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THE PRIME ELEMENT THEOREM IN ADDITIVE
ARITHMETIC SEMIGROUPS, 11
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1. Introduction

The main purpose of this paper is to give an estimate of the remainder of the prime
element theorems on additive arithmetic semigroups proved in [6], Theorems 6.1 and
6.2, which are analogs of Beurling’s classical generalization of the prime number
theorem and have a remainder of o(1) form. In applications, a better estimate of
the remainder than o(1) is required. Thus the new estimate can be used in the
investigation of mean values of counterparts of classical arithmetic functions w(n)
and A(n) in additive arithmetic semigroups. The investigation reveals an interesting
situation in which the counterparts of ©(n) and A(n) do not have a mean value. This
phenomenon does not occur in the theory of the Beurling generalized integers [8].
The new estimate may also have other applications.

Let f(n) and g(n) be two arithmetic functions defined for all nonnegative integers
n. The function h(n) defined by setting

h(n) =Y flgh—k), n=012,...
k=0

is called the additive convolution of f and g and denoted by f * g.

The prime element theorems proved in [6] are essentially a tauberian theorem
about the solution X(n) (which is not the same function A(n) in classical number
theory!) to the convolution equation

L*gn) =ngn), n=0,1,2,.... (1.1

Suppose there are non-zero constants Ay, ..., A, with A, > 0, constant y > 1, and
constants p; < --- < p, with p, > 0 and p; > 1 — y such that

gmy=) A '+0@m™). (1.2)
j=1

J

Let R, R; and R;3 denote the sets of p; which are positive integers, O or negative
integers, and non-integers, respectively.
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Let [a], denote the greatest integer less than a. Also, as usual, let [a] denote the
greatest integer less than or equal to a. Thus [a]; = [a] — 1 or [a]; = [a] according
as a is or is not an integer.

Set

my = min{[p, — p;]: p; € (R U R3) — {p,}} (1.3)
if (R} U R3) — {p,} is not empty. Also, set

Lo, if some p; = 0;
my :={ [y]i — 1, if R, =@ and if p, is an integer; (1.4)
lerl), else.

We shall first prove the following tauberian theorem.

THEOREM 1.1. Let g(n) and X(n) be two nonnegative arithmetic functions sat-
isfying g(0) = 1 and equation (1.1). Assume (1.2) with y > max{2 + p,, 3}. Then
there exist k real numbers 0 < 0; < --- < 6 < %, and k positive integersny, . .., iy,
where nonnegative integer k < (p, + 1)/2, and further there exits some constant
oo > 0 (see the following Remark 1) such that

k=1
r(n) = p, — ZZn, cos2nml — (—=)"'ng + O(n~"77) (1.5)
=1

and
k—1

ne+2Y < (1.6)
=1

if 6 = % or such that

k

An) = p, — 2Zn, cos2nwl + O(n™""%) (1.7)
=1
and
k
2) m = p, (19
=1

ifo, < % for every constant o with 0 < o < o0y. Here
t :=min{m,, my, m3, [y]; — 3} (1.9)1

with

[yli =1 —max{n,...,n}, ifk=>1;

ms :=l[y]1——1, ifk =0 (1.10)
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if (R1 U R3) — {p,} is not empty and if p, — p; are not all positive integers for
pj € (R UR3) —{p,} and

t .= min{mz, ms, [)/]1 — 3} (1.9),

otherwise.

Remark 1.  For oy the following values are suitable. (1) If (R, U R3) — {p,} # 0
and if p, — p; are not all positive integers for p; € (R1 U R3) — {p,}, let

Jo:=max{j : p; € (R{UR3) —{p/}, lor — pj] = m}. (1.11)

Then, as we shall show in the proof of Lemma 2.5, one may take

min{pr - [Pr]l» Pr — Pjo — [pr - pjo]}’ (112)1

{ min{y — [y, or — Lot 00 — 0j, — Lor — pj1},
oy =
y —Iyh

according as

min{[y]; — 3, m, ma} < min{[y]; — 3, m3},

{ min{[y]; — 3, m;, my} = min{[y ], — 3, m3},
min{[y]; — 3, mi, my} > min{[y]; — 3, m3}.

(2) Otherwise, that is, if (R; U R3) — {p,} = @ orif p, — p; are all positive integers
for p; € (R U R3) — {p,}, one may take

min{y — [y11, or — [o- 1}, if min{[y]) — 3, my} = min{[y]; — 3, m3};

0p = I or — Lo, if min{[y ] — 3, my} < min{[y]; — 3, m3};
y —Irh, if min{[y];, — 3, my} > min{[y], — 3dn13%.)
d2)r

Remark 2. A more accurate estimate of the remainder in (1.5) and (1.7) can be
obtained. For simplicity of statements, we shall not pursue this estimate in this paper
and shall content ourselves with giving in Lemmas 2.3 and 2.4 necessary details for
obtaining it.

The particular case of (1.2) with » = 1 and p, = 1 is of most interest. It has been
considered in [2] and [5] under conditions of remainder O (¢"") withO < v < 1. In
this case, Theorem 1.1 says that if y > 3 then

M) =14 0™ or Am) =1~ (=1)" + Oc(n7*3+)
for any € > 0. This result can be sharpened significantly in Theorem 1.2. Also, a

comparison of this result with Theorem 6.3 in [6] with T = 1 and y > 2 indicates a
gap in Theorem 1.1 for 2 < y < 3. This gap is filled with Theorem 1.2 too.
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THEOREM 1.2. If
g)=A+0@®™), n>1

with A > 0, y > 2, then either

- 1+0m7?), if y is not an integer;
= 1.
M) { 1+ 0@ " 2logn), ify isan integer (1.13)
or
- 1 —(=1)"+O0®mr**logn), ify isnotan integer,
An) = 1.14
(m) { 1 —(=D"+ O0@m"**log’n), ify isan integer. (1.14)

A variantof Theorem 1.1 or Theorem 1.2 in terms of additive arithmetic semigroups
is a prime element theorem with a new estimate of the remainder. We recall that
an additive arithmetic semigroup G is, by definition [3], [5], a free commutative
semigroup with identity element 1 such that G has a countable free generating set P
of “primes” p and such that G admits an integer-valued “degree” mapping 9: G —
N U {0} satisfying

(i) (1) =0and d(p) > Oforall p € P,
(ii) d(ab) = d(a)+ d(b) foralla,b € G, and
(iii) the total number G (n) of elements of degree n in G is finite for each n > 0.

Additive arithmetic semigroups cover concrete cases [3] such as (i) the multiplica-
tive semigroup G, of all monic polynomials in one indeterminate over a finite field
F,, (ii) semigroups of ideals in principal orders within algebraic function fields over
F,, (iii) semigroups formed under direct sum by the isomorphism classes of certain
kinds of finite modules or algebras over such principal orders.

Let P(n) be the total number of primes of degree n in G. Also let

[\(n) = Zrls(r).
rln
Then [6]
A * G(n) = nG(n). (1.15)

Under the condition
G(n) :q"ZAjn”’“l +0(@g"n7") (1.16)
j=1

with y > max{l + p,, %}, the prime element theorems proved in [6] has remainder
of the form ¢"o(1). Let now g(n) = G(n)q‘” and A(n) = [_\(n)q"'. If G(n) and
A(n) satisfy (1.15) and (1.16) with y > max{2 + p,, 3}, then g(n) and A(n) satisfy
the conditions of Theorem 1.1. Hence Theorem 1.1 implies a better estimate of the
remainder of the prime element theorem. The same can be said about Theorem 1.2.
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THEOREM 1.3.  Assume (1.16) withq > 1 and y > max{2 + p,, 3}. Then there
exist k real numbers 0 < 0; < -+ < 6 < % and k positive integers ny, ..., iy,
where nonnegative integer k < (p, + 1)/2, such that

1

k—
An) =q" <p, - 2Zn, cos2nm6; — (—l)"nk) +0(@"n™"7%) (1.17)
=1

and
k=1
ne+2Y msp (1.18)
=1
if 6 = 5 or such that
_ k
A@m) =q" (p, - 22111 C052n7t91> +0(@"n""%) (1.19)
=1
and
k
2) m<p (1.20)
=1

if6, < % Here constants t and o are defined in Theorem 1.1.

Remark. There is a misprint in Theorem 6.1 in [6]. The condition y > % of the
theorem should be replaced by y > max{%, 1+ p.}.

THEOREM 1.4. If
G(n) = Aq" + 0(¢"n") (1.21)
with A > 0,q > 1,and y > 2, then either
An) = q"(1 + 0(mr+2y), if y is not an integer,
“lq"( +0m " logn)), ify isan integer
or

Aln) = q"(1 — (=" + Oomr+? logn)), ify is not an integer;
T gt = (=D + o r+? logzn)), if y is an integer.

As an application of Theorems 1.3 and 1.4, combining with Theorem 1.5 of [7],
we consider mean values of functions A(a) and u(a) defined on an additive arithmetic
semigroup G. Here A(a) := (—1)®*@ and Q(a) denotes the total number of prime
divisors of a counted according to multiplicity. The function u(a) := (—1)*@ if a
is squarefree and p(a) := 0 otherwise and w(a) denotes the number of distinct prime
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divisors of a. Thus A(a), 2(a), u(a), w(a) are the respective counterparts of the
classical functions A(n) (Liouville function), 2(n), u(n) (Mobius function), w(n).
Let

Z'y) =) Gmy",

n=0

the generating function of G (n).

THEOREM 1.5. (1) Assume (1.16) with g > 1 and y > max{2 + p,, 3}. Then
> Ma)=o(g"m” ™

d(a)=m

and

> @ =o@"m”
da)y=m

if Z*(y) has no zero at y = —q~" or a zero at y = —q~" of order less than p,;

otherwise, A and p has no mean value if Z*(y) has a zero at y = —q~" of integer-
order equal to p,.
(2) Assume (1.21) withq > 1 and y > 2. Then
> M@ =o(@™, Y wl@ =o(q")
d(a)=m d(a)=m
if Z*(y) has no zero on the circle |y| = g~
if Z*(y) hasazeroat y = —q .

; otherwise, A and [ has no mean value

Remark. The mean value of u(a) is considered in [1] and [4] too. If Z#(y) has a
zero at y = —q~ ! of integer-order equal to p, then it has no other zeros on the closed
disk {|y| < 1} as we know from Theorems 4.1 and 5.1 of [6]. In this case, p(a) does
not have a mean value because of the dominant perturbation of the zeroat y = —g~".
This is well illustrated by Example 4.1 in [6] as we shall see from a brief discussion
given at the end of this paper. We note that this phenomenon does not occur in the
theory of Beurling’s generalized integers [8].

Since Theorems 1.3 and 1.4 are direct consequences of Theorems 1.1 and 1.2
respectively, it is sufficient to prove Theorems 1.1, 1.2, and 1.5.

The basic idea of our proofs of Theorems 1.1 and 1.2 can be summarized as
follows. In these proofs as well as in those in [6], everything boils down to an
estimation of integrals of the form ffﬂ f ©)e"?de. Formerly, in [6], we took the
Riemann-Lebesgue lemma and the estimate o(1) came up. Now, instead, we take a
delicate analysis of the behavior of the generating function

Z(y) =) gm)y" (1.22)
n=0
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of g(n) on the boundary circle |y| = 1 of the disk {|y| < 1}. This analysis reveals that
the function f(6) in the integrals satisfies, loosely speaking, some kind of Lipschitz
condition. Using the Lipschitz condition, the estimate of the integral [ f(6)e™*d6
can be sharpened to O(n~) with some o > 0. Thus the analysis of the boundary
behavior of Z(y) will be the major part of this paper.

2. Proof of Theorem 1.1

We begin with rephrasing Lemma 2.1 in [6] for convenient use in further discussion.

LEMMA 2.1. Let py, ..., p, be arbitrary real numbers with py < --- < p, and
Ay, ..., A, be nonzero arbitrary real numbers.
(D If p1, ..., pr are all positive integers then there exist positive integers T; <

- < 1y with vy = p, and T, = p, — k for some nonnegative integer k, and real
numbers By, ..., B such that

r s n+1’_ _1
An”'=3"B ( ” )
2= B

where By = A, (p, — 1)!.

) If pi1, - . ., pr are all non-integers, then for any positive integer m there exist a
positive integer s = s(m), real numbers vy < ... < T, witht, = p, and 1, = p, — k
for some nonnegative integer k (< m + [p,] — 2), and real numbers By, ..., By such

that, as n — 00,

a - n+t,—1
An '=)"B ( " )+ O(n™"%),
Lo =g

where « = max{p, — [p,],v=1,...,r}, By = A.T'(p,), and I is the Euler gamma
function.

If we write
VIR N RO
j=1 1 2 3
where Zl, ZZ,and 23 are partial sums over R|, R,, and R3 respectively, and apply
Lemma2.1to )", and ) 5, we have

[y

Z(y) = ZB(]—y)“’ﬂ+Alog(1—y>+Zc Zy—k Zrny" @.1)

n= k=2

for |y} < 1,y # 1,by (1.2). Here 1y < --- < 7, with 7, = p,, A = A; if some
p; = 0and A = 0 otherwise, Cy = A; for p; = —k + 1, and r, = O(n™P) with
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B =min{y,m —a},a = max{p; — [p;], j =1, ...,r}if p; are not all integers and
B = y otherwise. Note that Z(y) has no zeros in the open disk {|y| < 1}, as is proved
in Theorem 3.1 [6], where the assumption A > 0 is used.

Let a(6) denote the order of a zero y = €™ of Z(y) on the circle |y| = 1 with
0 < 8 < 1 (refer to definition (4.1) of [6]).

With y > 1,m = 2, by Theorem 4.1 of [6], the “total number” of zeros of Z(y)
on the circle |y| = 1 is at most p, in the sense that

1
a(5)+2 D w®) <p

1
0<0<5

or

2 ) @) <p,

0<0<%

according as —1 is or is not a zero of Z(y).

Assume y > 1+ p,. Then, with the (least) integer m > y + max{p; — [p;], j =
I,...,r},r, = 0®m7Y)and Zf,o:l r,y" has continuous derivatives of order < [y]; —1
on the closed disk {|y| < 1}. We shall use this fact repeatedly later. Hence, from
(2.1), Z(y) has continuous derivatives of order < [y]; — lon {|y| < 1,y # 1}. By
Theorem 5.1 of [6], order o of each zero y = > of Z(y) is a positive integer and

Z(re®™?) (G)

o
li __ = 7@ o270y 4 ()
r—lj}q— (1 - r)anmaH a! (e ) ?é

Therefore, Z(y) has at most [p,] zeros on the circle |y| = 1. In the case that —1 is
one of its zero, Z(y) has 2k — 1 distinct zeros e*>% | =1,...,k — 1 and —1 with
0<6 < <6 =3andk < (o, + 1)/2. Let the order of zero y = ™% be
n;, I =1,..., k. Then (1.6) holds. Similarly, in case that —1 is not a zero of Z(y),
(1.8) holds.

It remains to prove (1.5) and (1.7). We shall give only the proof of (1.5). The one
of (1.7) is almost the same but easier. Hence we assume 6, = %

Let

_ (1 =y Z(y)

(1 + y)m l’”‘z—l‘(] — ye2rifiyn (1 — ye=2xitiym )
Then F(y) has no zeros on the closed disk {|y| < 1}. Also F(y) has continuous
derivatives of order < [y]; — lon{y : |y| < 1,y # 1,y # % 1 =1,... k}
since so does Z(y) on {y : |y| < 1,y # 1}. Let 8y = 0. To analyze the boundary
behavior of F(y), it is sufficient to consider the upper half of the circle |y| = 1; by

symmetry, the conclusion is applicable to the lower half. Thus the boundary behavior
of F(y) is determined by

F(y): (2.2)

Z(y)

Zi(y) = T ye2migm

(2.3)
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on the arc {y = 20 : (6, +6,_1)/2 < 0 < (0, + O41)/2) for 1 <1 <k —1,by

. Z(y)
Zi(y) = R @24
on the arc {y = ™% : (6, + 6—1)/2 < 6 < (6 + (1 — 6—1))/2}, and by
Zo(y) = (1 =" Z(y) 2.5)

on the arc {y = > : —6,/2 <0 < 6,/2}.

We need the following elementary estimate in the analysis of the boundary behavior
of F(y) on the circle |y| = 1.

LEMMA 2.2. Let H(y) = Y vooany™, |yl < 1 witha, = O(n™") andy > 2.
Then

IH([VII—I)(y) _ H([V]l—l)(y0)|
ly — yol” 71, if y is not an integer,

<\ 1y = yollog

, ify is an integer.
ly = yol

Proof. 'We may write

o0
H([V]l—l)(y) — anyn’
=0
where

by = dppyy—1 0+ 1)+ [yl — 1) = 0@l
Then, if y is not an integer, [y]; = [¥],

H([V]l"l)(y) _ H([V]l—l)(yo) — Z by (y" — )7(’)') + Z by (y" — y(i)l)

n<M n>M
< 1y =yol D Ibaln+ > Iba]
n<M n>M
&« |y . y()l Z n“V‘H)’] + Z n")’+[7]—|
n<M n>M

<y = yol M7y ppvrd,
For y # yo, let M = |y — yo|~'; then
H([V]l—l)(y) _ H([V]x—l)(yo) < |y — yol)’—[}’]‘

If y is an integer, y — [y]; = 1, a similar argument gives

HUYI D (yy — HUI=D(y0) « |y — yollogM + M~ <« |y — yol log

ly — yol
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LEMMA 2.3. The derivatives of Z;(y) of order < [y]; — 1 — n; have continuous
extension on the region Dy == {y = re*™ : 0 <r < 1,6, +6_1)/2 <0 <
O +6+1)/2}if 1 <1 < k — 1 and on the region D, = {y = re?mio . 0 <
r < 1,6+ 6-1)/2 <0 < (6 + (1 —61))/2} ifl = k. Moreover, let t =
min{[y]; — 3, [y]i — 1 — n;}. Then

D 160 — 6,1” "=V ify is not an integer;
' 7i6
Z () K log , if y is an integer (2.6)
|60 — 6

and

42, 2 6 — 6y —r1=2 if y is not an integer,

' 7i6

ZEERCERPAN 0 — 6! log T if y is an integer @7
— 6

Jor (01 +6-1)/2 <0 < (0;+041)/2,0 # 6if 1 <1 <k—1andfor (O +6;_1)/2 <
0 <G+ —=61))/2,6 #6ifl =k.

Proof. For convenience, let yy = e**%. On the region D;, we may express

1 1
Z(y) = —Z" G = yo)" + ——=Z"* o) (y — yo)"*!
n; (n; + D!

1
oL o
L

=2

+- ZUh=D (yg) (y = yo)r !
v
/ (Z([)/ln—l)(u) _ Z([V]l—l)(yO)) (y — u)[711—2du‘
Yo
Thus, for y # yo,

(2.8)

1(y) }

Z — -—-1 ny P
1(y) = (=1 YO[ (y)+([y],—2)!(y—yo)"’

where P (y) is a polynomial of degree < [y]; — 1 —n; and

I1(y) == /y (Z([Vh—l)(u) _ Z([V]I’“l)(yo)) (y— u)["]‘"2du.

Yo

‘We have
1) = (yh =2yl =3)...AyLi —m—1)

x fy (ZW Dy — 2D (ye)) (v — w2 au (2.9)

Yo
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for1 <m <[y]i —2and

100Dy = ([yl; = 2! (ZW D (y) — Z1=D(yp)) .
By integration by substitution, the integral on the right-hand side of (2.9) equals
1
v =y / (2D (yy + s(y = y0)) — ZWN D (y)) (1 — ) h=274gs,
0
Hence
( I(y) )(””
oy = yo)™

S (m\ D+ DAk = 1) e
= 1
; (k> (y — yoyutk )

di(y — yo)h

NgE

x~
Il
o

1
X/ (Z‘[”]'_l)(yo+s(y—yo)) _ Z([V]l—l)(yo)) (1 _s)[y]|—-2—m+kds‘ (2.10)
0

Therefore, for 1 <m < [y]; —1—n; (< [y =21, ()Y — yo) ") has limit
zeroas y — o in the region Dy, since Z("1'=D(y) is continuous. By (2.8), this shows
that the derivatives of Z;(y) of order < [y]; — 1 — n; have continuous extension on
region D;.

Fort = min{[y]; — 3, [y} — | —n;} and y = ™% £ y,, from (2.8) and (2.10),

141
i i i —2—t—
Z](t+l)(e27n(9) < 1+ § :leZmG _ e271:9,l[V]1 n
k=0

1
X/ |Z([y]|—l)(62m'9/ +s(e2m'0 _8271'1'0,))
0
_Z([V]I"l)(e27'l’i9,)| (1 _S)[y]l_3_,+kds

L 14+10—-61""10—06)"«|6 -6 !

if ¥ is not an integer (equivalently, if [y] = [y]1) and

1 1
L1410 —6,17"10 —6/log & log ——
"ol 10— 6l
if y is an integer, since, by (2.1) and Lemma 2.2,
ly = yol7 ™, if y is not an integer;

W=Dy — 7ayhi=1)
z -z () K ly — yo|log ————, if y is an integer.

ly = yol’
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Also,
) 1+2 ) ] =3t
Z,(f+2)(e2mé)) < 1+ Z leZm(? _ eZmG,l v1i—3 n
k=0
X/ IZ([V][—I)(eZmOI +S(€2m0 _ 627”0/))
0
_Z([V]|~l)(82ﬂi9:)] (- s)ly]|—4—t+kds
ift <[y]; —3and
1+2
. . 0 i—n
Zl(f+2)(627[19) << 1 + Z ‘627!!9 _ e277191| !
k=0

1
X/ Iz([Vll—l)(eZJTlGl +S(€2m€ _627110,))
0
_Z([y]l—l)(62ﬂi9/)' (l _ s)k—lds
+ |62ﬂi0 _ eZﬂi@/ l""’ Iz([y]l—l)(eZJTi@) _ Z([y]|—l)(82ni0,)i

ift = [y]i —3. Wenotethatift < [y]; —3thent+n; = [y];—landift = [y]; —3
then n; < 2. Therefore,

Z]<r+2)(e2me) L1+10=61720 -6 M « 9 — g2

if ¥ is not an integer and

Z (@) < 1+ 160 — 60,7216 — 6] log <16 — 617" log

1
16— 6 16— 6

if y isaninteger. 0O

LEMMA 2.4.  Letm = min{m, my} and o = min{p, —pj,— o —p;,1, or —[p:11}

if (R U R3) —{p/} # ¥ andif p, — p; are not all positive integers for p; € (R; U

R3) — {p,} and let m = my and 6 = p, — [p, ] otherwise. The derivatives of Zy(y)

of order < m have continuous extension on the region Dy := {y = re?? .0 <r <
1, —6,/2 <6 < 6,/2}. Moreover, let t = min{[y]; — 3, m}. Then

1 . .

m, if Ry £V and ift = my;

|61°—", otherwise,

101" log

Z(()r+v)(e2ni(-)) <« v=12 (2.11)

for0 < 0] < 0,/2.
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Proof. By (2.1),

Zo(y) = Zo1(y) + Zoa(y) + Zo3(y) + Zoa(y), (2.12)
where
s—1
Zoi(y) = By + ) _ Bu(1—y)* ™™,
n=1
Lyl 00 yn
Zon(y) = (1 = y)” (Z Cey )
k=2 n=l1
Zo3(y) := A(1 — y) log(1 — y),
and

o0
Zoa(y) = (1 =) > ray™.
n=1
First, consider Zy((y). If p, — p; is an integer, (1 — y)” % is a polynomial for
7, = p; —k with a nonnegative integer k (see Lemma 2.1). If p, — p; is not an integer,
(1—y)?~* has continuous derivatives of order < [o, — p;]+k in Dy for 7, = p; —k.
Hence, if p, — p; are not all positive integers for p; € (R; U R3) — {p,}, Zoi(y) has
continuous derivatives of order < m or, otherwise, Zy;(y) is a polynomial and has
continuous derivatives of all orders.
If (Ry U R3) — {p,} # ¥ and if p, — p; are not all positive integers for p; €
(R; U R3) — {p,}, we have

s—1
Z(()’]"l—!—l)(eZmG) — ZE/A(I _e2n19)pr—r,‘—m1—1
pu=I1

s—1
< § |] _627119|p,—-r,l—m1—l
u=l1

< Z |] — e2ni9 |,0r =pj—lor—pl—1
pE(RIUR3)—(p}

< Z 11— e2ﬂi9|pr—p,—[pr—p,-n]—l

[or—pjl=m;
< l] _ eZniG|p,.-—p,0—[/)r—ﬂ/(,]‘l
<< |9 Ipr-pfo—[l)r“ﬂm]““l R (213)

where jj is defined in (1.11). Similarly,

Z(()’;' I +2)'(62”i9) <0 |Pr~ﬂjo—[;0r—pm]_2. 2.14)
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Secondly, consider Zy,(y). We note that

(i >(I)=i nn—1.. (n—l+1)
_ (Zn/ —k n+d’inl~k—1yn+__.+d[_l§:n—k+1yn)
n=| n=I

o), ifl <k-2;

1
= 0<log ), ifl=k—1; (2.15)
11—yl
ol —yl=h, ifi=k

B

uniformly for |y| < 1, since, by (i) of Lemma 2.1,

o0 yn k
XI: Pl s Zoeu(l -
h= U=

for a positive integer k. We also note that ), | y"n~* has an analytic extension,
denoted by W (y), say, on the domain D formed by cutting the complex plane along
the real axis from 1 to +00. Hence the estimate (2.15) holds for Wk(l)( y) on the region
Dy excepty = 1.

Then (1 — y)* }::O:l y"n~* has an analytic extension (1 — y)” Wi (y) on D. If p,
is not an integer or if p, is an integer and m < p,, we have

BW () =y

1)
11—yl

Fbo Wi () (1 = )™~ (2.16)

M=

(1= )P W™ =

~

Il
C i
e

|l _ y|p,~—m+l log

If p, is an integer and m > p,,

(A =0"W)™ = Y bW =y

I=m—p,

< L4 |1 =y og

[T —yl

+ Z Il __y|p,7m+k~]

k<l<m

& |1 =yl og (2.17)

11—yl
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Hence, for m < [p,], by (2.16), Z((,’2”)(y) has a limit as y — 1 in the region Dy. This
shows that the derivatives of Zy,(y) of order < [p,] has continuous extension on D
if Cy are not all zero.

If p, is not an integer, by (2.16),

Z(()[zpr]+l)(62ﬂi9)
= 0 (“ _ e27ff9|pr—[9r]10g |] — eZm’OI) +0(1 - 62ﬂi9lpr—[pr]—l)
< lg|rtet (2.18),
and, similarly,
ZET ) « fgjered2, 2.19);
If p, is an integer, by (2.17),
. 1
(or+1) , 27i6
ZOZ (e g ) < lOg m < log |_9~| (2]8)2
and
. ) 1
(0r+2) 1 2mi6 2mif -1 —1
Z02 (e i ) < |] —e l lOg ll—:eT'ol < |9| lOgm (2]9)2

since k > 2! Therefore, from (2.18) and (2.19),

617", if p, is not an integer;

Z(()[2p,-]+v)(6271i9) <« v=1,2 (2.20)

1
|61°~" log -Ie—l otherwise,

foro = p, — [p-]1.
Then, consider Zy;(y). It has an analytic extension on the domain D and has
continuous derivatives of order < [p,]; on {|y| < 1}. For y € Dy — {1},

(1 = y)*r log(1 — y) Wi +h = go(1 — y)»r=lei=og(1 — y)
+d, (1 — y)pr—[prh—l

< |1— y|pr—[p,~]|—l lOg

11—yl
and
(1 - y)p,- log(] — y))([P/~]|+2)
e d[(l —_ y)ﬂ,-—[ﬂ,.]l—z lOg(l _ y) +d2(] _ y)p,.—[p,.]l—z

<< |1 _ ylpr'—[p/‘]l_z log X
11—yl
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Therefore
1

Z{)gﬂr]|+v)(62ni0) < |0|a—v log |9| ,

v=1,2 2.21)
foro = p, — [o/]1.

Finally, Zo4(y) has on the disk {|y| < 1} continuous derivatives of order < [y]; —1
if p, is an integer or of order < [p,] if p, is not an integer since y > 1 + p,. For
|ly] < 1and y # 1, if p, is an integer and m < p, or if p, is not an integer and
m <[yl —1,

n=1

00
Zg = ho (Z rny") (=)™ + 01 =yl

L [1T—ylP™+1.

If p, is an integer and p, <m < [y]; — 1,

zy) < 1.
Therefore, for w = min{[y ], — 3, [o,]},
ZWh o « 1, ZEP ) <« 1
if p, is an integer or
Zg PO < TN =y 2P o) < Lyt

if p, is not an integer. It follows that
Z(()ZH—I)(GZ”IO) < lelri—l’ Z(()Z)+2)(e2ni9) < |0|¢7—2 (2.22)

foro = p, — [por]1.

Itnow follows that the derivatives of Zy(y) of order < m have continuous extension
on the region Dy. Also, for t = min{[y]; — 3, m}, (2.11) follows from (2.12), (2.13),
(2.14), (2.20), (2.21),and (2.22). O

Combining Lemmas 2.3 and 2.4 yields an analysis of the boundary behavior of
F(y) on the boundary circle |y| = 1.

LEMMA 2.5. Letm be defined in Lemma 2.4 and t defined in (1.9). The derivatives
of F(y) of order < min{m, ms} have continuous extension on the closed disk {|y| <
1}. Moreover,

FOD (@) < max{|g =617, 100 — 0177} (2.23)
and
FU2(e1%) < max(|0 — 6177, 16111 — 617 7%) (2.24)

foreveryo <aogand 0y <6 < 6;y,l =1,...,k— 1, where oy is defined in (1.12).
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Proof. 1t is easily seen, from Lemmas 2.3 and 2.4, that the derivatives of F(y)
of order < min{m, m3} has continuous extension on the closed disk {|y| < 1}.

To prove (2.23) and (2.24), we first assume that (R UR3) —{p,} # ¥ and that p, —p;
are not all positive integers for p; € (R{UR3)—{p,}. Lett; = min{[y]; —3, m|, m;}.
From (2.11),

1 . .
FU) (o2mioy o 1617~ log o if Ry # @ andif 1, = my; b=1.2

617, otherwise,

for 0 < |0] < 6/2, where constants ; = min{p, — 0, — [or — pj,], or — Lor11}. Let
t, = min{[y]; — 3, m3}. From (2.6) and (2.7),

1
. __p 02—V : : H .
F(r2+v)(e27116) < |60 — 617 lOg 10— 6] , if Y IS an Integer; v 1,2

|60 — 617277, if y is not an integer,

for (6;+6,-1)/2 <0 < (6;+6141)/2,60 #6,if1 <l <k—1andfor (6 +6;—1)/2 <
0 < (6 + (1 —6k1))/2,0 # 6 if | = k, where constant 0, = y — [y];. Thus,
if t;, = t, then (2.23) and (2.24) hold on the interval 6, < 6 < 6,4, for every
o < minfy — [y, pr — [o:-11s o = pjy — [or — pj,1}. I 11 < 1, (2.23) and (2.24)
hold on the interval for every o < min{p, — [p/ 11, p — pj, — [0 — pj,]}. Finally,
if t; > 1, for o < y — [y];. This proves that (2.23) and (2.24) hold on the interval
6 < 6 < 6,4 forevery o < oy with oy defined in (1.12),.

Then assume that either(R; U R3) — {p,} = or all p, — p; are positive integers
for p; € (R; U R3) —{p,}. In the same way, we can prove that (2.23) and (2.24) hold
on the interval 6, < 6 < 6,4, for every o0 < gy with oy defined in (1.12),. O

LEMMA 2.6. Let f(0) be defined on the interval [a, b]. Suppose there exist a
partitiona = 6y < 0y < --- < 6y = b of la, b] and a constant § with0 < § < 1 such
that f (0) has continuous first order derivative on each open subinterval (0;, 6;41),l =
0,1,...,k — 1 and such that

Lf (O] < max{|o —6,1°~", |61 —0°"}
and

Lf'(0)] < max{|0 — 6,1°7%, |61 — 01°%}
for6, <0 <6,,l=0,1,...,k— 1. Then

ns, if0<é<1;

b
/ f(@)e"do « { log n i =1 (2.25)
a n £ —_ .
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Proof. Let

Then

b ) k=1 r0+n k o k=1 00 —n )
/ f®)e"do = (Z f +y / +y / ) f®)e"do.
a 1=0 YO

=1 Y0=n =0 JO+n

Clearly

O+n ) O+n ,’8
/ f©e"do « f O —6)"'do = —,
o o )

o [ )

f(®)e"do <« f & —6)Y'do = %

] O—n

By integration by parts, we have

Ore1—n . 1 . :
/ f(@)eln(')de = — [f(9I+l _ n)elll(0,+|—n) _ f(el + n)ern(6,+n)]
o n

+n
1 011 )
—— f'©)e"’do.
I Jo,+n
Plainly,

[f Bre1 — me™ ™| = | £ @41 — | < n° 7,

Lf (0 + me™ ) = | £(o +n)] < n*".
Also, if § < 1,

Orp1—n . Orpr—n
f f/(@e’"”dei < f |f/(0)1d6
(‘)/ HI

+n +n

O —1 O —n
< / O —6)"2d6 + / 041 — 6)°72do
6+n O+n

IA
=

Then we obtain

b ] nt!
/ f(0)e’""d91 <+ —
a
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If § = 1, then

Or1—n ) 1
/ f’(G)e’"odG‘ « log —
6+n n

and

b
. 1 1
f f(@)e’"‘)de’ LN+ - (1 +log —> )
a n n
By taking n = n~!, (2.25) follows. O

Proof of Theorem 1.1.  As in the proof of Theorem 6.2 of [6], we have

7 — 2k_l 2 N 1 i Fl(eiB) —i(n—1)6
An) = p, — ;nl cos2nm6; — (—1)'ny + > - F(e"_e)e de.

It remains to show that the integral on the right-hand side, denoted by I,,_;, say, is
O((n — 1)7'=7). The function F(y) has continuous derivatives of order < [y]; — 1
on{y: |yl <,y # 1,y # e | = 1, ..., k}. By Lemma 2.5, the derivatives
of F(y) of order < ¢ defined in (1.9) have continuous extension on the closed disk

{lyl = 1}. Let
Fo\”
0) = —=
1 (F(y))

Then f(6) has continuous first order derivative on each open interval (276, 27 6;4)
and (—276,4,, —276,),l =0,1,...,k— 1. By Lemma 2.5, for 6 € (276;,276,4)
orf € (—2m641, —216)),

y=e'®

F(t+l)(ei9) P,(F(eio), F/(eiQ)’ el F(r)(eie))
F(e"e) Ft+l(ei0)

< max{|6 — 276°7", 27641 — 6|77},

f@) =

and
oy = FO2E | P (FE), FE), . ()
F(e”’) Ft+2(ei0)
<« max{|§ — 276|172, 21641 — 0|72},
where Py(xg, xi, ..., x;) is a polynomial of xg, x|, ..., x; with integer coefficients

such that the degree of x; is one. We note that F“*"(¢”) contributes toward the
right-hand side of the last inequality at most max{|6 — 276;|° !, |26, — 6]°~!}.
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Applying integration by parts ¢ times, we obtain

T F/(eie) .
I = / ———e¢"db
" J_; F(e?)

B 1 b3 (F/(y)>(f)
Tam-D...n—t+1 J_, \F®

= : " —i(n—1)0
BT W T N At

e—i(n—r)ede

y=el®

The function f(0) satisfies the conditions of Lemma 2.6 with 0 < o < 1. Hence the
last integral is O(n~?) and

n=0Mn""7)
follows. O

3. Proof of Theorem 1.2

The idea of the proofs of (1.13) and (1.14) is included in the proof of the following
lemma, while the proof of (1.14) requires a deeper analysis.

LEMMA 3.1. Let f(0) be a continuous function on the interval [a, b]. Suppose
there exist constants 0 < o < 1 and B > 0 such that

If(6)) — f62)| K |61 — 62]% log?
|61 — 6]

forall 61,6, € [a,b] withO < |6, — 6,| < . Then
b .
f f(0)e"do <« n~*log? n. (3.1)
a

The inequality (3.1) must be known but we are unable to locate its proof in the
literature. As a substitute we give a brief proof of it here.

Proof. The inequality (3.1) is trivial when ¢ = 0. Hence we may assume 0 <
a <.

Letby = a + f(b —a),k =0,1,...,n. Define a continuous function g(6) on
[a, b] such that g(6,) = f(6;) and such that g(0) is linear on each interval [6;_;, 6].
Then we have

S (6) — fOk-1) et
— L6 = Oyl ¥ logf ———
Ok — 61 18k = 6 g 1Ok — Ok-1l

&« n'"logfn 3.2)

g'® =
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for 6_; < 6 < 64, where the constant implied by « is uniform for all k. Also,

1f©) —g@)] = [(f(0) — f(6k-1)) — (8(6) — g(6k-1))I

[(f(6) — f(O-1)l
|6k — Ox—1]

= 1(fO) = fO-DI + 16 — Ok—1l

0 — Ok_1]* logl ——
< | —11* log 0= 0]

1
+{ 16k — k=117 log? —'———) |60 — Ok—1]
( |6k — Ok—1]

< n%logfn, (3.3)

where the constant implied by < is uniform for all k too (The condition « > 0 is
needed here).
We have

b b b
/ f(©)emdo = / (f(6) — g(0)e™do + / g@)e"do = I, + I,

a

say. Then, by (3.3),
|| €« n™® logﬁ n.
Also, by integration by parts,

1 .
L =—g®e"
n

b 1 [P )
“E[ g(©)e"do = 0(n™') + O(n~*log’ n)

a

since

b b
f g'(©)e"do « / 1g'()|do < n'~*logln
a a

by (3.2). O

Proof of Theorem 1.2. Assume that
gm)y=A+0n™"), n>1.
Letr, = g(n) — Aand Zo(y) = (1 — y)Z(y). Thenr, = O(rn~") and
o0 o0
Zo) =141+ A=Dy+Y a—ra)y" =14y )"
n=2 n=1

with r, = O(n™"). We note that the generating function Z(y) has at most one zero
at y = —1 of order one on the disk {|y| < 1}.
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If Z(y) has no zero at y = —1 then F(y) = Zy(y). Hence F(y) has continuous
derivatives of order < [y]; — 1 on the disk {|y| < 1} and has no zero there. As in the
proof of Theorem 1.1, applying integration by parts ([y]; — 2) times, we obtain

b F/ i6 .
1" = / __(i(_)_)e—mede
-z F(e'?)

e—i(ﬂ—[}']|+2)9d0.

1 b4 Fl(y) (Iyh=2)
S onn=D.. (n—yli +3) Jx (F()’)>

Let
F/(y))(h’]l—z)
0) = (——
1@ (F » et
FUh=D(ei®y P _o(F(e?), F'(e!?), ..., F'h=2 (%)
= %@t v TSI . (34)

Then f(6) is continuous on the interval [—m, w]. Applying Lemma 2.2 to F(y), we
conclude, from (3.4), that

|6y — 6,71, if y is not an integer;
VARG |6; — 6,|log ————, if y is an integer.
1) — 62|
Then, by Lemma 3.1, we obtain
nr+2, if y is not an integer;

< { n~"*2logn, ify is an integer.

This prove (1.13).
If Z(y) has a zero at y = —1 of order one, then the argument in the proof of
Lemma 2.3 shows that

Z(y) 1 1(y)
V4 = ——" =P _—
1(») v () + O =213y

where P(y) is a polynomial of degree < [y]; — 2 and

3.5

I(V) = / (Z“yll_])(u) - Z(lyll_“(—l)) (y — u)[yh-Zdu.
-1

Also,
I(y))(m) m 2
=) =) dly+ ¥
(y+l Z(:)

|
X/ (Z(lyll—l)(_l+s(y+ 1))_Z([V]|—|)(__1))(l_s)[y]|—2—1"+kds
0
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for1 <m <[y]; —2and

I(y) )([V]l—l) [y]i—1 , 1
- = d(y+1)
(y +1 ;

1
x/ (ZOM V(=1 450y + 1) = Z0D(=D)) 1 - 5)*"ds
0

+0 4 DT L =D (ZP ) = 2P (=D). (36

Therefore, the derivatives of Z;(y) of order < [y]; — 2 have continuous extension
on the disk {|y| < 1}. Also,

[yli—1
Zi[}’]l—l)(eZmO) < 1+ Z |62n16+”—l
k=1

1
X/ }Z([y]l“l)(_l+s(e271i9+1))_Z([y]|—l)(_1)l (]_s)k—]ds
0

+|82ﬂi9 + ll—l lz([Vll—l)(eZHiO) _ Z([y]'_l)(—l)‘

6 — %IV‘WH, if y is not an integer;

< 1 o . 3.7
log —, if v is an integer
& — 31
for 6 # %
Then
Zo(y)
Fy)=(-nZi(y) =222
I+y
has continuous derivatives of order < [y]; — 2 on the disk {|y| < 1} and F1-D(y)
is continuous there too except at the point y = —1. Let
f©O) = f10) + f20),
where
F([V]u—l)(eif))
)= —————
f1(©) F@)
and

Py, —2(F(€?), F'(e'%), ..., FIYi=2(eif))
H0) = FOT T (g .
()
Note that Py (xg, x1, . .., x¢) is apolynomial of x¢, x1, . .., x; with integer coefficients
such that the degree of x; is one. Hence f,(6) is continuous on [0, 2;r] and satisfies

|6 — 7 |7~1=1" if y is not an integer;

£ <9 1og if y is an integer

6 — |’
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for 6 # m, by (3.7). By integration by parts,

b4 2n

. 1 .
f2(0)e ™0 do = - £®e "do = o(n").
0

-7
To prove (1.14), it remains to show that

b4

i mantd e . .
fi®e ™ do « { n logn, if y is not an integer;

. n~'log?n, if y is an integer.

We shall give the computation in detail for y not an integer and in sketch only for y
an integer.
Thus we first consider y not an integer. Let 6, = "7”, k=0,+£1,+£2,..., £n.
We have
On

9’1
f1®)e"°do <</ 16 — 7”16 « v
On—1 6,1

by (3.7). Then define a continuous function g(6) on [0, 6,_;] such that g(6;) = f1(6k)
and such that g(6) is linear on each interval [6;_;, 6],k = 0,1,...,n — 1. For
Ok—1 <60 <6, k>1,

F1©®) — fi1(6k-1)
_ P00y - pD it F([,,]I_l)(eiek‘.)F(e"") — F(ei1)
F(e') F(e) F (ei1)
= O(F D)= FUI D))+ 0 (161 =7 |10 =01 )

— O(IF([V]“I)(eio)—F(m"1)(ei‘9*-‘)|)+0(n"’+[”](n—k+1)”‘“’]'1), (3.8)

by (3.7). Also, by (3.7) and the differentiation mean value theorem,

|FOI=D ity — pUrh=D gitir)|
_ |(ei9k,. _eie)Z;[y].—l)(eie)
+(1 — i1y (Zf“/]‘_l)(e"g) _ Zfl"]'_l)(eio"—‘))
+(yh =1 (Z§[V]|—2)(ei0) _ Zily]“z’(e""*-'))l
= 0(160 = 7”170 — 61| + 161 — w710 — 640)
+0 ('Z:[Vll—l)(eié)) _ Z:[Vh—l)(eiek_.)‘)

= O™ (n—k+ 1)y 1Y)
+0 (|z}l”“”(e"")—zi[“"”(e"ok-')‘) . (3.9
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From (3.5) and (3.6), we have

Z:[V]I—l)(eie) _ Zg[y]I“')(eiOk_l)

[yh—1 1 1
C
=1 [(e"o +1 et 1)

1
% / (ZUI D=1 + 5" + 1)) = ZOI=D(—1)) (1 — 5)*'ds
0

1

1
- (Iyh=D¢_ i0
R fo (Zzh D (=145 + 1)
_Z([}']l—l)(__] +s(e59*-' + 1))) (1— S)k_lds]
1 1 .
([yh=1)(,i0 (Iyhi—-D¢_
+{yh = 2! [(eie T1 et + 1) (zh=D ey — zUrh=D(-1))
1 . )
+ m (Z([)’]l—l)(e10) _ Z([y]|—l)(exek_l))]

= (16 =710 — O 116kmt — 717" + 16kt — 77110 — Gy [7IY)

=o' "M@ —k+1)7h. (3.10)
Combining (3.8), (3.9), and (3.10), we obtain

fi®) — fil—y) € n VW — k4 1y Ll G k4 17 (3010
Then

6,) — O
g0 — gy = PO NGy
Or — Ok

L 7@ — ke L g G kDT (312)
for6,_; <6 <6,k > 1. We now have

Ot en—l

en—l
f] (9)e‘in9d9 = f (fl (0) — g(e))e—inede +/ g(e)e—inede
0 0

=1, + I, (3.13)
say. From (3.11) and (3.12),

n—1 .6
Ll = Z]{; (1f18) — fiBe=1)] + 18(6) — g(Ek-1)]) dO
k=1 k=1
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n—1
& Z (n*V+[V](n —k+ 1)7—[3/]—' + nl—y+[)’](n — k4 ])—l)n—l
k=1

< n_y+[)/] log n. (3 14)

Also, by integration by parts,

On—

] i 1 1 [ i
L = —g@®e ™ —— f g ©®e "do
in in Jy

0
1 9II—| X

= 0o vty - — f g (e "do, (3.15)
n 0

since
8—1) = fi1Ou-1) < |[FII=D (-1
< 1= em"“)Zf[’/]‘_l)(em"")l + |Z:[y]'_2)(ei9"-‘)|
= 00— — 7|7 "+ 0()
= o(nl—yHy])

by (3.7). The last integral in (3.15) is

n I p6 n—
/ 8419 <<Z|gk|n"',

where

, S1(6) — f1(6k-1)
& = 9
— Ok—1

< nl—y+[y](n —k+ I)V-M—l + n2—y+[y](n —k+ ])—l

by (3.11). Hence, we obtain

(')n 1 n—
f @ Mdo « Z(n_y+[”](n—k+ DY W=l = G — k4 1)
0 k=1

& n'rtogn. (3.16)
By (3.15) and (3.16),
L < n " ogn

and, combining with (3.14), we obtain

en—l A
fi®e do <« n~rt M ogn.
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This proves

T
f f1(®)e™"?d « n 1 ogn.
0

In a similar way, we can prove the same estimate for the integral on [—, 0].
We finally consider y an integer. We have

(2

" [ de « f

On-1

9’1
log

n—1

do < n~'logn.

n—0
Forf_1 <0 <6,k =1,

f1®) = fi-1) = O ([FUI D) — FII=D(%))
_1 n
+0(n (1+log——-—-n_k+l))

Wh=D (i0y _ pOrh=1 (it
F (e”) - F (e™")

and

1
010 — 6|l 0 — Or_1|log ———
<| k—1]1og +1 —1llog |1'T—9k—1|)

1
| — 6|

+0 (‘Zf[yh—l)(eie) _ Zf[}’]l“l)(eiokq)[)

- n Iyh=D i (hi=1, i6-
= O(n l(1+10gm>)+0(’zlyl (69)“Zly' (e'% I)D

From (3.5) and (3.6),

Z:[}’]I"l)(eie) _ Zi[V]l—l)(ein-l)

1
= 0(|9—9k_1||n—9k_1r’ log +16 =611 —6x—1]™" log ———)
|77 —Ok—1|

| —61

It follows that
— _ - -1 1 " .
HO) = fill-) K (n—k+1) (1+ %8 i1

Then the same estimate holds for g(8) — g(6x—1). Now

Op-1 n—1 n
0)—g(6))e~"0do —k+D)7' {1 +1og —— ~“og?n.
fo (f1(©)—g(O))e <<;(n +1) (+ogn_k+1)<<n og’n
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Also,
on—l X 1 on—l '
/ g(@)e "%do = O(n~"'logn) — ——/ g @)e""de
0 mn Jo
and
On-1 n—1 n—1 "
! —inf 1y -1
e '"do « n gl m—k+1) (1 +1o —)
/(; : kX=1: s ; & n—k+1

< log?n.

Hence, we obtain

on—l .
f1(0)e "%de < n~"log*n

and
T .
/ fi®)e "do <« n~'logn
0

follows. 0O

4. Proof of Theorem 1.5

Proof. 1t is sufficient to give only the proof of part (1). The proof of part (2) is
exactly the same.
As in the classical theory, we have

Z2(NIZre®) | Z(re™™)]
00 -
— 1_[ [(1 _ rm)ll _ rmeim0|4|1 _ rmeZimel]_P(m)
1

00 o0 _km
= exp {z P(m) Z Ck_ (3 4+ 4coskmb + cos 2km9)}

m=1 k=1

> 1

forr < g7! and all @ € R since 3 + 4coskmf + cos2kmé > 0. Hence, for
0+#Q2n+ ), nel,

Z(r)|Z(re')| — oo
or, equivalently,

log(Z(N)|Z(re'))) — oo
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asr — g~ '—. We note that
o0 _km

Pm) Y ——(1 + 9e™)

k=1

e

log(Z(N)|Z(re'®)|) =

8 1

Z Pm)r"(1 + Re'™) + 0(1)

m=1
since P(m) < q™/m. Therefore, we have
0 —_— .
Z Pm)r™(1 + Re'™?) — oo
m=1

asr — g~ '—forall & # (2n + ). If we now take f(a) = A(a) or f(a) = u(a)
in Theorem 1.5 of [7], then we find that

o0
S:=Y g7 (1 - R(f(p)gP)) = Z (m)r™ (1 + Re™m0189) = 00
14 m=1

holds for all 6 € Rand 6 # &EDT ;¢ Z because f(p) = —

“Tlogg
Qn+Dm
For 6 = Togg

00 00
Z m)q 1+e—tm(2n+l)ﬂ — Z 2m)q—2m.

Assume (1.14) with y > max{2 + p,, 3}, by Theorem 1.3, there exist k real numbers

0<6) < - < < %, and k positive integers ny, ..., ny, where nonnegative

integer k < (o, + 1)/2, such that (i)
00 1 k
S = Z— Or —Zan cosdmmf; + O(m™""7)
m=1 M =1
if 6 < 3 or (ii)
o0 ] k—1
S = Z — e 2Zn, cosd4mm — ny + O(m™""°)
m=1 =1
if 6 = %, where ¢ is a nonnegative integer and 0 < o < 1, since

P(n) = %Zu(r)l_\ (;)

rin
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(here u(r) is the classical Mobius function). In case (i), S = oo since

>0 1
Z—cos4mn'9,, Il=1,...,k
m

m=1

are convergent trigonometric series for0 < 6 < -+ < 6 < % Hence, S diverges
for all real number 6 and

3 f@=o@"m ) @.1)

da)=m

by Theorem 1.5 of [7]. In case (ii), 6 = 1, ie., Z*(y) hasazeroaty = —g~".
If p, > ng, then § = oo and (3.1) follows. If p, = ny, then Z*(y) has no zeros
but y = —g~! of integer-order n; on the circle |y| = ¢~! and S converges for
o= (2%;%1. In the last case, f does not have mean value 0. It remains to determine
whether f has a nonzero mean value. If f(a) = A(a), for each prime p, we have

00 o0
1+ Zq—ka(p)(l+za)f(pk) =14 Zq—ka([?)(_])k(a(li)"'l)
k=1 k=1

1
1 — (=1)d+lg=ap)

>0

and if f(a) = u(a), we have
[.¢]
1+ Zq—ka(P)(lHa)f(pk) =1- (__])3(P)q—3(l7) -0
k=1

since ¢ > 1,d(p) > 1. Moreover,

o0

Yo aP A= f(p)=2) " Pmg™" =Y P@m— g = oo,
P m m=1

=1
Therefore, by Theorem 1.5 of [7], f does not have a nonzero mean value and the
mean value m; does not exist. O
Theorem 1.5 is well illustrated by Example 4.1 in [6]. Let g be a positive integer
and g > 2. Let
2¢* =r  (mod k), O<r <k
fork=1,2,.... Weset

I k . .
5 _ ) 7(2q° —r) + 1, ifkisodd;
Pky=1%
(k) [ 1, if k is even
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(we can even put P(k) = O for k even). Then P(k),k = 1,2,... are all positive
integers and

00 -
Z*y =[Ja-ym=rem
m=1
converges absolutely in the disk {|y| < ¢~'}. It is shown in [6] that if we write
0 -
Zy) =14 Gmy"
n=1

then
G(n) = Ag" + O(qin™?).
Also, it is shown in [6] that Z#(y) has an analytic extension

1 1 2\ 2
I—gy \1-gqy

in the d?main D forme?d by cutting the complex plane along the real axis from —oo
to —g~% and lfrom ¢~ 7 to 400 and along the imaginary axis from —ioo to —ig~2
and from iq~2 to ioo. Here, in (4.2), the function F(y) is holomorphic in the disk

{lyl < q‘%} and the function

1+qy?\?
1—gy?

is the single-valued branch with H(0) = 1 of the associated multiple-valued function
in the domain D.
Consider the generating function

M) =) wa@y@=>y" ( >, M(G)) ', bl<g™

aeg m=0 \d(a)=m

H(y) = (

of 35 ay=m #(a). Itis easily seen that

M) = [Ta -y =TTa-ym™
14 m=1

1
_ 1 _ I_QY(I—qy2>2e_F(y)
Z*(y)  1+gy \1+g)y? '

Therefore, we have

1 1
= — —dy,
2 =5 f.y|=, Z* )y

d(a)=m
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where 0 < r < ¢!

then we obtain

. If we shift the integration contour to the circle |y| = q‘%“é

1 1 1
u(a) = Resy—_j-t =——— + —/ ———dy
3(a)Z=m y=-q Z#(y)ym+l 27 |y|=q—%_‘ Z#(y)ym-H

1
(=D"*'2g" (—_ i) e P 4 0. (g5+Om).
+

It is clear that, roughly speaking, g =" ZM)W wu(a) alternates between values

1 1
) (‘1 - 1)2 P, 5 (‘1 - 1)2 o Fea™
qg+1 q+1

as m — o0o. Hence wu(a) does not have a mean value because of the dominant
perturbation of the zero of Z#(y) at y = —g .
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