meet and join irreducibility for boundary functions, we need
appropriate lattice operations. The choices are the obvious ones: p/p max(cp, )
and p/ p min(cp, p), both computed pointwise. We then have:

LEMMA 11. If4) and are boundaryfunctions, then so are 4) v p and 4)/x .
Proof. The verification that 4 x/ satisfies the conditions which define boundary

function (given in Proposition is completely routine. For 4/x, the only conditions
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whose verification has some content are conditions 2c), 2d) and 4). We give arguments
for these only. For convenience, let v denote 4/x and let y X. Without loss of
generality, we may assume that v(y) ok(y).

To verify condition 2c), we assume that v(y) has a gap below and that z is a
point in X which satisfies y -< z. Since 4 is a boundary function we know that
4)(Y) -< q(z); i.e., v(y) -< ok(z). From the assumption in the last sentence of
the preceeding paragraph, we also have 4)(Y)

___
P(Y). If, in fact, 4(Y) (Y),

then condition 2c) applied to gt yields v(y) gr(y) -< gt(z). Thus, in this case,
v(y) -< v(z). So assume that 4(Y) -< P(Y). Use property 3) for p to see that
v(y) 4(y) -< (y) gr(z). Thus, we have both v(y) -< ok(z) and v(y) -< P(z),
whence v(y) -< v(z).
We continue the assumption that v(y) has a gap below for the verification of

condition 2d). Let N1 be a neighborhood of (4)(Y), Y) such that (s, t) 6 N1 impies
s 5 (t). As before, we have 4(Y) < gr(y). Assume first that 4(Y) (Y).
Then there is a neighborhood N2 of 0P(Y), Y) (4(Y), Y) such that (s, t) 6 N2
implies s __5 gr(t). Let N N1 N N2. Then N is a neighborhood of (v(y), y)
(q(y), y) (p(y), y) such that (s, t) 6 N implies both s -< 4(t) and s gt(t); i.e.
(s, t) N implies s -< v(t). Now assume that 4(Y) -< (Y). With N1 as above, let
N N1 N ([4(Y), P(Y)) x [y, Pmax]). Then N is also a neighborhood of (q(y), y).
If (s, t) 6 N, then s -< p(y) and y 5_% t. By property 3) for p, we have p(y) p(t);
thus s

___
gr(t). Since N

_
N1, we also have s

___
4(t). This shows that s v(t) and

completes the verification of 2d).
We now turn to the verification of condition 4) for v and assume that y does not

have a gap below. For any -< y, (t) 5_% 4(Y). Hence v(t) -< (y) v(y) and we
havesup{v(y) -< y} +/- v(y). Letx -< v(y) 4(Y). Since4 satisfies condition4),
there is tl such that tl -< y and x -< 4(tl). But x -< gr(y)also (since q(y) -< (y))
and satisfies condition 4); therefore there is t2 such that t2 -< y and x -< (t2). Let
t3 max(tl, t2). Clearly t3 -< y. Also, x -< 4(tl) b(t3) and x -< P(t2)

___
(t3).

Thus x -< v(t3) and sup{v(t) It -< y} v(y). [21

As to be expected, the lattice operations on boundary functions are related to the
lattice operations (set union and intersection) on ideal sets. Recall that the boundary
function of an ideal set, a, is given by 4 sup{x 6 orby (x, y) o" }.

LEMMA 12. Let r and r be ideal sets with boundaryfunctions and r. Then
the boundaryfunctionsfor the ideal sets r f-) r and r U r are given by

Proof. For each y 6 X and for each ideal set r, {x 6 orby (x, y) 6 or} is an
initial segment of orbv. Therefore, for a fixed y, the initial segments for cr and for r
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are related by inclusion. Assume, without loss of generality, that

{x orby (x, y) o’}

___
{x orby (x, y) r};

in other words, assume that q, (y)

___
q (y). We then have

{X C orby (x, y) a} [x orby (x, y) o" N r}
[X C orby (x, y) r} {x orby (x, y) a U r}.

From this we conclude that (y) qSon (y) and q (y) ou (Y). But since
qo (y) q (y), we have

(q A q)(y) qn(Y)

(4 v 4)(y) 4u(Y).

In view of Lemma 12, it is natural to expect that the boundary functions for meet
andjoin irreducible ideal sets are themselves meet orjoin irreducible (as appropriate)
with respect to the lattice operations on boundary functions. First, we consider the
meet operation, for which the following function will be relevent. For all a, b X
with a -< b, define a function )a,b: X X by

y, ify -<a,
a,b(Y) a, ifa y b,

y, ifb -< y.

Provided that a has no gap below, )a,b is a boundary function. (When a does have
a gap below, a,b is not a boundary function, by property 2b.) It is straightforward
to check that whenever 4a,b is a boundary function, it is a meet irreducible boundary
function.

The ideal set aa,b is a meet irreducible ideal set except when (a, b) P, a has a
gap above, and b has a gap below. First, assume that aa,b is meet irreducible. If a has
no gap below, then the boundary function for aa,b is qba,b. If a does have a gap below,
and if pa pred a, then the boundary function for aa,b is tpa,b. In this case, aa,b
and apa,b (which may fail to be a meet irreducible ideal set) have the same boundary
function. In any event, when aa,b is meet irreducible, so is its boundary function.

If aa,b is not meet irreducible, i.e., if (a, b) P, a has a gap above and b has a
gap below, then a,b (which is meet irreducible) is the boundary function for aa,b.
But a,b is also the boundary function of the meet irreducible ideal set a,,a,b, where
sa succ a.

Thus, whenever a,b is a boundary function (i.e., whenever a has no gap below),
a,b is meet irreducible and the boundary function of a meet irreducible ideal set.

Next, we consider meet irreducible ideals of the form ra,b and their boundary
functions. If a has no gap below, the boundary function for ra,b is qba,b. (In this case,
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)a,b is the boundary function of two distinct meet irreducible ideal sets.) If a has a
gap below, then the boundary function for ra,b is the function l[pa,a,b defined by

y, ify -< a,
pa, ifa 5y-<b,

pa,a,b(Y) a, if y b,
y, ifb -< y.

It is straightforward to check that l[pa,a,b is meet irreducible.
Note in passing that if a function of the form lfirpa,a,b is a boundary function, then

property 2a) implies that (a, b) 6 P. In this case it is also true that b must have a gap
below. (This is required by property 2b) for boundary functions; it is also necessary
in order that ra,b be an open set.)

In the case in which ra,b is not meet irreducible, i.e., when (a, b) 6 P, a has a gap
above, and b has a gap below, the boundary function for ra,b is Ca,b. This function
is, of course, meet irreducible and is also the boundary function of a meet irreducible
ideal set.

In the discussion above, we have assumed that a -< b. When a b, the ideal set
(a,a is a maximal ideal set and hence is meet irreducible. If a has no gap below, the
boundary function for Cra,a is the identity function, which is trivially a meet irreducible
boundary function. If a has a gap gelow, the boundary function for Cra,a is Ca,sa, a
meet irreducible boundary function.

PROPOSITION 13. Let a, b P with a -< b. If a has no gap below, the function
qa,b defined above is meet irreducible. If a has a gap below, the function [tpa,a,b
defined above is meet irreducible. Thesefunctions, together with the identityfunction,
are the only meet irreducible boundaryfunctions. Every meet irreducible boundary
function is the boundaryfunction ofa meet irreducible ideal set. Furthermore, ifan
ideal set is meet irreducible, then its boundaryfunction is meet irreducible.

Proof We need to show that the boundary functions listed above are the only
meet irreducible boundary functions. All the remaining assertions are either straight-
forward or have been dealt with in the discussion preceding the statement of the
Proposition.

It is evident from the nature of the meet irreducible boundary functions, that for a
given boundary function q, we need to focus on the points q(y) for which q(y) -< y.
Accordingly, define two sets:

EDo {Y q(Y) -< Y} and RDO {b(y) y 6 EDo}.

It is possible that RDo 13. This happens when q is the identity function. If RDo
is a singleton, say RDo {a}, then 4 has the form qa,,, for some b 6 X. This is
evident from the general fact that when a RDO, 4- (a) is an order interval from X.
If RDO consists of two points which are the endpoints of a gap, i.e., if RDO {a, b}
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where a is the immediate predecessor of b, then 4 has the form l[tpa,a,b. In all of these
cases, 4 is a meet irreducible boundary function.

For any other boundary function, 4, there will be two distinct points in RDo with
a third point from X between the two. We must show that in this case, 4 is not meet
irreducible. So assume that a -< b -< c in X and that a, c 6 RD0.

Define an auxiliary function r/by

y, if y_ b,
O(Y)= b, ifb-<y

and let Pl q v 0.
It is evident that q 1/tl; furthermore, q # l. Indeed, since a RD4, there is

z such that a q(z) -< z. Since a -< b, we have q(z) -< b. Now r/(z) is either b or
z. In either case, 4(z) -< r/(z). This means that 1/r (Z) ’/(Z) t(Z).
Now let sup{y 6 X q(Y) "< b}. By properties 3) and 4) for boundary

functions, q(t) -< b. Define a boundary function 2 by

)= [q(y), ify t,
2(Y

/ y, if -< y.

It is easy to see that 2 is a boundary function and that q 5 P2. Furthermore,
4 - P2: there is s 6 X such that c 4(s) -< s. Since b -< c q(s), we have
s {y q(Y) 5 b}. Since q(t) 5 b -< c, we have -< s. Therefore, aP2(s) s; in
particular, 2(s) # 4(s).

To prove that 4 is not meet irreducible we need only show that 4 Pl / P2.
Clearly, q 5 l /x2. Lety 6 X. Ift -< y, thenb -< 4(Y); hence p (y)
max{4(y), r/(y)} 4(Y) (since r/(y) -< b). Thus, 4(Y) (l / P2)(Y). On the
other hand, if y -< t, then q(y) 2(Y) and 4(y)

___
l (Y), so 4(y) (1A 2)(Y).

Thus q Pl/ aP2. IZ!

Next, we turn to a description of the join irreducible boundary functions. Whether
or not a boundary function is join irreducible depends only on the range of the
boundary function. For any boundary function 4, let ran 4 {4(Y) Y 6 X}. Note
that, since 4 (Pmin) Pmin, we always have Pmin G ran 4.

PROPOSITION 14. A boundary function dp is join irreducible if, and only if, the
cardinality ofran q is at most 2.

Proof. If ran 4 contains one element only (necessarily Pmin), then 4(Y) Pmin
for all y 6 X. Thus is the minimal boundary function and so is trivially join
irreducible.

Assume that the cardinality of ran 4 is 2. Then ran 4 {Pmin, a }, where Pmin -< a.
Observe that 4- (Pmin) and 4- (a) are intervals in X which satisfy the property that
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if Yl E q-l (Pmin) and Y2 E t-1 (y), then y -< Y2. Furthermore, the union of these
two intervals is all of X. Consequently, there is an element 6 X such that

y -< =: q(y) Pmin,

-< y === qS(y) =a.

If does not have a gap below, then it follows from property 4) of boundary functions
that q(t) Pmin. If does have a gap below, then either alternative, 4,(t) Pmin or
4(t) a is possible. Note also that a -< t, since 4(Y) +/- Y, for all y.
Now suppose that 4 Pl v P2, where both aPl and aP2 are boundary function. It

is evident that on the interval q- (Pmin) we have p 2 b.
First consider the case in which 4(t) a. Then either (t) a or aP2(t) a.

Assume, without loss of generality, that Ol (t) a. Then, for any y with -< y, we
have a p (t) +/- aPl (y) 5 a. This shows that (y) a on 4- (a), and thus that

7.
This leaves the case in which 4,(t) Pmin. Suppose that both 4 1 and

4’ aP2. Then there exist elements tl and t2 such that P(tl) -< a, aP2(t2) -< a,
-< t, and -< t2. Let t3 min(t, t2). Then -< t3, 1 (t3)

___
a/.tl (t) -< a, and

2(t3) :2(t2) -< a. Thus, ( v 2)(t3) -< a while q(t3) a, contradicting the
assumption that 4 1 v .
We have shown that 4 is join irreducible whenever the cardinality of ran b is at

most 2. We now assume that the cardinality of ran 4 is greater than 2 and show that

4 is not join irreducible.
Assume that Pmin -< a -< b and that a, b ran q. We first consider the case in

which there is an element c X such that a -< c -< b. If there are any points at
all between a and b, then there are infinitely many. In particular, there are points
between a and b with no gap below; so we assume without loss of generality that c
has no gap below.

Let

S {y b(y) +/- c},
T {ylc -< 4(Y)}.

Note thatX-SUTandthats6S, E T=:s-<t.
Next, define

]O(y), if y 6 S,
/ c, ify6T,

Pmin, if y S,
2(Y) 4(y), if y6 T.

A routine, but tedious, argument (which we omit) shows that l and P2 are boundary
functions. Since b E ran 4 and b ran l, we have q - . Similarly, since a is in
ran 4 but not in ran P2, 4 - 2. On S it is evidentthat 4 v 2; since c -< 4(Y)
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for all y T, the same equality is valid on T. Thus p lr v lr2 and p is not join
irreducible.

This leaves the case in which a, b ran p and b is the immediate successor of a.
In particular, b has a gap below. Let be such that q(t) b. By condition 2) for
boundary functions, has a gap below. Furthermore, it -< z, then b tp(t) -< tP(z).
So, choose z such that -< z (which can be done since -7/: Pmax), and let d tp (z).
We now have b -< d, b, d ran tp and, since b has no gap above, there is c such that
b -< c -< d. By the preceding argument, p is not join irreducible. El

Remark. If 4 is a boundary function whose range is {Pmin, a} with Pmin # a,
then, by property 2), a cannot have a gap below. Note that it is also impossible to
have a Pmax.

Using Proposition 14, it is easy to describe the join irreducible boundary functions
explicitly. For each pair of elements a, 6 X such that a

_
-< Pmax, define (a,t by

Pmin, if y -< t,qa,, (y)
a, if -< y.

Then )a,t is a join irreducible boundary function. Furthermore, every join irreducible
boundary function is of this form. (The main issue is the case in which has a
gap below and 4 is the boundary function for which q(y) Pmin when y -< and
q(y) a when -< y. Let pt pred and note that, since a has no gap below,
a -< t; in particular, a -< pt. Then tp (a,pt. The only other point to note is that
(Pmin,t is the minimal boundary function, whose range has cardinality 1.)

If 4 (Pmin,t is the minimal boundary function, then cr (4) tr[4] t3, the ideal
set for the trivial ideal (0). This is the only ideal set whose boundary function is the
minimal boundary function and it is trivially a join irreducible ideal set.

For any pair a, 6 X with Pmin -< a % -< Pmax, define an ideal set cr a’t by

0"a’t {(X, y) 6 P Ix -< a and -< y}.

We do not need to assume that a has no gap below; aa’t is always an ideal set.
However, the boundary function for cr a’t is ,pa,t if, and only if, a has no gap below.

Generally speaking, aa’t will be join irreducible. There is, in fact, only one
circumstance when it is not join irreducible. This occurs when a has a gap below (let
pa preda), has a gap above (let st =succ t), and (pa, st) q P. In this case,
0"a’t 0"a’st I,.J O’Pa’t while 0"a’t 0"a’st and 0"a’t (Tpa’t.

If (pa, st) P, then t7 a,t is join irreducible, as it is in all other cases when either
a has no gap below or has no gap above. The verification that t7 a’t is join irreducible
in all these cases is routine.

If a has a gap below, then the boundary function for 0"a’t is pa,t (and not (a,t,
which fails property 2) for boundary functions). As we shall see shortly, t7 a’t is the
maximal ideal set whose boundary function is pa,t.



278 ALAN HOPENWASSER

Now assume that a has no gap below, so that dDa’t is a boundary function. It
is evident that O’(ta’t) tya’t; thus every join irreducible boundary function is the
boundary function of a join irreducible ideal set. If a has no gap above, then the
properties of boundary functions ensure that 0"[)a’t] t7 a’t. In particular, when a
has no gap above, there is only one ideal set whose boundary function is )a,t. (Use
Proposition 7.)

This leaves the case when a does have a gap above. We then have O’[ta’t 0"sa’t.
(Roughly speaking, because a has a gap above, we can adjoin all the "boundary
points" (a, y), y -< to t7 a’t to obtain a set which is open and satisfies the ideal
property and therefore is an ideal set with the same boundary function.)

As noted earlier, the only time that O’[ta’t] t7 sa’t will fail to be join irreducible
is when a has a gap above, has a gap above, and (a, st) q P. Thus, when a has a
gap above, )a,t has distinct minimal and maximal ideal sets amongst the ideal sets
whose boundary function is qba,t. The minimal ideal set is always join irreducible and
the maximal ideal set is also join irreducible outside of one exceptional case.

There are other ideal sets properly between 0"()a’t) and 0"[(a’t when a has a gap
above. While all of these have the same join irreducible boundary function, a routine
argument shows that none of these ideal sets is join irreducible.

This completes the discussion of all ideal sets whose boundary function has car-
dinality at most 2. As for ideal sets whose boundary function has cardinality greater
than 2, none are join irreducible. The routine argument is omitted; it is similar in
spirit to the argument in Proposition 14.
We summarize this discussion as Proposition 15:

PROPOSITION 15. Assume that a, X and Pmin -< a -< Pmax. Let

0"a’t-- {(X, y) P Ix "< a and -< y}.

Then o"a’t is a join irreducible ideal set except when a has a gap below, has a

gap above, and (pa, st) P (where pa preda and st succt). Every non-

empty join irreducible ideal set is of this form. Every join irreducible ideal set has
a join irreducible boundary function. Every join irreducible boundary function is
the boundaryfunction ofat least one join irreducible ideal set (and at most two join
irreducible ideal sets).
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