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I. Introduction

Let p: C + denote a Cl-function and define p _c C2 by

fp {(z, z2) C2: (z2) > p(z)}.

Weakly pseudoconvex domains of this kind were investigated by McNeal [McNI]
and Nagel, Rosay, Stein and Wainger [NRSWI ],[NRSW2]. For the case where
p(z) Izl, k 6 1, Greiner and Stein [GS] found an explicit expression for the Szegti
kernel of 2p. If p is a subharmonic function, which depends only on the real or only
on the imaginary part of z, then one can find analogous expressions and estimates in
[N] (see also [Has l]). In [D] and in [K] properties of the Szeg6 projection for such
domains are studied. The asymptotic behavior of the corresponding Szeg6 kernel was
investigated in [Han] and [Has2]. There have been several recent papers obtaining
explicit formulas for the Bergman kernel function on various weakly pseudoconvex
domains ([D’A], [BFS], [FH2] and [FH3]).

Let H2(0f2,) denote the subspace of L2(Of2p) consisting of boundary values of
holomorphic functions f on f2p such that

sup
,,>o

If(z’t+ip(z)+iy)12d ’(z)dt<cx ’

where dL denotes the Lebesgue measure on C. We identify O2p with C x ]R and
note that for each f 6 H2(02,) there exists a boundary function fo on Op such
that fy(z, t) "= f(z, + ip(z) + iy) tends to fo(z, t) in L2(C x IR) as y tends to 0,
moreover we have

fcf If(z’t)12dtd’(z)= sUPfcf,,>o If(z’t+ip(z)+iy)12dtd)(z)
(see [M], [SW]).
We consider the tangential Cauchy-Riemann operator for Of2p,
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After the identification of 0f2p with C x the tangential Cauchy-Riemann operator
has the form

0 Op 0
L=

Distributions q satisfying L(4) 0 are called CR-distributions (see [B]).
The main result of this paper is to show that each function f LZ(Op) which

is also a CR-distribution can be extended to a function holomorphic on f2p which
belongs to HZ(Op). The extension is expressed in terms of a corresponding entire
function with a growth condition depending on p.

In fact the space HZ(Op) can be identified with the space of all functions f
LZ(Op) satisfying (f) 0 in the distribution sense (Theorem 1). We also point
out how this result can be extended to corresponding domains in Cn+

In the next result we express the Bergman and the Szeg6 kernel of the domains
by means of the Bergman kernel of certain weighted Hilbertspaces of entire funtions
(Theorem 2 and Theorem 3).

Finally we apply these results to determine the boundary limits of the Bergman
kernel on the diagonal of a bounded pseudoconvex domain f2 in Cn+, that is h-
extendible at the boundary point P, using a reduction to the model case due to Boas,
Straube and Yu [BSY] (Theorem 4 and Theorem 5).

2. Weighted spaces of entire functions with parameters

For the sake of simplicity we concentrate on domains g2p in C2; see Remark (b)
after Theorem for domains in higher dimensions.

Let Ep denote the space of measurable functions F on C x ]K+ which are entire
with respect to the first variable and satisfying

fofclF(z,t)12exp(-4rctP(z))d)(z)dt <cxz.

Here and in what follows we have to make sure that the weight function p is chosen
in a way that the corresponding space of entire functions Ep is nontrivial, for instance
if p grows like Izl ( > 0) for Izl .

The following lemma is a version of an important representation result for Hardy
spaces (see [SW] for a special case).

LEMMA 1. Everyfunction in H2(0f2p) has the representation

(1) f (z, w) F(z, t)e27ritw dt

where F Ep. In addition F can be recoveredfrom the boundary value off by

(2) F(z, r) f f(z, + ip(z))e-27rirte2rrp(z) dt
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Proof. For a function g L2(d)(z)dt) let " denote the Fourier transform with
respect to the variable :

(.g)(z, r) f g(z, t)e-2ritr dt

Then

(3) .T’.T"-I 0 0P
d_-r

.T" and --I are to be taken in the sense of the Plancherel theorem.
Now let M denote the multiplication operator

M" L2(d)(z)dt) L2(e-4rtPtZd.(z)dt)

defined by

(Mg)(z, r) e2rrrPZg(z, r)

for g L2(d)(z)dt). Then from (1) we get

If f H(igp), then its boundary function fo satisfies (fo) 0 in the sense
of distributions (the functions fy are holomorphic in a neighborhood of 92p, they
satisfy the equation L(f.,) 0 (see [Ra]) and they converge to the boundary function

fo in L2). Now let F be as in (2). Then, using Plancherel’s theorem, we get

’-M- F fo

and from (4),

0 -(fo) --M-F -M- F,

which implies that . F 0.
Again by Plancherel’s theorem we obtain

IF(z, r)12e-4rpz dr Ifo(z, t)l dt If(z, + ip(z))l 9- dt;

hence

IF(z, r)12e-4rptz drdZ(z) If(z, + ip(z))l2 dt d)(z).



BERGMAN AND HARDY SPACES ON MODEL DOMAINS 461

Since

fcf If(z’t+ip(z))12dtd’(z)= suPfcf If(z’t+ip(z)+iy)ledtd(z)<x’
y>0

we get F Ep.
For (z, to) f2p we set

h(z, w) F(z, r)eerirw dr,

we can write to + (p(z) + p) , p > 0, and from F Ep we derive
that h is holomorphic in fZp (see for instance [Ru], p. 404). A further application of
Plancherel’s theorem implies that h f. I--!

3. Extension of CR-distributions

THEOREM 1. Let f L2(Op) and suppose that -(f) 0 in the sense of
distributions. Then f can be extended to a function holomorphic in f2p, in fact
belonging to H2(Op), whose boundary value coincides with the originalfunction.

Proof. We define a function F on C ]+ by formula (2),

F(z, r) f f(z, + ip(z))e-erir’ e2rrp(z) dt,

and conclude again from (4) that F is entire with respect to z and belongs to Ep and

)e2rrirwh(z, w) F(z, r dr,

for (z, to) f2p yields the desired extension. I--I

Remarks. (a) If f belongs to H2(Op), then its boundary value f0 satisfies
(f0) 0 in the sense of distributions. Hence HE(O’2p) can be identified with the
space of all functions f L2(O2p) satisfying (f) 0 in the sense of distributions.

The Szeg6 projection

S: L2(Op) H2(Op)

can therefore be viewed as the projection onto the kernel of the tangential Cauchy-
Riemann operator.
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(b) If f2p is a domain in C’’+ of the form

f2p {(z, w): z C w C, 3w > p(z)},

then the tangential Cauchy-Riemann operator has the form

"b f -j f d-j
j=l

where

3 3p 3
L

3.j 3-jj 3"
The same reasoning as in Theorem applies now to these domains f2p in C"+

(c) The above extension of CR-distributions to the whole domain tip seems to be
new even in the case of the Siegel upper half space (p(z) Iz]2); see for instance
[S, p. 642], where only a local extension property is mentioned. Theorem gives the
global extension in one step.

4. Bergman and Szeg0 kernels on certain unbounded domains

Now we suppose that the weight function p: C" ----+ + is (pluri)subharmonic
and with a growth behavior guaranteeing that the corresponding Bergman spaces Hr
of entire functions are nontrivial, where H (r > 0) consists of all entire functions

: C" C such that

l(Z)12e-4rrP(z) dX(z) <

The Bergman kernels of these spaces are denoted by K (z, w). A result on parameter
families ofBergman kernels ofpseudoconvex domains ofDiederich and Ohsawa [DO]
can be adapted to our case, showing that for fixed (z, w) the function r - K (z, w)
is continuous. Then we can apply a method from [Has l] to obtain the following
formulas for the Szegi3 kernel S of the Hardy space H2(02p) and the Bergman kernel
B of the domain f2p:

THEOREM 2.
has theform

(a) IfOf2p is identified with C" x I, the Szeg6 kernel on 3f2. x 3f2p

S((z’, t), (w’, s)) Kr(z’, w’)e-2r(p(z’)+P(w’))e-2rir’-t) dr,

where z’, w’ E Cn, s,t .
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(b) For (z’, z), (w’, w) e f2p (z’, w’ e Cn; z, w 6 C) the Szeg6 kernel can be
expressed in theform

S((z’, z), (w’, w)) K(z’, w’)e-2rir(--z) dr.

(c) The Bergman kernel of f2p is written as

B((z’ z), (w’, w)) 4r rK(z’ to’)e-2rirC-z) dr

Proof (a) and (b) follow directly from Theorem in [Has l] since the weight
function satisfies the assumptions there. Special cases can be found in [GS] and
[FH ]. The proof of Theorem in [Has again uses the operator identity

.T.-F_ M- __O M.

For (c) one has to recall the formula

B((z’, z), (to’, to)) 2i
9S

a-- ((z’, z), (w’,

from [NRSW2]. El

5. Boundary limits of the Bergman kernel

In this part we compute or at least estimate the Bergman kernel B of certain
unbounded domains f2p at the point ((0, i), (0, i)), 0 Cn, ofthe diagonal. Applying
a theorem of Boas, Straube and Yu [BSY] this determines the boundary behavior of
the Bergman kernel Ka on the diagonal of a bounded pseudoconvex domain f2 in C"+
that is h-extendible at the boundary point Q with multiple type (m0, rn m) and
that has f2p as local model at Q:

lim Kfz(z) d(z) yii=2/mi B((O, i), (0, i)),
zQ

here F is a nontangential cone in f2 with vertex at Q and d(z) is the distance from z
to the boundary of .

THEOREM 3.

B((0, i), (0, i)) 4r rKr (0, 0)e-4’rr dr,

where K denotes the Bergman kernel of the ttilbert space tt of entire functions
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: C" C, such that

lqb(z)12e-4ptz) d.(z) r > O.

See Theorem 2(c).
Finally we compute B((0, i), (0, i)) for two classes of examples. Here we con-

centrate on the so-called decoupled domains (see [McN2]).
(a) p(z zn) j= Izjl aj where cj > j n.
In this (radial) case the Bergman kernel of the weighted spaces of entire func-

tions H can be represented by the orthonormalized system of the monomials and a
computation using the formula

(5) r exp(-crq) dr
qctm+l)/q

C, m, q > 0,

(see [GR]) proves the following:

THEOREM 4. Ifp z Z,, -"j= Izjlj whereotj > 1, j n, then

B((O, i), (0, i))

2 2) nF 2++...+ ,-S HJ=lOlj

(2)2"+47rn+2 1--I’=! 1-’

(b) p(z z,,) -" IxjlV where zj Xj 2t- iyj otj > j n.j=l u.i
In this (nonradial) case the computation ofthe Bergman kernel is more complicated.

We use a formula from [Has l] for the Bergman kernels K of the weighted spaces
of entire functions H: for r (r r,) rj , we write p(r rn)

IrjI.._.. thenY.= pj(rj) and pj(rj)

K(z,w)=-if exp(27rr/j(zj+-j))

j=, exp(4zr(rjoj rpj(rj)) drj

In order to apply Theorem 3 we have to compute K (0, 0). We consider a single
factor in the above formula for K (z, w) and omit the index j. Let

I (r/, r) exp(4n’(or rp(r)) dr

A straightforward computation shows that

r)dr/= (4zr)t/a-’/c’r2/a f dr/

f exp(rr/- p(r)) dr’
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where 1/or + 1/or’ 1. We set p*(s) Isl’/’, which is the Young conjugate of p.
In the following we estimate

exp(rrl p(r)) dr

from below and from above in terms of the Young conjugate: for this purpose let
r/> 0 and > 1; then from Young’s inequality we get

rrl p(r) < rrl ro + p*()rl)

and hence

Further we have

and finally

exp(p* (.r/))
exp(r0- p(r)) dr <

(.- l)r/

exp(-rr/- p(r)) dr < -,

(,k 1) + exp(p*(,kr/))
exp(rr/- p(r)) dr <

(

for r/> 0. By similar argument we handle the case r/ < 0 and get

(6) f exp(rr/- p(r))dr _<
(’-1) +exp(p*(,kr/))(.-

fort/- 0 and . > 1.
Next we elaim that

(7) exp(rr/- p(r)) dr > exp(-x (/x)p*(/zr/)),

where 0 </z < and

In order to show (7) we first note that

p*(r/) maxlxlnl- p(x)}
x>_O

and that the maximum is attained at the point
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Hence for 0 > 0 it follows that

exp(ro-p(r))dr > exp(ro-p(r))dr > exp[0(tc(0)+ 1)- p(tc(0) + 1)].

The last expression can be written in the form

0(x(0) + 1) p(x(O) + 1) 0
’/(’-) + 0

On the other hand, for 0 </z < we have

p,

and we show that

--(0/(’-) + 1) > p*(/z0)- X(/z),

which gives inequality (7). For this aim we have to prove that

I(01/(-)+I)’ (1 ,,)-z ’ <_x(u).

I/z’" then/ > and we haveWe set/3 -v

)a 0’I(0/C-)+I)’ /0’ 05 (0/<-)+I /

A straightforward computation shows that the expression +/-(0 /(-) + 1) -/0’
attains its maximum when 0 [(c/3)/-) 1]-t-) and therefore we obtain

which proves (7).
For 0 < 0 we can proceed in an analogous way arriving with the same inequality

(7).
From (6) and (7), for 0 <’# < and Z > we get

(8)
() 1)

< ex(u) e-p*(u) do.do <
f exp(r0 p(r)) dr

For the left term in inequality (8) we mention that

(z- )lul e_p,xo) <
(Z- )lnl

k (Z 1) + ep*(Xo)’
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for each r/e I. Using formula (5) the integration of the term on the left side yields

(-) 1) f irlle_P,(z.) do 20k-.3l)c’-+2/a’F ( 2)--c,
for each ) > The maximal value of 2(. 1)/. is 8/27.

The right term in inequality (8) is equal to

2eX(U)t’-+/’F()lz
It is easily seen that 2eX(") tends to infinity as/z tends to 0 or to

Now let ?,j mino<u<{2eX./(u./)/#j}, where

Then

which implies

In the last step we integrate over r and, from Theorem 3, we obtain:

where zj Xj + yj Otj >THEOREM 5. If p(zl Zn) ’.=1 a.,
1, j n, then the Bergman kernel in the point ((0, i), (0, i)) can be estimated
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in theform

(4zr) -’-I F 2+--+...+-- 12I cj F
o! n j=l

< B((0, i), (0, i))

<(4r)-"-lF 2+--+...+-- ejcj F
ffl n j=l

with /otj + /otj and Fj mino<u< {2eX/(u/)/lzj }, where
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