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1. Introduction

The main purpose of this paper is to give an estimate of the remainder of the prime
element theorems on additive arithmetic semigroups proved in [6], Theorems 6.1 and
6.2, which are analogs of Beurling’s classical generalization of the prime number
theorem and have a remainder of o(1) form. In applications, a better estimate of
the remainder than o(1) is required. Thus the new estimate can be used in the
investigation of mean values of counterparts of classical arithmetic functions #(n)
and .(n) in additive arithmetic semigroups. The investigation reveals an interesting
situation in which the counterparts of #(n) and 1.(n) do not have a mean value. This
phenomenon does not occur in the theory of the Beurling generalized integers [8].
The new estimate may also have other applications.

Let f (n) and g(n) be two arithmetic functions defined for all nonnegative integers
n. The function h(n) defined by setting

h(n) f(k)g(n k),
k=0

n--0, 1,2

is called the additive convolution of f and g and denoted by f g.
The prime element theorems proved in [6] are essentially a tauberian theorem

about the solution (n) (which is not the same function (n) in classical number
theory !) to the convolution equation. (n) n(n), n 0, 1,2 (1.1)

Suppose there are non-zero constants A Ar with Ar > 0, constant ?’ > 1, and
constants p < < Pr with/9 > 0 and p > ?’ such that

, (n) Ajnp’-I + O(n-).
j--1

(1.2)

Let R, R2 and R3 denote the sets of ,oj which are positive integers, 0 or negative
integers, and non-integers, respectively.
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Let [a]l denote the greatest integer less than a. Also, as usual, let [a] denote the
greatest integer less than or equal to a. Thus [a]l [a] or [a]l [a] according
as a is or is not an integer.

Set

ml "= min{[pr pj]" pj E (Rl U R3) {Pr}}

if (R1 U R3) {Pr is not empty. Also, set

[Pr]l, if some pj 0;
m2 [’]1 1, if R2 0 and if Pr is an integer;

[Pr], else.
(1.4)

We shall first prove the following tauberian theorem.

THEOREM 1.1. Let ,(n) and ,(n) be two nonnegative arithmetic functions sat-

isfying , (0) and equation (1.1). Assume (1.2) with V > max{2 + Pr, 3}. Then
andkpositive integersnl, nk,there exist k real numbers 0 < Ol < < Ok <

where nonnegative integer k < (Pr + 1)/2, and further there exits some constant

ro > 0 (see thefollowing Remark 1) such that

k-1

.(n) pr 2Z nl cos 2nrrOl (- 1)nnk + O(n -t-")
/=1

and

ifOk or such that

k-I

nk + 2 ,n < Pr
/=1

(1.6)

k

(n) Pr 2 nt cos 2nTrO + O(n--)
/=1

(1.7)

and
k

2nt < Pr
/=1

for every constant cr with 0 < cr < ro. HereifOk <

min{ml, m2, m3, [’]1 3} (1.9)1

with

max{nl nk},
m3 [Y]l- 1,

ifk> 1;

ifk --0
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if (R1 LJ R3) {Dr} is not empty and if Pr Pj are not all positive integers for
pj E (RI t_J R3) {Pr} and

min{m2, m3, [?’]l 3} (1.9)2

otherwise.

Remark 1. For or0 the following values are suitable. (1) If (R1 U R3) {/Or}
and if pr pj are not all positive integers for pj E (R1 U R3) {Pr}, let

jo max{j pj E (R U R3) {Pr}, [Pr Pj] m}. (1.11)

Then, as we shall show in the proof of Lemma 2.5, one may take

min{y [?’]l, Pr [Pr]l, IOr Pjo [Pr Pjo]},
ro min{pr [Pr]l, IOr Pjo [Pr Pjo]},

-[]
(1.12)

according as

min{[?’]l 3, ml, m2} min{[,] 3, m3},
min{[?’]l 3, ml, m2} < min{[,]l 3, m3},
min{[,]l 3, ml, m2} > min{[?’]l 3, m3}.

(2) Otherwise, that is, if (R1 t2 R3) {Pr} 0 or if Pr Pj are all positive integers
for pj 6 (R U R3) {Pr}, one may take

if min{[v] 3, m2} min{[v]l 3, m3};
if min{[,] 3, m2} < min{[v]l 3, m3};
if min{[,] 3, m2} > min{[y] 3, m3}.

(1.12)2

min{v [?’]l, Pr [Pr]l },
CrO Pr [Pr

[],

Remark 2. A more accurate estimate of the remainder in (1.5) and (1.7) can be
obtained. For simplicity of statements, we shall not pursue this estimate in this paper
and shall content ourselves with giving in Lemmas 2.3 and 2.4 necessary details for
obtaining it.

The particular case of (1.2) with r and Pr is of most interest. It has been
considered in [2] and [5] under conditions of remainder O(q vn) with 0 < v < 1. In
this case, Theorem 1.1 says that if ?’ > 3 then

.(n) + O(n-’+3+) or .(n) (-1) -k- O(n-’+3+)

for any > 0. This result can be sharpened significantly in Theorem 1.2. Also, a
comparison of this result with Theorem 6.3 in [Ill with r and , > 2 indicates a
gap in Theorem 1.1 for 2 < , < 3. This gap is filled with Theorem 1.2 too.
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THEOREM 1.2. If
,(n) A + O(n-),

with A > O, ), > 2, then either

(n)-- / nt- O(n-’+2)’
nt- O(n-’+2 logn),!

or

{ (-1) + O(n-+2 logn),)(n)
(--1) + O(n-’+2 log2 n),

n>l

if ), is not an integer; (1.13)
if 7’ is an integer

if ), is not an integer; (1.14)
if ), is an integer.

A variant ofTheorem 1.1 or Theorem 1.2 in terms of additive arithmetic semigroups
is a prime element theorem with a new estimate of the remainder. We recall that
an additive arithmetic semigroup is, by definition [3], [5], a free commutative
semigroup with identity element such that {7 has a countable free generating set 79
of "primes" p and such that admits an integer-valued "degree" mapping 0: ; -+
N t {0} satisfying

(i) 0(1) -0 and O(p) > 0 for all p E 79,
(ii) O(ab) O(a) + O(b) for all a, b E {7, and
(iii) the total number d:(n) of elements of degree n in {7 is finite for each n > 0.

Additive arithmetic semigroups cover concrete cases [3] such as (i) the multiplica-
tive semigroup Gq of all monic polynomials in one indeterminate over a finite field
Fq, (ii) semigroups of ideals in principal orders within algebraic function fields over
Fq, (iii) semigroups formed under direct sum by the isomorphism classes of certain
kinds of finite modules or algebras over such principal orders.

Let/5 (n) be the total number of primes of degree n in . Also let

f(n) Z r(r).
rln

Then [6]

Under the condition

k , J(n) n(n). (1.15)

J(n) qn _, AjnPi-1 ._1_ O(q,n-) (1.16)
j=l

with ?, > max{1 + ,Or, }, the prime element theorems proved in [6] has remainder

of the form qno(1). Let now (n) (n)q and 2(n) (n)q -n. If ((n) and
(n) satisfy (1.15) and (1.16) with g > max{2 + Pr, 3}, then (n) and 2(n) satisfy

the conditions of Theorem 1.1. Hence Theorem 1.1 implies a better estimate of the
remainder of the prime element theorem. The same can be said about Theorem 1.2.
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THEOREM 1.3. Assume (1.16) with q > and ), > max{2 + Pr, 3}. Then there
exist k real numbers 0 < O1 < < Ok < 7 and k positive integers n nk,

where nonnegative integer k <_ (Pr + 1)/2, such that

(n) q pr 2Z nl cos 2nJrOt (-1)nnk + O(qnn-t-)
/=1

(1.17)

and

ifOk - or such that

k-1

nk + 2 )_f nI < pr
/---1

(1.18)

fk(n) qn Pr 2 nt cos 2nzrO + O(qn-t-)
/=1

(1.19)

and
k

2n < Pr
/=1

if Ok < 7" Here constants and cr are defined in Theorem 1.1.

(1.20)

of theRemark. There is a misprint in Theorem 6.1 in [6]. The condition , > 7
theorem should be replaced by ), > max{ 7, + Pr }.

THEOREM 1.4. If
G(n) Aq + O(qn-)

with A > O, q > 1, and V > 2, then either

qn(1 + O(n-’+2)),/(n)
qn(1 nt- O(n-’+2 logn)),

if V is not an integer;

if 9/is an integer

or

qn(1 (--1) + O(n-/+2 logn)),(n)
q"(1 (--1) + O(n-/+2 log2 n)),

if y is not an integer;

if ), is an integer.

(1.21)

As an application of Theorems 1.3 and 1.4, combining with Theorem 1.5 of [7],
we consider mean values of functions (a) and #(a) defined on an additive arithmetic
semigroup g;. Here ,k(a) (-1)2(a) and f2 (a) denotes the total number of prime
divisors of a counted according to multiplicity. The function #(a) (-1)(a) if a
is squarefree and #(a) 0 otherwise and co(a) denotes the number of distinct prime
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divisors of a. Thus ) (a), f2 (a), # (a), o (a) are the respective counterparts of the
classical functions ,k(n) (Liouville function), (n), #(n) (MiSbius function), o(n).
Let

Z#(y) (n)Yn,
n--O

the generating function of 0(n).

THEOREM 1.5. (1) Assume (1.16) with q > and , > max{2 + Pr 3}. Then

Z )(a) o(qmmp-

O(a)=m

and

#(a) o(qmmpr-1)
O(a)=m

if Z#(y) has no zero at y _q-I or a zero at y _q-1 of order less than
otherwise, ) and # has no mean value if Z#(y) has a zero at y -q- of integer-
order equal to Pr.

(2) Assume (1.21)with q > and ?’ > 2. Then

Z )(a) o(qm), Z Ix(a) o(qm)
O(a)=m O(a)=m

if Z#(y) has no zero on the circle ]y] q-" otherwise, ) and Ix has no mean value

if Z#(y) has a zero at y _q-1.

Remark. The mean value of Ix(a) is considered in [1] and [4] too. If Z#(y) has a
zero at y -q- of integer-order equal to Pr then it has no other zeros on the closed
disk {]y] _< as we know from Theorems 4.1 and 5.1 of [6]. In this case, Ix(a) does
not have a mean value because of the dominant perturbation of the zero at y -q-1.
This is well illustrated by Example 4.1 in [6] as we shall see from a brief discussion
given at the end of this paper. We note that this phenomenon does not occur in the
theory of Beurling’s generalized integers [8].

Since Theorems 1.3 and 1.4 are direct consequences of Theorems 1.1 and 1.2
respectively, it is sufficient to prove Theorems 1.1, 1.2, and 1.5.

The basic idea of our proofs of Theorems 1.1 and 1.2 can be summarized as
follows. In these proofs as well as in those in [6], everything boils down to an
estimation of integrals of the form f_ f(O)eindO. Formerly, in [6], we took the
Riemann-Lebesgue lemma and the estimate o(1) came up. Now, instead, we take a
delicate analysis of the behavior of the generating function

Z(y) Z (n)Y’
n:O

(1.22)
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of(n) on the boundary circle lYl ofthe disk {lYl < }. This analysis reveals that
the function f(0) in the integrals satisfies, loosely speaking, some kind of Lipschitz
condition. Using the Lipschitz condition, the estimate of the integral f_ f(O)einOdO
can be sharpened to O(n-) with some c > 0. Thus the analysis of the boundary
behavior of Z(y) will be the major part of this paper.

2. Proof of Theorem 1.1

We begin with rephrasing Lemma 2.1 in [6] for convenient use in further discussion.

LEMMA 2.1. Let Pl Pr be arbitrary real numbers with Pl < < Pr and
A Ar be nonzero arbitrary real numbers.

(1) If Pl Pr are all positive integers then there exist positive integers 75 <
< r with 75 Pr and 75 p k for some nonnegative integer k, and real

numbers B B, such that

v=l /z=l

where BL Ar (Pr 1) !.
(2) If iol Pr are all non-integers, thenfor any positive integer m there exist a

positive integer s s(m), real numbers 751 < < 75s with 75, Pr and 75u Pv k
for some nonnegative integer k (< m + [pv] 2), and real numbers BI B, such
that, as n -- cxz,

AvrtP-1 Bu(n-t-75u 1) _+_ O(rl-m+),
v=l /z=l

n

where ot max{p [pv], v r}, Bs ArI’(pr), and F is the Euler gamma
function.

If we write

Ajnp,-’

j=l 2

where -, yz,and Y3 are partial sums over R, R2, and R3 respectively, and apply
Lemma 2.1 to - and 3, we have

Z(y) Bu(1 y)-r,, + A log(1 y) + Ck -5- + rny (2.1)
bt=l k=2 n=l n=l

for lYl _< 1, y :/: 1, by (1.2). Here 75 < < r with r,,. /Or, A Aj if some

pj 0 and A 0 otherwise, Ck Aj for pj -k + 1, and rn O(n-) with
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/ min{?,, rn or}, oe max{pj [pj], j r} if pj are not all integers and
/ g otherwise. Note that Z(y) has no zeros in the open disk {lYl < }, as is proved
in Theorem 3.1 [6], where the assumption i. > 0 is used.

Let oe(0) denote the order of a zero y e2i of Z(y) on the circle lYl with
0 < 0 < (refer to definition (4.1) of [6]).

With , > 1, rn 2, by Theorem 4.1 of [6], the "total number" of zeros of Z (y)
on the circle lYl is at most Pr in the sense that

Ol ()"-1-2 Z ol(O) IOr

0<0<

or

2 Z or(O) < Pr
0<0<

according as is or is not a zero of Z(y).
Assume ?, > +/Or. Then, with the (least) integer m > , + max{pj [pj], j

r }, r,, 0 (n-’) and n__ rn y" has continuous derivatives of order < IV]
on the closed disk {lYl < 1}. We shall use this fact repeatedly later. Hence, from
(2.1), Z(y) has continuous derivatives of order <_ [t’] on {lYl < 1, y - 1}. By
Theorem 5.1 of [6], order ot of each zero y e2zriO of Z(y) is a positive integer and

Z(re2rri) (-1)
lim Z() (e2zriO) 7/= O.

1- (1 r) e27riO

Therefore, Z(y) has at most [/Or] zeros on the circle lYl 1. In the case that -1 is
one of its zero, Z(y) has 2k distinct zeros e+27ri01 k and with

e27r 0/0 < 0 < < 0k 7 and k <_ (,Or + 1)/2. Let the order of zero y be
n/, k. Then (1.6) holds. Similarly, in case that -1 is not a zero of Z(y),
(1.8) holds.

It remains to prove (1.5) and (1.7). We shall give only the proof of (1.5). The one
of (1.7) is almost the same but easier. Hence we assume 0k 7"

Let

F (y)
y)P’ Z (y)

(2.2)
-4- y)n I-I/k__211 ye2ri,)n’ ye-2rri, )n,

Then F(y) has no zeros on the closed disk {lY[ < 1}. Also F(y) has continuous
derivatives of order _< [?’]1 on {y "IYl < 1, y =/= 1, y =/= e+2rriO’, k}
since so does Z(y) on {y Y _< 1, y =/= 1}. Let 00 0. To analyze the boundary
behavior of F(y), it is sufficient to consider the upper half of the circle lYl 1" by
symmetry, the conclusion is applicable to the lower half. Thus the boundary behavior
of F (y) is determined by

Z(y)
Zt(y) := (2.3)

(1 ye-2zriO’
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on the arc {y e2trio (Ol -4- 0t_l)/2 _< 0 _< (0t + 0+1)/2} for < _< k 1, by

Z(y)
Zk(y) (2.4)

(1 + y)n,

on the arc {y e2ri (Ok + Ok_)/2 < 0 <_ (Ok 4- (1 0k-l))/2}, and by

Zo(y) (1 y)P" Z(y) (2.5)

on the arc {y e2trio --01/2 _< 0 _< 0/2}.
We need the following elementary estimate in the analysis ofthe boundary behavior

of F(y) on the circle ]y] 1.

LEMMA 2.2.
Then

Let H (y) y"Yn=oan ,lyl < with an O(n-)and?’ > 2.

IH<[l,-1)(y)_ H<[],-)(yo)
lY- Yol-1],

<< lY Yol log
lY Yol

if y is not an integer;

if V is an integer.

Proof. We may write

where

H([I’-) (Y) E bnYn’
n=0

bn an+il,-(n + 1)... (n 4- [y] 1) O(n-+[]’-).
Then, if ?, is not an integer, [?,]1 [?,],

H([I’-’)(Y) H[]’-l)(Y) Z bn(yn Y) + bn(yn Y)
nM n>M

<< lY-Yollb, ln+lbnl
nM n>M

nM n>M

<< lY Yol M-v+[vl+ + M-Z+[v].

For y Yo, let M ]y Yol- then

H[v]’-)(y) H[v]’-) (yo) << [Y Yo[ v-[vl.

If V is an integer, V [V] 1, a similar argument gives

H<II’-) (Y) H([]’-l)(yo) << lY- Yol log M + M-l << lY- Yol log
lY Yol

.D
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LEMMA 2.3. The derivatives of Zt(y) oforder < [Y]l nt have continuous
extension on the region D1 {y re2ri 0 < r < 1,(01 +0t_l)/2 < 0 <

(01 +0+1)/2} if <_ < k- and on the region Dk {y re2ri 0 <_
r <_ 1,(Ok +Ok-l)/2 < 0 < (Ok + (1 --Ok_))/2} ifl k. Moreover, lett
rain{I?’]1 3, [V]I nt}. Then

10
Z;t+’)(e2ri) << log

if ?’ is not an integer;
(2.6)

if ?, is an integer

and

10 0/1 y-[y]-2, if}/ is not an integer;
(2.7)Zff+Z)(e2Zri) [0 0t[ -1 log

10 0t]’
ify is an integer

for (0 +0t_)/2 _< 0 < (0 +0+)/2, 0 - 0t ifl < <_ k- andfor (Ok +0k-l)/2 _<
0 _< (0k + (1 0k-l))/2, 0 0k ifl k.

Proof For convenience, let Yo e2rrit. On the region Dr, we may express

Z(y) Z(n’)(yo)(y- yo)’ +nt! (n!-t- 1)!
Z(n’+)(Yo)(Y Yo)n’+

([]-
Z([/]’-I) (Yo)(Y Y0) [l’-I

(Z([y]’-I) (u) Z(ll’-) (Yo)) (Y u)ll’-2du.
([?,1 2)!

Thus, for y =/: Yo,

Zt(y) (-1)n’yo P(y) +
l(y) }([}/]1 2)! (y yo)n,

(2.8)

where P(y) is a polynomial of degree _< [)/]1 nt and

I (y) (Z([1’-) (U) Z([y]’-I) (Yo)) (Y u)[l’-2du.

We have

l(m)(Y) ([)/11 2)([g] 3)... ([)/11 m 1)

x (Z([1’-1) (u) Z([1’-) (Yo)) (Y U)[g]’-2-mdu (2.9)
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for _< m < [Vii 2 and

l([],-1)(y) ([Y]l 2)! (Z(Il’ -l) (y) Z([l’-)(yo)).
By integration by substitution, the integral on the right-hand side of (2.9) equals

fo(y yo) [Vl’-m-1 (Z([l’-)(yo + s(y Yo)) Z(tI’-)(Yo)) (1 s)[?’]’-2-mds.

Hence

I (y) )
(m)

(y yo)"’ /

K-’ (-- 1)knl(nl + 1)... (nl -t- k 1) l(m-k) (y)
,=o (Y Y)’v+’
rn

d,(y yo)[Y]-m-l-m
k=O

x (Z(Il’-l)(yo+s(y--yo)) Z(b’l’-l)(yo) (1-s)l’-:-m+ds. (2.10)

Therefore, for < m < [g]l nl (_< [Y]l 2 !), (I(y)(y yo)-n’) (m) has limit
zero as y Yo in the region DI, since Z(tl’-)(y) is continuous. By (2.8), this shows
that the derivatives of Zl(y) of order _< [F] n have continuous extension on
region D.

For min{[Fll 3, [F]I n} and y e:i =/: Yo, from (2.8) and (2.10),

t+l

Zt+l, (e2niO) << + le2i e2’i’

k=O

X [Z([?’l’-l)(e27ri’ -k- s(e2niO e2ni’))

-Z(b’]’-l)(e2ni’)l (1 s)[?’]’-3-t+lds

<< 4- IO o1- IO Ol Y-IY] << IO o1

if y is not an integer (equivalently, if [y] [Y]l) and

<< + [0 0l-1 l0 01[ log << log
10 -01 10 -01

if F is an integer, since, by (2.1) and Lemma 2.2,

lY Yo]-[, if ), is not an integer;

if y is an integer.
Z([l -l)(y) Z([] -1)(yo) << lY Yol log Iv- Yol’
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Also,

t+2

Zl(t+2) (e2zrio) << _l_ E e2rriO e2zriOt [’] -3-t-n

k=O

X IZ([’]’-l)(e2zriO’ at- s(e2riO e2rri’))

--Z[l’-l)(e2ri’)) (1 s)|l’-4-’+kds

if < [Y]l 3 and

t+2

zt+2)(e2zriO) << Jr-
k=0

X IZ([V]’-l) (e2zriO’ + s(e2trio e2riO’))

-Z(b’]’-l)(e2Zri’)l (1 s)’-ds

+ le2’ e2,o, I-"’ IZtl,-,,(e2,,,o)_

ift [?’]-3. We note that ift < [}/]1-3 thent+n/ [?’]1- andift [?,]1-3
then nl _< 2. Therefore,

zt+2)(e2Zri) -t- IO Otl-210 Ol-I] << I0 Ol-I1-2

if , is not an integer and

zt+2)(e2Zri) -4- I0 01-210 Ol log << I0 01-1 log
IO -o1 Io -o1

if ?, is an integer. E1

LEMMA 2.4. Letm min{ml, m2} andrr min{pr-Pjo-[Pr-Pjo], Pr--[Pr]l}
if (R U R3) {Pr} f3 and if pr pj are not all positive integers for pj (R U
R3) {Pr} and let rn m2 and cr Pr [Pr]l otherwise. The derivatives of Zo(y)
oforder < rn have continuous extension on the region Do {y re2riO 0 <_ r <

1,-0/2 _< 0 < 0/2}. Moreover, let min{[v] 3, m}. Then

"-’07(t+V)(e2rriO)<< 101 log I-’
iol,-.,

if R2 f2) and if m2;

otherwise,
v= 1,2 (2.11)

for 0 < IOI O/2.
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Proof

where

By (2.1),

Zo (y) Zol (y) + Z02 (y) + Z03 (y) + Z04 (y),

s-1

Z01 (y) "= B. + Bu (1 y)Pr--r,
/z=l

(2.12)

Zo2(Y (1 y)Pr Ck Z k
\k=2 n=l

and

Z03 (y) A (1 y)Pr log(1 y),

Zo4 (y) (1 y)Dr r yn.
n=l

First, consider Z01 (y). If/Or /Oj is an integer, (1 y)P"-, is a polynomial for

r. pj k with a nonnegative integer k (see Lemma 2.1). If/o --/oj is not an integer,
(1 y)P"-, has continuous derivatives of order < [/or -/oj + k in Do for r. --/oj k.
Hence, if/or /oj are not all positive integers for pj 6 (R1 U R3) {/or }, ZOl (y) has
continuous derivatives of order < m or, otherwise, Zo (y) is a polynomial and has
continuous derivatives of all orders.

If (R U R3) {Pr} 7 and if/or /oj are not all positive integers for/oj
(R1 U R3) {/or}, we have

s-1

Z0l(m+ 1) (e2rcio) Z Eu(1 e2rriO)mr-z’/,-m

s-1

<< Z l1 e2zriO pr-rl’-ml-1

<< l1 e2zriO ]P"--Pi--[Pr--PlO]--I
pjE(RIUR3)-{p}

<< l1 e2triO [Pr--P,--[Pr--PioI--1
[P," --P.i ]=m

<< I1 e2rciO

[OIP"--Pio--[Pr--P’o ]-1 (2.13)

where jo is defined in (1.11). Similarly,

(m+2)(e27riO -[P,-PioZo << iOiP,.-.o ]-2 (2.14)
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Secondly, consider Zo2(Y). We note that

--y E n n 1) k(n + 1)
y

n=l

)nt-,yn nt-,-lyny + d -- nt- dl-i
n=l n=l n=l

O(1), ifl _< k 2;

( -1 ), if/--k1;y,0 lOgll
0([1 --ylk-l-l), if/ > k

(2.15)

uniformly for lyl < 1, since, by (i) of Lemma 2.1,

c yn
nl - ek+l + Z eu(1-

u=O

Zn=l n has an analytic extension,for a positive integer k. We also note that c y _k

denoted by Wk (y), say, on the domain D formed by cutting the complex plane along
the real axis from to +oc. Hence the estimate (2.15) holds for ul(t)

k (y) on the region
Do except y 1.

Then (1 y)P’ ZnC=l yn- has an analytic extension (1 y)P’ Wk(y) on D. If Dr
is not an integer or if Pr is an integer and m <_/Or, we have

((1 y)P"W,(y)) (m) I/U(I) -m+!b ,,k (y)(1 y)P’
/=0

0 11 yl p’-m+l lOg]l
+boW(y)(1 y)’-m. (2.16)

If Dr is an integer and m > IOr,

((1 y)P"W,(y)) (m) I,U (/) )p, -m+!bt,,k (y)(1--y
l=m-p,

<< +11 ylp,-m+k-! log

-I- l1- yl p’-m+-I

k</<m

<% l1 y p’ -,,,+k-I log (2.17)
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7(m)Hence, for m < [,Or], by (2.16), 02 (Y) has a limit as y in the region Do. This
shows that the derivatives of Z0z(Y) of order < [Pr] has continuous extension on Do
if Ck are not all zero.

If ,Or is not an integer, by (2.16),

(e.2rcio02

O (I e2:’riO[pr-[pr] log

<< IOI p-tprl-
)e2riO + O([1 e2rriO[ pr-[p]-I)

(2.18)1

and, similarly,

(eZ:,rio) -[p,.]-2
02 << 101 p’

If tOr is an integer, by (2.17),

(2.19)1

z(p,.+l) (e2Zri02 << lg[1 e2rrio[ << log 10--- (2.18)2

and

Z0(’+2) (e2rciO) 11 e2zriO 1-1 log
l1 -e2rril << 1171-1 log 10-- (2.19)2

since k > 2 Therefore, from (2.18) and (2.19),

7([P"]+V) (e2Zri"-’02 << 101 log I--’
if ,Or is not an integer;

otherwise,
v-- 1,2 (2.20)

for r Pr [Pr
Then, consider Z03(Y). It has an analytic extension on the domain D and has

continuous derivatives of order < [Pr]l on {lyl < 1}. For y 6 Do {1 },

((1 y),O,, log(1 y))([p,.],+l) d0(1 y)p,.-tp,.],-I log(1 y)

+d (1 y),.-Ip,.l,-I

<< I1 yl p’-Ip’I’- log

and

((1 y)P’ log(1 y))[p,.],+2)

d (1 y)p,.-tp,.l,-2 log(1 y) + d2(1 y)p,.-[p,.l,-2

<< 11 ylp,.-[p,.],-2 log
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Therefore

([,Or _.[_p) (e2rriO)03 << 101 log 10---’ v 1, 2 (2.21)

for r Pr [Pr]l.
Finally, Z04 (y) has on the disk {lyl _< continuous derivatives of order < [?’]l-

if Pr is an integer or of order <_ [Pr] if Pr is not an integer since y > + Pr. For
lYl _< and y 7 1, if ,Or is an integer and m < ,Or or if ,Or is not an integer and
m < [Y]l- 1,

(m) ho (--Fnynl (1 y)Pr--m..[.. O(i ylPr--m+,)04
\-- ,]n--1

<< II--ylPr--m+l.

If,Or is an integer and/Or < m < [?’]1 1,

m)

04 <<1.

Therefore, for w min{[Vll 3, [Pr]},
(w+l)Z04 (y) << 1, Z0(+2) (y)

if Pr is an integer or

Z(W+l)
04 (y) << + l1 yl p" w-1 W+2)

o4 (y) << + l1 yl pr-w-2

if/Or is not an integer. It follows that

(e2rrio [or-104 << 10 z(W+2) (e2zrio or-2
04 << 101 (2.22)

for r Pr [Pr]l.
It now follows that the derivatives of Zo(y) oforder < m have continuous extension

on the region Do. Also, for min{[?’]l 3, m}, (2.11) follows from (2.12), (2.13),
(2.14), (2.20), (2.21), and (2.22). V1

Combining Lemmas 2.3 and 2.4 yields an analysis of the boundary behavior of
F(y) on the boundary circle lYl 1.

LEMMA 2.5. Letm be defined in Lemma 2.4 and defined in (1.9). The derivatives

of F(y) oforder < min{m, m3} have continuous extension on the closed disk {lYl _<
}. Moreover,

F(t+l)(e2i) << max{10 0/1-l 10/+ 01-1 (2.23)

and

F(t+2)(e2triO) << max{]0 011r-2, 10/+1 0l or-2} (2.24)

.for every a < ao and 01 < 0 < Ol+l, k 1, where o is defined in (1.12).
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Proof It is easily seen, from Lemmas 2.3 and 2.4, that the derivatives of F(y)
of order _< min{m, m3} has continuous extension on the closed disk {[y[ _< }.

To prove (2.23) and (2.24), we first assume that (Rl tOR3)-{pr - 0 and that Pr-Pj
are not all positive integers for pj E (R tO R) Pr }. Let min F 3, m , m2 }.
From (2.1 ),

F(t,+,)(e2Zrio) << 101’- log 1-,
101-, -,

if R2 and if t, m2;

otherwise,
v=l,2

for0 < [0[ < 0/2, where constants cr min{pr Pjo- [Pr Pj,,], Pr [Pr]}. Let
t2 min{[’]l 3, m}. From (2.6) and (2.7),

F(t2+)(e2io) << | l0 0l2-v log

!
if ?, is an integer;

IO o1’
if 9/is not an integer,

v--l,2

for (0 +0t_)/2 < 0 < (0t +0t+)/2, 0 0 if _< < k- and for (0k +0k-l)/2 <
0 < (0k + (1 0k_l))/2, 0 0k if k, where constant O"2 V [V]I. Thus,
if tl t2 then (2.23) and (2.24) hold on the interval 0t < 0 < 0t+l for every
cr < min{v [9,’]1, Pr [Pr], Pr Pj,, [Pr Pj,,]}. If tl < t2, (2.23) and (2.24)
hold on the interval for every r < min{p [Pr]l, Pr Pj,, [P," Pi,,]}. Finally,
if tl > t2, for o- < V [9/]1. This proves that (2.23) and (2.24) hold on the interval

0z < 0 < 02+1 for every r < r0 with r0 defined in (1.12)1.
Then assume that either(Rl tO R3) {,Or} 0 or all ,Or pj are positive integers

for p E (R t3 R3) {,Or}. In the same way, we can prove that (2.23) and (2.24) hold
on the interval 0 < 0 < 0+1 for every cr < or0 with or0 defined in (1.12)2. V!

LEMMA 2.6. Let f (O) be defined on the interval [a, b]. Suppose there exist a
partition a Oo < Ol < < Ok b of[a, b] and a constant with 0 < <_ such
that f (0) has continuousfirst order derivative on each open subinterval (01, 0+1 ),
0, k and such that

I.f(O)l << max{lO 01-, I0+ oI-
and

If’(0)l << max{10 0tl-2, 10t+l 0l-2}

forO1 <0 < 0/+1,1-- 0,1 k- 1. Then

f [n-, tf0<3< 1;
f (O)e’dO << lg--n-n, if 6

(2.25)
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Proof. Let

0< r/ <mini0/+1-0/
/ 2

Then

(2fo,f(O)ei’OdO
\/=0

+ + Z f(O)eindO"
/--1 -r/ /=0 +0

Clearly

O/+7 rl0/+7
)6-1f (O)ei’dO << (0 O dO

dO/

f (O)ei"dO << (0 O)6-dO

By integration by parts, we have

o+ -7

f(O)ei"dO [f(0+l rl)e
ao/+7 in

f (0 + rl)ei’(’+7)]

1/0,+,-7 f’ (0)ei’’O dO.
in JO/+7

Plainly,

If(0[+ rt)ei"’+’-)l--I.f(0[+ r/)l << -,
If(Oz-+- r)ei"’+ll--If(Oz + 7)1 << 7-.

Also, if6 < 1,

f’ (O)einO dO
+7

0/+ -7

_< I. o)1o
J 0/+7

<< (0 01)6-2d0 + (0/+1 0)6-2d0
J o/+7 J o/+7

2

Then we obtain ,
f (O )ei’dO
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If 1, then

and

o,+,-o

f’ (0)eindO
+o

ab

f(O)eindO

By taking r/-- n -1 (2.25) follows.

<< log-

<<r/+- l+log
n

U]

Proofof Theorem 1.1. As in the proof of Theorem 6.2 of [6], we have

t:- f_rrF,(eiO)e_i(n_l)OdO",(n) Dr 2 n/cos 2nrrO (-l)nnl + F(eiO)n=l zr

It remains to show that the integral on the right-hand side, denoted by In-, say, is
O((n 1)-t-"). The function F(y) has continuous derivatives of order < [?’]
on {y lYl _<, Y - 1, y =/: e+/-2’, k}. By Lemma 2.5, the derivatives
of F(y) of order < defined in (1.9) have continuous extension on the closed disk
{lYl < 1}. Let

F’ (y) "] (t)

f (O) :=
F(y) ] v=eiO"

Then f(O) has continuous first order derivative on each open interval (2zr0t, 2zr0t+)
and (-2zr01+1, -2zr01), 0, k I. By Lemma 2.5, for 0 6 (2zr0t, 2zr0t+)
or 0 (-2zr0/+1,-2zr0),

F(t+l)(ei) Pt(F(ei), F’(eiO) F(t)(ei))
f(O)

F(eiO) Ft+ (eiO)

<< max{10 2zr0zl-1, 12zr0z+ -0["-l},

and

F(t+Z)(ei) Pt+l(F(ei), F’(ei) F(t+l)(ei))
f"(O) +

F(eiO) Ft+2(eiO)

<< max{10 2zr0t["-2 12zr0+ 01"-2}

where Pk (x0, x xk) is a polynomial of x0, x xk with integer coefficients
such that the degree of x is one. We note that F(t+)(ei) contributes toward the
right-hand side of the last inequality at most max{lO 2zrOt "-l 12rrOt+ OI"- }.
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Applying integration by parts times, we obtain

F’ (eiO) e_in0dOIn
r F(ei)

f_(F’(y))
t)

n(n-- 1)..(n--t+ 1) zr (’Y) v:eio

n(n- 1).. (n- + l)
f(O)e-i(n-dO"

e-i(n-t)O dO

The function f(0) satisfies the conditions of Lemma 2.6 with 0 < o- < 1. Hence the
last integral is O (n -") and

In O(n-t-r)
follows. El

3. Proof of Theorem 1.2

The idea of the proofs of (1.13) and (1.14) is included in the proof of the following
lemma, while the proof of (1.14) requires a deeper analysis.

LEMMA 3.1.
there exist constants 0 < ot <_ and 13 > 0 such that

Let f (O) be a continuous function on the interval [a, b]. Suppose

101 021
If(01) f(02)l << 101 021 log

Thenfor all O1, 02 [a, b] with 0 < IO1 021 < .
b

f(O)eindO n- logt<< n.

The inequality (3.1) must be known but we are unable to locate its proof in the
literature. As a substitute we give a brief proof of it here.

Proof The inequality (3.1) is trivial when ot 0. Hence we may assume 0 <
ot<l.

kLet 0k a + (b a), k 0, n. Define a continuous function g(O) on
[a, b] such that g(O) f(O) and such that g(O) is linear on each interval
Then we have

g’ (0) f (0k) f (0k-l
<< [Ok 0k-l I-l+c log/

0 0_ 10 0_1
<< n 1- logt n (3.2)
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for 0k-1 < 0 < 0k, where the constant implied by << is uniform for all k. Also,

If(O) g(O)[ [(f(O) f(Ok-)) (g(O) g(Ok-))[

_< t(f(O) f(Ok-)] + I(f(0k)- f(0k-l)l
[Ok Ok-l[

< 10--0k-1 logt
[0 0k-l[

+ (10k 0k- -+ log

<< n log/ n, (3.3)

where the constant implied by << is uniform for all k too (The condition > 0 is
needed here).
We have

fo
b

faf(O)eindO (f (O) g(O))eindO + fa ’ g (O)einOdO 11 + 12,

say. Then, by (3.3),

Also, by integration by parts,

Il << n log/ n.

12 7g(O)einO

tn in
g’(O)eindO O(n-) + O(n log/ n)

since

by (3.2). 121

fab fabg’ (O)einOdO << Ig’ (0)IdO << n -’ log/ n

ProofofTheorem 1.2. Assume that

(n) A + O(n-V), n > 1.

Let rn (n) A and Zo(y) (1 y)Z(y). Then rn O(n-) and

Zo(y) + (r, + A 1)y + Z(rn rn_)y + Z rnyn
n=2 n=l

with r’ O(n-). We note that the generating function Z(y) has at most one zero
at y of order one on the disk {lyl _< }.
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If Z(y) has no zero at y -1 then F(y) Zo(y). Hence F(y) has continuous
derivatives of order < [?’] on the disk {lYl < and has no zero there. As in the
proof of Theorem 1.1, applying integration by parts ([?’]l 2) times, we obtain

F’(eiO) _i,,odOI,, e
F(eiO)

F(n(n 1)... (n [y] + 3) r

F’(Y) )
[]’-2)

e_iO,_i],+2)odO.
F(y) v=e,O

Let

F’(y))
tl,-2)

f(O) "=
F(y) ,-.eiO

Pl,l,_2(F(ei), F’(eiO) F(tl,-2)(ei))

x (Z{[I’-)(-I +s(y + 1))-ZII’-)(-1)) (1-s)ll’-2-m+kds

F(tl,-)(eio)
+ (3.4)

F(eiO) F[],- (eiO)

Then f(0) is continuous on the interval [-zr, zr ]. Applying Lemma 2.2 to F (y), we
conclude, from (3.4), that

10 021 -I1, if ?, is not an integer;

if ?, is an integer.If (0) f (02)1 << 101 021 log
1002

Then, by Lemma 3.1, we obtain

/n << { n-)’+2’ if y is not an integer;
n-+2 logn, if y is an integer.

This prove (1.13).
If Z(y) has a zero at y -l of order one, then the argument in the proof of

Lemma 2.3 shows that

Z(y) l(y)
Z (y) P(y) + , (3.5)

l+y ([?,]-2)! l+y

where P(y) is a polynomial of degree < [?,] 2 and

I (y) :-- (Z11’-) (u) Z(11’-) (- 1)) (y u)Il’-2du.

Also,

(I(Y))
’m)

" dk (y + )ll,-m-2
y+ k=0
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forl <m_<[?,]l--2and

d (y -+- 1) -1
+ ,=o

X (--1 nt- s(y + l)) Z(b’l’ -l) (--1)) (1 S)k-lds

+(Y + 1) -1 ([?’]1 2)! (Z([1’ -1) (y) Z(1’-1 (- 1)). (3.6)

Therefore, the derivatives of ZI (y) of order _< [}’]1 2 have continuous extension
on the disk {lYl < }. Also,

b’l-I

<< le + 11-’
k=l

f0X IZ(I-I(-- +s(eeri + 1))-- Z([I’-I(- 1) (1-s)t-ds

+lei + 11- Z(,-(eaio) Z(,-(_I)I
[g]-I10 g - if g is not an integer;

(3.7)<< log
10
, if g is an integer

for 0 =/-
Then

Zo(y)
F(y) (1 y)Zl(y)

l+y

has continuous derivatives of order < [?’]1 2 on the disk {lY[ < and F([l’ -l) (y)
is continuous there too except at the point y 1. Let

where

and

f(O) fl (0) + f2(O),

f, (0)
F(b’l,-1)(eiO

F(eiO)

Pb,l,_2(F(ei), F’(ei) F(b’],-2)(ei))
f2 (0) F[I’- (eiO)

Note that Pk (x0, X xk) is a polynomial ofx0, X x with integer coefficients
such that the degree of xk is one. Hence f2 (0) is continuous on [0, 2zr and satisfies

10
fe(O) << log

if ?, is not an integer;

if ?, is an integer
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for 0 - r, by (3.7). By integration by parts,

f2(O)e_inod0 e_inod0 _!

r in
f(O) O(n ).

To prove (1.14), it remains to show that

f (O)e_i,odO << n-’+1 log n, if t’ is not an integer;
zr n -1 log2 n, if ?’ is an integer.

We shall give the computation in detail for ?, not an integer and in sketch only for ,
an integer.

Thus we first consider , not an integer. Let 0 , k 0, 4-1, 4-2 +n.
We have

o,, f,o,,fl(O)e-indO << [0 :rr [’-[r’]-ld0 << n-+[]
d 0n-I -I

by (3.7). Then define a continuous function g(O) on [0, On-] such that g(Ok) fl (0)
and such that g(O) is linear on each interval [0k-l, 0k], k 0, n 1. For
Ok_ 0 <_Ok, k >_ 1,

f (0) f, (0_)

F([], -) (eio) F([],-,) (eiO-, F (eiO) F (eion’-’
F([r’],-l) (eiO,-)

F(eiO) F (eiO)F (eiO-,

O(IF([’]’-1) (ei) F([r]’-l) (eion’-’ I)-I- O(10k-1-7rl r’-b’]-I IO--Ok-i l)

O([F([]’-l)(ei)--F([]’-l)(ei-’)l)+O(n-+[l(n--k+ 1)’-b’]-l), (3.8)

by (3.7). Also, by (3.7) and the differentiation mean value theorem,

lF[],-1)(eiO F[el,-1)(eiO-,)l
-, eiO) Z(l[Y]l-l) (eiO

+(1-ei-’)(Z(l[V]’-l)(ei)-Z[V]’-l)(ei-’))
+([V]I- 1)((l[g]’-2)(ei0)
0 (0 --0 --0-1 + 0- --10 0-1)

O(n-+l(n-k+ 1)g-[gl-1)

(3.9)
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From (3.5) and (3.6), we have

Z(l[Y]I-1) (egO) Z(I[Y]1-1) (eiOk-t

d’ eiO + eiOk-i +k=l

x (Z(b’l’-l)(--1 + s(ei + 1)) Z(tl’-)(--l)) (1 s)k-lds

+ (Z(l’-l (- + s(ei + l))
ei- -+-

+([’]1- 2)t I( eiO +

-Z([]’-)(-1 + s(ei-’ + 1))) (1 s)k-ds1
) (eiO Z([/]_I)

eit-; + (Z([Y]’-I) (--1))

(Z([y] --1)(eiO) Z([r,] -1)(eiO_
eiO-t +

(10 zrl-t- 10 0k-lll0k-I zt’l- -t-10k-1 zrl-10 0k-l[-[1)
O(nl-e+tVl(n k + 1)-l). (3.10)

Combining (3.8), (3.9), and (3.10), we obtain

f(O)- f(O_) << n-V+tVl(n-k + 1)v-tvl- +n-V+tVl(n-k + 1)-l. (3.11)

Then

f (0) f (0_)
g(O) g(Ok_) (0 0_)

O 0_

<< n-V+tVl(n k + 1)v-tvl- + n-V+tVl(n k + 1)-. (3.12)

for Ok-1 0 Ok, k 1. We now have

1o,,_,f (O)e-indO (fl (0) g(O))e-indO + g(O)e-indO
o

h + h, (3. )

say. From (3.11) and (3.12),

Ill[ (Ifl (0) f (0_)1 + Ig(0) g(0k-l)l) dO
k=l
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n-I

k=l

<< n-+[] log n.

Also, by integration by parts,

since

o,,- fo,,_, g’ (O)e-inOdOh ing(O)e-i’
o in o

O(n_,+b,l)_ 1 fo’’-’
in

g’(O)e-idO’

g(O,,_) fl(O,,-) << IF([l’-)(ei"-’)l

<< I(1 -ei"-’)Z(tl-)(ei"-’)l + IZ(l’-2)(ei"-’)l
O(10,,_ zrl-I-) + O(1)

O(nl-+[])

(3.14)

by (3.7). The last integral in (3.15) is

< Ig IdO << Ig;, In-k=l - k=l

where

f (0,) f (0,_ 1)

<< n-+Il(n k + 1)-[1- + n2-+[l(n k + 1) -1

by (3.11 ). Hence, we obtain

o,,_
g’(O)e-i’’dO << (n-+[](n k + 1)-[1- + n-+[](n k + 1)-)

k=l

<< n l-+[l log n. (3.16)

By (3.15) and (3.16),

12 n-+[1 log n

and, combining with (3.14), we obtain

’’- f(O)e-i,,odO << n-+[}’] logn.
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This proves
r

<< logn.fl(O)e-indO n-+[]

In a similar way, we can prove the same estimate for the integral on [-zr, 0].
We finally consider ?, an integer. We have

0,,

f0,0"fl (O)e-inOdO << log
J O,,-i ,-i

7r 0
dO << n- log n.

For 0k_l < 0 < Ok, k > 1,

fl(O) fl(Ok-|) 0 (I F([]’-’) (ei) F([]’-l)(ei*-’)l)

+O(n-l(l+lgn-kWln ))
and

O l0 0k-l log
Izr 0---- + l0 0k-l log

+O(IZl[r’]’-l’(ei)--Z(l[/]’-l’(ei,-,)])

O(n-l(l+lgn-+ln ))
From (3.5) and (3.6),

Z(1[’]’- 1) (eiO) Z(l[r’], -1) (eiO,-i)

0 (lO-Ok-1 Ilzr --Ok-11-1 log -+-I0 0k-lllTr--0k-ll log

n )).n-k+l

It follows that

fl(O) fl (0k-l) << (n- k + 1) -l (1 -t-log
n-k+l

Then the same estimate holds for g (0) g (0k_ ). Now

0,)_ n

(f(O)-g(O))e-indO << Z(n-k+l)- + log
dO k=l

n ) n-
n k + << lg n.
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Also,

[0,,_g(O)e-indO O(n- logn) g’(O)e-indO
dO in do

and

[0,,_, n-I n-- k (g’(O)e-indO << ’n-lg’l << (n--4- 1)- / log
dO k=l k=l

<< log2 n.

Hence, we obtain

and

follows. !’-I

fl (O)e-inOdO << n-1 log2 n

f (O)e-indO << n- log2 n

n )n-k+l

4. Proof of Theorem 1.5

Proof. It is sufficient to give only the proof of part (1). The proof of part (2) is
exactly the same.

As in the classical theory, we have

Z (r)[Z(rei)14[Z(re2i)l

H [(1 rm)ll rmeim1411 rme2imOI]-{’(m)

{-’. rkm
exp /5 (m) (3 -4- 4 cos kmO -4- cos 2kmO)

m=l k=l

>

for r < q-I and all 0 6 R since 3 + 4 cos kmO + cos 2kmO > O. Hence, for
O#(2n+l)n’,nZ,

or, equivalently,

Z(r)lZ(rei) cxz

log(Z(r)lZ(rei)l) --+ cx
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as r -+ q --1_. We note that

lg(Z(r)lZ(rei)l) Z/5(m)Z ----(1 + ,eim)
m=l k=l
_

P(m)rm(1 -I-- eimO) + O(1)
m=l

since/5 (m) << qm /m. Therefore, we have

# (m)rm (1 + ,eimO)
m=l

as r -- q-l_ for all 0 # (2n + 1):rr. If we now take f(a) .(a) or f(a) =/z(a)
in Theorem 1.5 of [7], then we find that

S Z q-O(P)(1 .(f(p)q-iOO,p))) Z ’(m)rm (1 + .e-imOlgq) o
p m=l

(2n+l)zrholds for all 0 6 R and 0 # ogq
For 0 (2n+l)r

log q

because f(p) 1.

S-- Z (m)q-m (1 -+-e-im(2n+l)r) 2Z (2m)q-2m
m=l m=l

Assume (1.14) with ?, > max{2 +/gr, 3}, by Theorem 1.3, there exist k real numbers
0 < 0 < < 0k < 7, and k positive integers n nk, where nonnegative
integer k < (Pr + 1)/2, such that (i)

.-.,- Pr nt cos4mrOt +
m=l

rn /=1

if 0k < i or (ii)

S Z Pr 2 nl cos4mrrOt nk + O(m-t-a)
m=l rn /=1

if Ok 7’ where is a nonnegative integer and 0 < r < 1, since

/5(n () (n)lz_r_k
n r

rln
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(here #(r) is the classical M6bius function). In case (i), S cx since

cos r4m Ol,
m=l

m
/=1 k

are convergent trigonometric series for 0 < 0 < < 0k < . Hence, S diverges
for all real number 0 and

Z f(a) o(qmm’’-1) (4.1)
(a)=m

by Theorem 1.5 of [7]. In case (ii), 0k 1/2, i.e., Z#(y) has a zero at y -q-.
If Pr > nk, then S cx and (3.1) follows. If Pr nk, then Z#(y) has no zeros
but y _q-i of integer-order nk on the circle lYl q-1 and S converges for
ot (2.+_2_. In the last case, f does not have mean value 0. It remains to determineog q
whether f has a nonzero mean value. If f(a) .(a), for each prime p, we have

l+Zq
k=l

-kO(p)(l+ia) f(pk) + Z q-kO(P)(--1)k(O(P)+l)
k--1

(- 1)(p)+l q-O(p)

>0

and if f(a) lz(a), we have

-+-Zq-kO(P)(+m)f(pk) 1-(-1)(P)q-(p) > 0
k--I

since q > 1, O(p) >_ 1. Moreover,

-OP)(1 f (p)) 2 Z P(m)q-m > Z/5(2m 1)q-Zm+
m=l m=l

Therefore, by Theorem 1.5 of [7], f does not have a nonzero mean value and the
mean value mf does not exist.

Theorem 1.5 is well illustrated by Example 4.1 in [6]. Let q be a positive integer
and q >_ 2. Let

2qk--rk (modk), 0<rk <k

for k 1,2 We set

fi(k)= [(2qk-rk)+l’ ifkisodd;
/ 1, if k is even
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(we can even put/5(k) 0 for k even). Then /5(k), k 1, 2 are all positive
integers and

Z#(Y) H (1 ym)-’(m)
m=l

converges absolutely in the disk {lYl < q- }. It is shown in [6] that if we write

Z#(y) + (n)y
n=l

then

(n) Aqn -4c- O(qn-1/2).
Also, it is shown in [6] that Z#(y) has an analytic extension

Z#(Y)= l+qy (l+qy2)1/2e(y)l-qy1-qy2
(4.2)

in the domain D formed by cutting the complex plane along the real axis from -x
to -q and from q- to +cx and along the imaginary axis from -icx to -tq-
and from iq-1/2 to icx. Here, in (4.2), the function F(y) is holomorphic in the disk
{lYl < q-k and the function

(I+qy2)H(y)
qy2

is the single-valued branch with H(0) of the associated multiple-valued function
in the domain D.

Consider the generating function

M(y) "= Z Ix(a)yO(a) Ix(a) ym, lYl < q-I
aE m=0 rn

of Z0(a)=m Ix(a). It is easily seen that

M(y) H(1 yO(p)) H(1 ym)’(m)
p m=l

Z#(y)
1--qY (1--qy2)+ qy + qy2

e-F(Y)

Therefore, we have

Ix(a)= / Z#
a(a)=m (y)ym+

dy,
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where 0 < r < q-.
then we obtain

If we shift the integration contour to the circle lYl q-1/2-’

#(a)= Resy=_q-,z#(y)ym+l 27ri (y)ym+0(a)=m I=q Z#
dy

(--1)m+12qm
+

e-F(-q-’) -k- O(q(1/2+)m).

It is clear that, roughly speaking, q-m ZO(a)=m tz(a) alternates between values

2(q-l) ( )e-F(-q-) --2 q,- e_F(_q-
q+l q+l

as rn cx. Hence #(a) does not have a mean value because of the dominant
perturbation of the zero of Z#(y) at y -q-l.
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